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Summary 
Genetic algorithms (GAs) have recently been used as a search 

method for training set selection in supervised machine learning. 

The assumption is made that not all the data are equally useful 

in training supervised algorithms. In this paper, we empirically 

study the performance of classical GA for selecting a ‘good’ 

training set for decision tree classifiers. We also discuss 

different fitness functions and their influence on the results. A 

set of widely used classification datasets from Kaggle and UCI 

machine learning repository are used. Empirical results show 

that improved generalization can indeed be obtained using this 

approach. 
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1. Introduction 

Machine Learning (ML) and optimization are two 

different fields of fundamental computer science research. 

Optimization is aimed at modelling, designing and 

implementing solution techniques to find the optimal 

entity from a set of candidate alternatives for a particular 

computer search problem. Usually, an optimization 

process starts from a single or set of initial solutions and 

moves step by step towards the best solution directed by 

an objective function [1]. Classification of patterns and 

discovery of knowledge issues require the selection of a 

subset of features to represent the patterns to be classified. 

This is because the classifier’s performance and the 

classification cost are sensitive to the range of features 

used to construct the classifier [2]. Training data could 

contain noisy or incorrect information in many real-world 

applications, and the quality of the best classifiers could 

also deteriorate when dealing with these data [3]. 

Training Set Selection (TSS) [4] is an appropriate and 

solid approach to dealing with these issues.  TSS is a pre-

processing technique which selects only the relevant 

instances of the data set before performing training and 

classification tasks [5].  Genetic algorithms (GAs) offer 

an attractive approach. They are population-based search 

approach that can find optimal or near optimal solutions 

to such optimization problems quickly and effectively [2] 

[1]. GAs reflect a clever use of a random search used to 

solve problems of optimization. The GA’s basic 

techniques are designed to simulate the processes required 

for evolution in natural systems. 

Supervised machine learning methods are given more 

attention and are widely used now days. These methods 

task is to discover relationship between the input 

attributes and the target attribute. The discovered 

relationship is referred to as model in machine learning 

community. Classification models, called classifiers, maps 

the input attribute to predefined target classes. There are 

many alternatives to represent classifiers. Decision tree 

(DT) [6] are probably the most used approaches for 

classification and widely used for and applied to 

numerous applications [7], [8], [9]. This study considers 

the DT classifier and empirically testing the impact of 

classical GA on selecting the training set for the DT with 

classification task. We show how the GA can be 

successfully applied for selecting the training data 

instances to improve the classification accuracy as well as 

reduce the size of the training set. 

Dataset Splitting emerges as a necessity to eliminate bias 

to training data in ML algorithms. Hence, to get the best 

validation and learning outcome the data is divided into 

training data and testing data, see Figure 1. The decision 

tree is first trained against the training set, then asked to 

predict output from the testing set (or ’hold out’ set). In 

this paper, hold-out method is used to achieve this 

separation as we only have one model, the decision tree, 

to evaluate and no hyper-parameters to tune. A common 

split when using the hold-out method is using 20% of data 

for testing and the remaining 80% of the data for training. 

This work first builds and train the decision tree on the 

entire training set. Then, we experiment building and 

training the decision tree on a training selected set via the 

GA as instance selection of the training set. GA is known   

to have no assumptions on the data structure or the 

classifier family. Instead, it is a population-based method 

for instance selection that can be used to gain higher 

classification accuracy. This makes GAs good choice and 

suitable for training set selection. 
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The paper is structured as follows. The next section pro- 

vides related work. The training set selection is then 

presented and formulated in section three. Section four 

introduces the genetic algorithm and its components for 

the training set problem. Section five presents 

experiments and results. Finally, concluding remarks and 

future directions are presented in section six. 

2. Related Work 

Machine learning depends heavily on data. It is crucial     

to make algorithm training possible. In real-life 

applications, quality of data is extremely important. Thus, 

data preparation and preprocessing (e.g., remove 

duplicate and noise) is an integral step in machine 

learning projects. These applications within the projects 

do required many data, however, this does not mean to 

feed the system with every known data instance in related 

field. Machine learning models need to be fed (train) with 

carefully curated/selected data, hoping it can learn and 

extend or generalize to the future. Classification heavily 

relies on training the model with training data, which is a 

subset of the original dataset. In reality, original datasets 

have enormous number of elements and it is a difficult to 

train a model on such huge datasets. Since restrictions 

such as storage requirements and computational cost may 

impose on the application of machine learning algorithms, 

especially when dealing with large datasets [10].  

For instance, Jansowski and Grochowski pointed out in 

their survey [11] that large datasets may contain noise 

(incorrect data) and several algorithms may be fragile to 

the noise. Chin et al. in [12] highlighted large datasets 

require increased memory usage and have computational 

complexity. These problems give rise to a need of 

searching for methods suitable to reduce the size of the 

dataset without a loss of quality of the provided 

information [10]. 

Training set selection (TSS), also called instance selection 

(IS), is carried out by selecting a subset of samples from 

the original training set [5]. The right training set 

selection      is designed to choose representative sample 

by reducing or removing noisy and/or redundant ones. 

Clearly, TSS technique based on the goals to reduce the 

training time and dataset size without losing classification 

accuracy. TSS has been applied to different areas of 

machine learning including classification, regression, and 

time series prediction [13]. Following, we briefly review 

some works. 

Cano et al. [14] discussed a combination of stratification 

and evolutionary technique-based algorithm for training 

set selection in large size datasets. They used stratification 

to reduce domain size then the evolutionary algorithm 

selects the most representative instances from the 

stratified selection. 

 

 

Fig. 1  Illustration of data splitting process for training and testing a 

classifier. The whole data instances split into two parts: training and testing. 

Garcia and Herrera [15] consider imbalanced datasets in 

their research on evolutionary training set selection. 

Imbalanced sets refer to the situation when data contains 

many outcomes belonging to one class and few ones from 

the other class. This work applies evolutionary TSS by 

under-sampling that is, removing outputs mainly from 

majority class and replicating or generating new minority 

output variables. The work uses C4.5 decision tree 

classifier. Results were compared with other under-

sampling and over-sampling techniques on the basis of 

classification accuracy. 

To improve the accuracy of SVM, Verbiest et al. [16] 

studied evolutionary approaches for TSS. Three 

evolutionary wrapper techniques were proposed for TSS, 

namely, Generational Genetic Algorithm, CHC 

evolutionary algorithm, and the Steady State Genetic 

Algorithm. Training sets generated from these three 

evolutionary techniques were compared with five wrapper 

approaches for classification accuracy of the SVM. 

3. The Training Set Selection Problem 

This section introduces and formulate the training set 

problem. It also states the optimization objectives. 

3.1. Problem Formulation 

This paper considers the training set selection (TSS). Let   

us assume that there is a training set comprised of 

instances. Consider every instance as a pair (with where is 

defined as   an input vector with representing its 

corresponding class label. Be every input vector contains 

input information representing its corresponding instance. 

We can define the goal of a TSS method is to be able to 

produce a set of instances such that. Theoretically, any 

classifier can be trained using so that it can classify new 

instances with same or better accuracy when compared to 
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training the classifier on. If the cardinality of set should be 

 
 

lesser than that of the original set, classifier training time 

can be considerably reduced. 

 

 
 

One can see that selecting of training set is a search 

optimization problem with defined objectives, hence, a 

genetic algorithm can be applied. 

 

3.2. Optimization Objectives 

The TSS in this paper is to maximize the accuracy of the 

classification task via carefully selecting a representative 

subset of training instances. The goal is to build a 

classifier trained on this small subset, while maintaining 

the same (or even higher) accuracy compared to when 

training on all the available training set. Thus, the task of 

the GA is to optimize the following two objectives: 

• maximize classification accuracy 

• minimize the number of training instances 

 

Our aim by using the evolutionary search through the GA, 

is to increase classifier’s performance and at the same 
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time decrease the number of selected training data 

instances. 

4. Genetic Algorithm for Training Set 

Selection 

This section describes the design of a classical GA for 

training set selection. 

Genetic algorithm maintains a population of solutions 

that allow the convergence to the optimal area in the 

search space quickly and effectively. In this paper 

evolutionary search, i.e., genetic algorithm, is considered 

to address the problem of selecting training data instances. 

The GA tries to optimize the aforementioned two 

objectives of data reduction rate and accuracy of decision 

tree and support vector machine classifiers. 

Typically, population of individuals is initialization 

randomly. Each chromosome represents a training 

instance contained in a dataset. In what follows, we define 

the necessary components to apply GA to the TSS 

problem. 

4.1 Chromosome Representation 

The TSS problem can be regarded as grouping data in- 

stances into two classes, those being selected (training in- 

stances) and those being discarded (test instances). See 

Figure 2. Obviously, it is a grouping problem similar to 

the well-known Knapsack problem [17], [18]. Therefore, 

the binary code for the problem is very straightforward; 

just use a locus to represent the data instance and an allele 

to represent whether the data instance is selected (1) or 

not (0). Hence, this paper represents a solution z as a 

sequence of the digits, 0’s and 1’s 

. Also, selected data instances 

form a training set, while discarded ones form a testing 

set of instances. An example chromosome of the 10-

instances problem is illustrated by Figure. 2(c). 

4.2 Fitness Function 

In this paper, we consider two maximization fitness 

functions for the task of instance selection. The first, is 

the classification accuracy alone, which defined as: 

 
 

Another form of the above equation can be given in terms 

of positive and negatives in case of two class classification 

as follows: 

 
 

where TP and TN are the true positives and negatives, FP 

and FN are false positives and negatives. 

We also define another maximization fitness function that 

combines the classification accuracy (Accuracy) and the 

percentage of reduction of selected instances (Reduction): 

 

 
using this fitness function allow the simultaneous 

optimization multiple objectives that is accuracy as well 

as size of training set. Note that, this is not a multi-

objective approach in that both objectives are dealt 

independent of the other. 

4.3 Genetic Operators 

Since the TSS problem is the genetic operators used  are 

one-point crossover operator and single bit-flip mutation, 

which are standard operators. 

More specifically, two individuals (parents) are selected to 

cross over, we assign the probability of crossover pc of 

typical value from 0.6 to 0.9 [19] in order to control the 

possibility of performing it. Then, a random point is 

selected and the genes elements from each parent are 

combined, producing a new solution with features of both. 

For mutation we mutate the generated new solution, then 

undergo mutation operator, where a random position is 

selected and flipped (i.e., 1 to 0 or 0 to 1) with the 

probability pm of typical values from 0.001 to 0.1 [20, 21]. 

5. Experimental Design and Result Analysis 

In this section, we empirically conduct experiments using 

the GA on real-life Kaggle and UCI datasets to select 

training instances for the decision tree classifier. The 

programming language is Python and the scikit-learn 

machine learning library [22], which exposes a wide 

variety of supervised and unsupervised machine learning 

algorithms including decision trees is used. All the 

statistics are based on 30 independent runs. 

The experiments were conducted on Windows 10 

operating system with Intel Core i7 CPU and 8 GB of 
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memory. The source code of all the experiments is 

available upon request.  

5.1 Description of the Datasets 

In our experiments, selection training data approaches are 

tested on 10 public data sets. These are classic data sets 

for classification that are accessible from the UCI 

machine leering repository and Kaggle open dataset. 

Table I shows more details on the datasets. In the table, 

the datasets are sorted according to their sizes, i.e., to the 

number of data instances. 

In the Table I, "Instances", "Attributes" and "Classes" 

refer respectively to the number of data instances, features 

and the classes in the datasets. For each dataset, we report 

the average values of 30 runs as the results. 

Table 1: The detailed characteristics of the selected 10 dataset 

 

5.2 Default Parameter 

Settings of parameters has impact on algorithms. For GA, 

this may influence the performance, i.e., how efficiently it 

finds an optimal or near optimum solution.  

The default parameters of GA used in the experiments 

were as follow: number of generations - 50, population 

size - 20, crossover probability pc - 0.7, mutation 

probability pm - 0.1, selection method - tournament 

selection, stop criterion - 50 generations. As for the 

decision tree classifier, it get trained with default 

parameters values set by the scikit-learn library on all the 

experiments. 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: The average classification accuracy values obtained by Hold-out 

and GA among 30 runs. The number in parentheses represent the standard 

deviation. 

 

Table 3: Comparison between hold-out and GA on the size of training Data 

selected for decision tree. 

 

5.3 Results 

GA is compared with hold-out method for selecting 

training set for the decision tree classifier. A set of ten 

datasets with different sizes are used in our experimental 

studies.  

Table II shows the mean of the percent classification 

accuracy values that obtained by the decision tree on 

training sets generated by the hold-out and the GA 

methods when using two different objective fitness 

functions among 30 runs. Table III gives the size of the 

generated training sets via hold-out and GA with f1 and 

f2 fitness functions. Figure 3 plots the evolution and the 

convergence of the GA for both population fitness and 

global-best fitness of each dataset. 

Table II shows that the classification accuracy of the 

decision tree trained on GA-based selection of training 
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data is better than hold-out based selection of training data.  

 

 
 

The results reflect the extend of enhancement GA made to 

the training process and the ability to optimize the 

training data.  

Taking the tic-tac-toe dataset as example, decision tree 

has accuracy value of 87.7% when the hold-out was used 

and 93.9% when the GA was used.  

In term of the size of training set, we can see from Table 

III that a clear reduction on the training set after the 

application of GA optimization on all dataset.  

It is evident from Tables II and III that the training data 

selection with simultaneous optimization of accuracy and 

reduction of selected data instances is better than 

optimizing accuracy alone.  

These results ensure the importance choice of a fitness 

function for the optimization process. In order to get more 

insight on the behavior of GA, Figure 3 visualizes the 

evolution and convergence behavior for decision tree on 

all the ten datasets.  

We can see how optimizing training set selection-based 

accuracy helps to achieve higher rate of convergence to 

good solutions. The results shown in this figure are 

consistent with the observation on the obtained accuracy 

values of Table II.  

Moreover, Figure 3 reveals the different search behavior 

of GA in small and large search spaces. GA converges 

toward promising regions of the search space efficiently, 

effectively, and intelligently. 

6. Conclusion 

Searching and selecting of relevant data instances is 

essential for enhancing the performance of classification 

algorithms. In this paper, a genetic algorithm search 

method has been used for optimizing training data 

selection for decision tree. Our experimental results on 

various dataset with different characteristics indicates 

optimizing training data selection for decision tree is a 
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very effective technique. Our method showed signification 

reduction rates compared to classical methods among all 

the considered datasets. We have also shown that using 

different fitness function for selecting training data has its 

impact on the result. As future work, more datasets and 

genetic operators will be investigated. 
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