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Summary 
Proteins are fundamental molecules that play important roles in 
the cell. The function and behavior of proteins are determined by 
their native structure. However, the protein folding process is not 

well understood. Machine learning algorithms have been widely 
used to solve bioinformatics problems. Building predictive 
models from early folding residues (EFRs) has recently been 
investigated. However, the datasets used suffer from the class 
imbalance problem. This renders the classification task difficult. 
In this paper, we address the class imbalance problem in an EFR 
dataset using the synthetic minority oversampling technique 
(SMOTE). We trained an ensemble model, the gradient boosted 

machine (GBM), using the balanced dataset. We then compared 
the performance of our trained model with that of other models in 
the literature. Our experimental results indicate that better 
classification performance is obtained when oversampling is used 
to overcome the class imbalance problem. In particular, better 
improvement was observed in terms of precision, recall, and 
F-measure values.  
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1. Introduction 

Over the past decades, many significant advances have 

been made in the field of bioinformatics. With the advent 

of high-throughput technology, the exponential growth of 

biological data has made computational approaches an 

integral part of biological data analysis and research.  

Proteins are diverse biological molecules that play 

fundamental roles in the cell. They are made of long 

chains of amino acids that fold into three-dimensional 
structures. The process of protein folding is complex and 

can cause disease if unsuccessful. Understanding how 

proteins assume three-dimensional structures as well as 

how these structures remain stable are important for 

determining protein behavior and function. However, the 

protein folding process is still not well understood [1].  

In order to understand how a protein folds, it is vital to 

understand the early stages of the folding process—that is, 

the early interactions between local structural elements. 

Early folding residues (EFRs) are key residues that initiate 

and guide the folding process [1]. They are identified 

experimentally using the pulse-labeling 

hydrogen–deuterium exchange method. This method 

examines the folding process with spatial and temporal 

resolution [1]. Thus, EFRs can be used to help researchers 

understand how a protein folds. EFRs are difficult to 

obtain experimentally and have been obtained for a small 

number of proteins. Currently, the Start2Fold database 

[2][3] contains curated and classified residue- or 

segment-level data on the folding and/or stability proteins. 

This database can be used to develop a classification 
model for EFRs. 

Due to their capability to deal with multidimensional 

bioinformatics data, machine learning methods have been 

applied successfully to solve many bioinformatics 

problems [4][5][6], including the protein folding problem 

in terms of EFRs.  Raimondi et al. [7] developed a 

support vector machine (SVM) model with a radial basis 

function kernel for the classification of EFRs. The model 

was trained using data from 30 proteins available in the 

Start2Fold database. The dataset consisted of 25 features 

for 3398 records. Using 27-fold cross validation, the 
developed model achieved an accuracy of 73.4% and a 

low value for precision of 36.1%. Bittrich et al. [1] created 

a dataset of EFRs also extracted from the Start2Fold 

database. Their dataset was composed of 3266 residues 

with 27 features. The authors used the dataset to develop a 

classification model based on generalized matrix learning 

vector quantization (GMLVQ) [8]. The performance 

evaluation of the developed model showed a maximum 

accuracy of 77.4% with a low precision of 29.7%. The 

implemented model was compared to state-of-the-art 

classifiers: naïve Bayes (NB), random forest (RF), and 

SVM. The GMLVQ model was augmented with a 
visualization tool that allows the user to interpret the 

resulting model.   

Previous research on EFR classification was based on 

datasets that suffered from the class imbalance problem, 

i.e., the minority class was poorly represented. This 

non-uniform distribution of classes can affect the 

performance of the classification algorithm. This means 

that the resulting model will be biased toward the majority 

class, will exhibit poor classification performance, and will 

yield more false negatives. We believe that the 
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performance of EFR classification models could be 

improved if the class imbalance problem is addressed.  

In this study, we addressed the protein folding problem in 

terms of EFRs. In particular, we focused on improving the 

classification of EFRs by applying the synthetic minority 

oversampling technique (SMOTE) [9] to overcome the 
class imbalance problem. Since its introduction in 2002, 

SMOTE has been applied successfully to different types of 

real-world problems, including bioinformatics problems 

such as the classification of the molecular functions of 

proteins [10]. The technique has demonstrated both 

simplicity and robustness. We used the SMOTE-balanced 

dataset to train a gradient boosted machine (GBM) 

classifier. The GBM is an ensemble machine learning 

algorithm that sequentially builds a set of trees for 

classification. The main assumption of ensemble 

algorithms is that combining the predictions of multiple 

models improves the performance of the classification 
task.  

The paper is organized as follows: Section 2 describes the 

methodology used in the present work, including data 

description and preprocessing, SMOTE, and classification 

using a GBM. Section 3 describes the results and provides 

a relevant discussion. Section 4 presents the conclusions 

drawn from the study. 

2. Methodology 

To improve the classification of EFRs, we built a GBM 

classification model trained using a SMOTE-balanced 

dataset. In this section, we briefly describe the dataset used 

and the basic idea of SMOTE and GBM.  

2.1 Dataset Description 

We used the dataset prepared by Bittrich et al. [1], which 

was extracted from the Start2Fold database [2][3]. The 

dataset consisted of 3266 residues (records) with two class 

labels: late and early. It was also imbalanced, with the early 

class constituting only 14.8% of the dataset. Each residue 

was described using a set of 27 features to capture 
properties such as energy profiling, secondary structure, 

relative accessible surface area, non-covalent contacts, 

graph representation, and topological descriptors. All the 

features were numeric except for the folds feature, which 

had the class label. Table 1 summarizes the dataset’s 

features [1].  

 

 

 

 

 

 
 

 

Table 1: The features of the Bittrich et al. [1]. dataset 

2.2 Dataset Normalization 

Normalization is used to scale the values of features such 

that they fall within a smaller range—for example, from 0 

to 1 [11]. This is a very important preprocessing step, 

since it eliminates the effect of measurement unit on the 

final data mining results. Normalizing feature values 

allows all features to be given an equal weight when 

performing the data mining task.  

z-score normalization is a data normalization technique 

whereby the values of a feature, a, are normalized based 

on its mean and standard deviation. The z-score denotes 

the number of standard deviations a feature value is from 

the mean of all feature values. The z-score is calculated as 
follows: 

 

 

 

 Feature Description  

e  Computed energy values  

ePred  Predicted energy values  

SecSize  Size of the surrounding secondary structure elements  

LF  
Fraction of surrounding unordered secondary 

structure elements  

Rasa  Relative accessible surface area  

PlipLC  Absolute count of local PLIP contacts  

PlipHbLC  Absolute count of local PLIP hydrogen bonds  

PlipHpLC  
Absolute count of local PLIP hydrophobic 

interactions  

PlipBbLC  Absolute count of local PLIP backbone contacts  

PlipLR  Absolute count of long-range PLIP contacts  

PlipHbLR  Absolute count of long-range PLIP hydrogen bonds  

PlipHpLR  
Absolute count of long-range PLIP hydrophobic 

interactions  

PlipBbLR  
Absolute count of long-range PLIP backbone 

contacts  

PlipBN  Betweenness using all PLIP contacts  

PlipCL  Closeness using all PLIP contacts  

PlipCC  Clustering coefficient using all PLIP contacts  

PlipHbBN  Betweenness using PLIP hydrogen bonds  

PlipHbCL  Closeness using PLIP hydrogen bonds  

PlipHbCC  Clustering coefficient using PLIP hydrogen bonds  

PlipHpBN  Betweenness using PLIP hydrophobic interactions  

PlipHpCL  Closeness using PLIP hydrophobic interactions  

PlipHpCC  
Clustering coefficient using PLIP hydrophobic 

interactions  

ConvBN  
Betweenness using the distance-based contact 

definition  

ConvCL  Closeness using the distance-based contact definition  

ConvCC  
Clustering coefficient using the distance-based 

contact definition  
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where a’ is the normalized value of a, x’ is the mean, and s 
is the standard deviation. 

2.3 Oversampling Using SMOTE 

Our dataset in this study was class-imbalanced, as there 

were 482 records of class early and 2784 records of class 

late. Performing the classification task on the dataset as 

such would yield poor performance on the minority class, 

since the classifier would not see enough records in the 

training phase. Thus, it is of crucial importance to handle 

the imbalanced dataset problem before proceeding to the 

classification task. There are many oversampling 

techniques for dealing with the class imbalance problem, of 

which SMOTE [9] is one of the most widely used. In 

SMOTE, new records are synthesized from the minority 
class. Basically, SMOTE works as follows: a record, x, is 

randomly selected from the minority class in the dataset. 

Then, the k neighbors of x are determined, with k usually set 

to 5. One of the identified neighbors, y, is then chosen. A 

new synthetic record, z, is generated at a randomly selected 

point between x and y in the feature space. Research has 

demonstrated the success of SMOTE when applied in a 

variety of applications [12]. The technique has also been 

shown to be robust and to perform better than simple 

oversampling.  

2.4 Gradient Boosted Machines (GBMs) 

To perform the classification task, we used the GBM 

algorithm proposed by Friedman [13], which is typically 
used for regression and classification tasks [14][15]. A 

GBM is an ensemble method that sequentially builds a set 

of trees. In each iteration, a tree is improved based on the 

performance of the tree in the previous iteration. A GBM is 

composed of three elements: a loss function (e.g., mean 

square error), a weak learner (e.g., decision trees), and an 

additive model. The GBM algorithm finds a final model 

that will minimize the loss function. As shown in Algorithm 

1, it starts with an initial prediction—for example, in 

regression, the initial prediction is the mean of the observed 

values. Then, residuals, which are the differences between 
observed values and the predicted value, are calculated. A 

model is then built to predict the residuals. Models are built 

sequentially, with each model seeking to correct errors in 

the previous model. The obtained model is added to the 

previous model, and the process is repeated for a 

user-defined number of iterations. The learning rate refers 

to the fraction of the current predicted value that is added to 

the value predicted in the previous iteration. The learning 

rate can take any value between 0 and 1. Research suggests 

that small values (< 0.01) lead to better performance of 

GBMs [16]. According to Kuhn and Johnson [17], the value 

of the learning rate is inversely proportional to the 

computation time required to reach the optimal model. 

GBMs are highly flexible and can be customized to deal 

with any data-driven task [18].  

 
Algorithm 1 Simple Gradient Boosting Algorithm 
Inputs: 
M: number of iterations 
Choice of loss function 
Choice of weak classifier 
Algorithm  
Initialize model f0 with a predicted value for each 
record (e.g., average of response value) 
for i=1 to M 
  compute residuals Ri 
  build a model fi to predict Ri 
  use fi to predict response values for all records  
  update model fi predictions to generate model fi+1 

end for 
return fm 

3. Experimental Results  

3.1 Experimental Setup 

In this study, we used the GBM implementation in 

RapidMiner Studio 9.6 [19]. The algorithm was run using 

a learning rate of 0.01, and the maximum depth of trees 

was equal to 10. For SMOTE, we used the Operator 

Toolbox [20] extension. We ran our experiments using a 

MacBook Pro, with the macOS Catalina operating system, 

version 10.15.3, and a 2.3 GHz 8-Core Intel Core i9 with 

16 GB RAM.  
We applied 10-fold cross validation. The performance of 

the classification model was evaluated in terms of 

accuracy, precision, recall, F-measure, and area under the 

curve (AUC).  

Accuracy here refers to the percentage of correctly 

classified records, which was calculated as shown in 

Equation 2. 

 
  (2)  

 
             
Precision refers to the percentage of records correctly 

classified as belonging to the early class out of all the 

records predicted to belong to the early class. This 

percentage was calculated as shown in Equation 3. 

 
   .        (3)    
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Recall is the percentage of records correctly classified as 

belonging to the early class out of the total number of 

records belonging to the early class. This percentage was 

calculated according to Equation 4. 

  
                (4)  
 
 

where TP represents true positives, i.e., the number of 

records correctly classified as belonging to the positive 

class (early); FP represents false positives, i.e., the number 

of records incorrectly classified as positive records; FN 

represents false negatives, i.e., the total number of residues 

incorrectly classified as belonging to the negative class 

(late); and TN represents true negatives, i.e., the total 

number of residues correctly classified as late. 
The F-measure is the harmonic mean of precision and 

recall, and it was calculated via Equation 5 below. 

 
  .   (5)  

 
The receiver operating characteristic curve (ROC) is a 

graphical representation of the performance of a 

classification model. It plots the true positive rate against 

the false positive rate. The AUC measures the overall 

performance of a binary classifier. The value of the AUC 

ranges from 0.5 (for a random classifier) to 1 (perfect 

classifier).  

 

3.2 Experimental Results 

Here, we evaluate the performance of the proposed 

framework and compare it to published results of NB, RF, 

SVM, and GMLVQ using the Bittrich et al. dataset [1]. 

For the GMLVQ model, we compare the best values 
obtained in the different configurations presented in [1]. 

First, we investigated the effect of oversampling on the 

performance of the GBM classifier. Fig. 1 shows the 

performance measures for the GBM classifier with and 

without applying oversampling using SMOTE. As shown 

in the figure, we observed improved performance of the 

classifier in all measures when oversampling was applied. 

More specifically, better values for precision, recall, and 

F-measure are obtained. These values improved by a large 

margin.  

 

Fig. 1  The performance measures of GBM with and without SMOTE. 

Then, we looked at the performance of SMOTE+GBM as 

compared to other approaches in the literature. Fig. 2 shows 

the performance of GBM as compared to classifiers 

presented in [1]. Again, the GBM with SMOTE 

outperformed all the compared classifiers. In particular, 

precision and recall were improved by a large margin. This 

indicates that oversampling allows the classifier to better 
learn to identify early folding residues.  

 

 

Fig. 2  The performance measures of SMOTE+GBM compared to other 

classifiers in the literature. * indicates results from [1]. 

We also wanted to investigate whether the performance of 

the previously published classifier could also be improved 
using oversampling. Fig. 3 shows the performance of NB, 

RF, and SVM when oversampling was applied. For NB, 

RF, and SVM, significant improvement was observed in 

terms of precision, recall, and F-measure.  

In contrast to the results reported in [1], where it was 

difficult to determine which classifier performed best, our 

results indicate that the performance of machine learning 

algorithms is superior when oversampling is applied. 
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Overall, the SMOTE+GBM model is found to outperform 

all the compared models in all measures, except recall. The 

best recall value of 97.41% is obtained by the SMOTE+RF 

model. In addition, with the 27 features representing the 

EFRs, machine learning models are able to better separate 

between early folding residues and late folding residues. 
 

 

Fig. 3  The performance measures for NB, RF, and SVM when 

oversampling was applied. 

4. Conclusion 

Proteins are dynamic molecules that assume native 
structures in order to perform their functions. The folding 

process of proteins is complex. There have been many 

attempts to improve our understanding of this process. 

Recently, the classification of ERPs has gained the interest 

of researchers. Machine learning-based models were 

developed using real datasets. However, the datasets used 

suffer from the class imbalance problem. In this research, 

we investigated the potential of oversampling using 

SMOTE to improve the classification of EFR. A GBM 

was trained using the balanced dataset. Experimental 

results indicate that SMOTE leads to a superior 
classification task when using GBM, NB, RF, and SVM. 

The improvement was observed in terms of high precision 

and recall values. Further research on this problem could 

focus on studying other methods for dealing with the class 

imbalance problem. In addition to improving classification 

accuracy, the interpretability of the trained models is 

crucial. The potential of interpretable machine learning 

models, such as: decision trees, decision, rules, etc. could 

be investigated. 
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