
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020

84

Manuscript received April 5, 2020

Manuscript revised April 20, 2020

Optimizing Training Data Selection for Decision Trees using

Genetic Algorithms

Ahmad Alhindi
1†

ahhindi@uqu.edu.sa
Computer Science Department, Umm Al-Qura University

Summary
Genetic algorithms (GAs) have recently been used as a search

method for training set selection in supervised machine learning.

The assumption is made that not all the data are equally useful

in training supervised algorithms. In this paper, we empirically

study the performance of classical GA for selecting a ‘good’

training set for decision tree classifiers. We also discuss

different fitness functions and their influence on the results. A

set of widely used classification datasets from Kaggle and UCI

machine learning repository are used. Empirical results show

that improved generalization can indeed be obtained using this

approach.

Key words:
Genetic Algorithm (GA); Machine Learning (ML); Supervised

Learning; Optimization; Training Set Selection; Data Mining;

Pattern Recognition.

1. Introduction

Machine Learning (ML) and optimization are two

different fields of fundamental computer science research.

Optimization is aimed at modelling, designing and

implementing solution techniques to find the optimal

entity from a set of candidate alternatives for a particular

computer search problem. Usually, an optimization

process starts from a single or set of initial solutions and

moves step by step towards the best solution directed by

an objective function [1]. Classification of patterns and

discovery of knowledge issues require the selection of a

subset of features to represent the patterns to be classified.

This is because the classifier’s performance and the

classification cost are sensitive to the range of features

used to construct the classifier [2]. Training data could

contain noisy or incorrect information in many real-world

applications, and the quality of the best classifiers could

also deteriorate when dealing with these data [3].

Training Set Selection (TSS) [4] is an appropriate and

solid approach to dealing with these issues. TSS is a pre-

processing technique which selects only the relevant

instances of the data set before performing training and

classification tasks [5]. Genetic algorithms (GAs) offer

an attractive approach. They are population-based search

approach that can find optimal or near optimal solutions

to such optimization problems quickly and effectively [2]

[1]. GAs reflect a clever use of a random search used to

solve problems of optimization. The GA’s basic

techniques are designed to simulate the processes required

for evolution in natural systems.

Supervised machine learning methods are given more

attention and are widely used now days. These methods

task is to discover relationship between the input

attributes and the target attribute. The discovered

relationship is referred to as model in machine learning

community. Classification models, called classifiers, maps

the input attribute to predefined target classes. There are

many alternatives to represent classifiers. Decision tree

(DT) [6] are probably the most used approaches for

classification and widely used for and applied to

numerous applications [7], [8], [9]. This study considers

the DT classifier and empirically testing the impact of

classical GA on selecting the training set for the DT with

classification task. We show how the GA can be

successfully applied for selecting the training data

instances to improve the classification accuracy as well as

reduce the size of the training set.

Dataset Splitting emerges as a necessity to eliminate bias

to training data in ML algorithms. Hence, to get the best

validation and learning outcome the data is divided into

training data and testing data, see Figure 1. The decision

tree is first trained against the training set, then asked to

predict output from the testing set (or ’hold out’ set). In

this paper, hold-out method is used to achieve this

separation as we only have one model, the decision tree,

to evaluate and no hyper-parameters to tune. A common

split when using the hold-out method is using 20% of data

for testing and the remaining 80% of the data for training.

This work first builds and train the decision tree on the

entire training set. Then, we experiment building and

training the decision tree on a training selected set via the

GA as instance selection of the training set. GA is known

to have no assumptions on the data structure or the

classifier family. Instead, it is a population-based method

for instance selection that can be used to gain higher

classification accuracy. This makes GAs good choice and

suitable for training set selection.

mailto:ahhindi@uqu.edu.sa

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020

85

The paper is structured as follows. The next section pro-

vides related work. The training set selection is then

presented and formulated in section three. Section four

introduces the genetic algorithm and its components for

the training set problem. Section five presents

experiments and results. Finally, concluding remarks and

future directions are presented in section six.

2. Related Work

Machine learning depends heavily on data. It is crucial

to make algorithm training possible. In real-life

applications, quality of data is extremely important. Thus,

data preparation and preprocessing (e.g., remove

duplicate and noise) is an integral step in machine

learning projects. These applications within the projects

do required many data, however, this does not mean to

feed the system with every known data instance in related

field. Machine learning models need to be fed (train) with

carefully curated/selected data, hoping it can learn and

extend or generalize to the future. Classification heavily

relies on training the model with training data, which is a

subset of the original dataset. In reality, original datasets

have enormous number of elements and it is a difficult to

train a model on such huge datasets. Since restrictions

such as storage requirements and computational cost may

impose on the application of machine learning algorithms,

especially when dealing with large datasets [10].

For instance, Jansowski and Grochowski pointed out in

their survey [11] that large datasets may contain noise

(incorrect data) and several algorithms may be fragile to

the noise. Chin et al. in [12] highlighted large datasets

require increased memory usage and have computational

complexity. These problems give rise to a need of

searching for methods suitable to reduce the size of the

dataset without a loss of quality of the provided

information [10].

Training set selection (TSS), also called instance selection

(IS), is carried out by selecting a subset of samples from

the original training set [5]. The right training set

selection is designed to choose representative sample

by reducing or removing noisy and/or redundant ones.

Clearly, TSS technique based on the goals to reduce the

training time and dataset size without losing classification

accuracy. TSS has been applied to different areas of

machine learning including classification, regression, and

time series prediction [13]. Following, we briefly review

some works.

Cano et al. [14] discussed a combination of stratification

and evolutionary technique-based algorithm for training

set selection in large size datasets. They used stratification

to reduce domain size then the evolutionary algorithm

selects the most representative instances from the

stratified selection.

Fig. 1 Illustration of data splitting process for training and testing a

classifier. The whole data instances split into two parts: training and testing.

Garcia and Herrera [15] consider imbalanced datasets in

their research on evolutionary training set selection.

Imbalanced sets refer to the situation when data contains

many outcomes belonging to one class and few ones from

the other class. This work applies evolutionary TSS by

under-sampling that is, removing outputs mainly from

majority class and replicating or generating new minority

output variables. The work uses C4.5 decision tree

classifier. Results were compared with other under-

sampling and over-sampling techniques on the basis of

classification accuracy.

To improve the accuracy of SVM, Verbiest et al. [16]

studied evolutionary approaches for TSS. Three

evolutionary wrapper techniques were proposed for TSS,

namely, Generational Genetic Algorithm, CHC

evolutionary algorithm, and the Steady State Genetic

Algorithm. Training sets generated from these three

evolutionary techniques were compared with five wrapper

approaches for classification accuracy of the SVM.

3. The Training Set Selection Problem

This section introduces and formulate the training set

problem. It also states the optimization objectives.

3.1. Problem Formulation

This paper considers the training set selection (TSS). Let

us assume that there is a training set comprised of

instances. Consider every instance as a pair (with where is

defined as an input vector with representing its

corresponding class label. Be every input vector contains

input information representing its corresponding instance.

We can define the goal of a TSS method is to be able to

produce a set of instances such that. Theoretically, any

classifier can be trained using so that it can classify new

instances with same or better accuracy when compared to

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020

86

training the classifier on. If the cardinality of set should be

lesser than that of the original set, classifier training time

can be considerably reduced.

One can see that selecting of training set is a search

optimization problem with defined objectives, hence, a

genetic algorithm can be applied.

3.2. Optimization Objectives

The TSS in this paper is to maximize the accuracy of the

classification task via carefully selecting a representative

subset of training instances. The goal is to build a

classifier trained on this small subset, while maintaining

the same (or even higher) accuracy compared to when

training on all the available training set. Thus, the task of

the GA is to optimize the following two objectives:

• maximize classification accuracy

• minimize the number of training instances

Our aim by using the evolutionary search through the GA,

is to increase classifier’s performance and at the same

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020

87

time decrease the number of selected training data

instances.

4. Genetic Algorithm for Training Set

Selection

This section describes the design of a classical GA for

training set selection.

Genetic algorithm maintains a population of solutions

that allow the convergence to the optimal area in the

search space quickly and effectively. In this paper

evolutionary search, i.e., genetic algorithm, is considered

to address the problem of selecting training data instances.

The GA tries to optimize the aforementioned two

objectives of data reduction rate and accuracy of decision

tree and support vector machine classifiers.

Typically, population of individuals is initialization

randomly. Each chromosome represents a training

instance contained in a dataset. In what follows, we define

the necessary components to apply GA to the TSS

problem.

4.1 Chromosome Representation

The TSS problem can be regarded as grouping data in-

stances into two classes, those being selected (training in-

stances) and those being discarded (test instances). See

Figure 2. Obviously, it is a grouping problem similar to

the well-known Knapsack problem [17], [18]. Therefore,

the binary code for the problem is very straightforward;

just use a locus to represent the data instance and an allele

to represent whether the data instance is selected (1) or

not (0). Hence, this paper represents a solution z as a

sequence of the digits, 0’s and 1’s

. Also, selected data instances

form a training set, while discarded ones form a testing

set of instances. An example chromosome of the 10-

instances problem is illustrated by Figure. 2(c).

4.2 Fitness Function

In this paper, we consider two maximization fitness

functions for the task of instance selection. The first, is

the classification accuracy alone, which defined as:

Another form of the above equation can be given in terms

of positive and negatives in case of two class classification

as follows:

where TP and TN are the true positives and negatives, FP

and FN are false positives and negatives.

We also define another maximization fitness function that

combines the classification accuracy (Accuracy) and the

percentage of reduction of selected instances (Reduction):

using this fitness function allow the simultaneous

optimization multiple objectives that is accuracy as well

as size of training set. Note that, this is not a multi-

objective approach in that both objectives are dealt

independent of the other.

4.3 Genetic Operators

Since the TSS problem is the genetic operators used are

one-point crossover operator and single bit-flip mutation,

which are standard operators.

More specifically, two individuals (parents) are selected to

cross over, we assign the probability of crossover pc of

typical value from 0.6 to 0.9 [19] in order to control the

possibility of performing it. Then, a random point is

selected and the genes elements from each parent are

combined, producing a new solution with features of both.

For mutation we mutate the generated new solution, then

undergo mutation operator, where a random position is

selected and flipped (i.e., 1 to 0 or 0 to 1) with the

probability pm of typical values from 0.001 to 0.1 [20, 21].

5. Experimental Design and Result Analysis

In this section, we empirically conduct experiments using

the GA on real-life Kaggle and UCI datasets to select

training instances for the decision tree classifier. The

programming language is Python and the scikit-learn

machine learning library [22], which exposes a wide

variety of supervised and unsupervised machine learning

algorithms including decision trees is used. All the

statistics are based on 30 independent runs.

The experiments were conducted on Windows 10

operating system with Intel Core i7 CPU and 8 GB of

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020

88

memory. The source code of all the experiments is

available upon request.

5.1 Description of the Datasets

In our experiments, selection training data approaches are

tested on 10 public data sets. These are classic data sets

for classification that are accessible from the UCI

machine leering repository and Kaggle open dataset.

Table I shows more details on the datasets. In the table,

the datasets are sorted according to their sizes, i.e., to the

number of data instances.

In the Table I, "Instances", "Attributes" and "Classes"

refer respectively to the number of data instances, features

and the classes in the datasets. For each dataset, we report

the average values of 30 runs as the results.

Table 1: The detailed characteristics of the selected 10 dataset

5.2 Default Parameter

Settings of parameters has impact on algorithms. For GA,

this may influence the performance, i.e., how efficiently it

finds an optimal or near optimum solution.

The default parameters of GA used in the experiments

were as follow: number of generations - 50, population

size - 20, crossover probability pc - 0.7, mutation

probability pm - 0.1, selection method - tournament

selection, stop criterion - 50 generations. As for the

decision tree classifier, it get trained with default

parameters values set by the scikit-learn library on all the

experiments.

Table 2: The average classification accuracy values obtained by Hold-out

and GA among 30 runs. The number in parentheses represent the standard

deviation.

Table 3: Comparison between hold-out and GA on the size of training Data

selected for decision tree.

5.3 Results

GA is compared with hold-out method for selecting

training set for the decision tree classifier. A set of ten

datasets with different sizes are used in our experimental

studies.

Table II shows the mean of the percent classification

accuracy values that obtained by the decision tree on

training sets generated by the hold-out and the GA

methods when using two different objective fitness

functions among 30 runs. Table III gives the size of the

generated training sets via hold-out and GA with f1 and

f2 fitness functions. Figure 3 plots the evolution and the

convergence of the GA for both population fitness and

global-best fitness of each dataset.

Table II shows that the classification accuracy of the

decision tree trained on GA-based selection of training

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020

89

data is better than hold-out based selection of training data.

The results reflect the extend of enhancement GA made to

the training process and the ability to optimize the

training data.

Taking the tic-tac-toe dataset as example, decision tree

has accuracy value of 87.7% when the hold-out was used

and 93.9% when the GA was used.

In term of the size of training set, we can see from Table

III that a clear reduction on the training set after the

application of GA optimization on all dataset.

It is evident from Tables II and III that the training data

selection with simultaneous optimization of accuracy and

reduction of selected data instances is better than

optimizing accuracy alone.

These results ensure the importance choice of a fitness

function for the optimization process. In order to get more

insight on the behavior of GA, Figure 3 visualizes the

evolution and convergence behavior for decision tree on

all the ten datasets.

We can see how optimizing training set selection-based

accuracy helps to achieve higher rate of convergence to

good solutions. The results shown in this figure are

consistent with the observation on the obtained accuracy

values of Table II.

Moreover, Figure 3 reveals the different search behavior

of GA in small and large search spaces. GA converges

toward promising regions of the search space efficiently,

effectively, and intelligently.

6. Conclusion

Searching and selecting of relevant data instances is

essential for enhancing the performance of classification

algorithms. In this paper, a genetic algorithm search

method has been used for optimizing training data

selection for decision tree. Our experimental results on

various dataset with different characteristics indicates

optimizing training data selection for decision tree is a

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020

90

very effective technique. Our method showed signification

reduction rates compared to classical methods among all

the considered datasets. We have also shown that using

different fitness function for selecting training data has its

impact on the result. As future work, more datasets and

genetic operators will be investigated.

Acknowledgments

The author would like to thank the Deanship of Scientific

Research at Umm Al-Qura University for supporting this

work by Grant Code: 19-COM-1-01-0022.

References
[1] H. Song, I. Triguero, and E. O ̈zcan, “A review on

the self and dual interactions between machine learning

and optimisation.” Progress in Artificial Intelligence (2192-

6352), vol. 8, no. 2, p. 143, 2019.

[2] J. Yang and V. Honavar, Feature Subset Selection Using a

Genetic Algorithm. Boston, MA: Springer US, 1998, pp.

117–136.

[3] N. Verbiest, J. Derrac, C. Cornelis, S. Garc ı́a, and F.

Herrera, “Evolutionary wrapper approaches for training set

selection as preprocessing mechanism for support vector

machines: Experimental evaluation and support vector

analysis.” Applied Soft Computing, vol. 38, pp. 10 – 22,

2016.

[4] S. Garc ı́a, A. Ferna´ndez, and F. Herrera, “Enhancing

the effectiveness and interpretability of decision tree and

rule induction classifiers with evolutionary training set

selection over imbalanced problems,” Applied Soft

Computing, vol. 9, no. 4, pp. 1304 – 1314, 2009.

[5] G. Acampora, F. Herrera, G. Tortora, and A. Vitiello, “A

multi-objective evolutionary approach to training set

selection for support vector machine,” Knowledge-Based

Systems, vol. 147, pp. 94–108, 2018.

[6] L. Rokach and O. Z. Maimon, Data mining with decision

trees: theory and applications. World scientific, 2008, vol.

69.

[7] S. R. Safavian and D. Landgrebe, “A survey of decision

tree classifier methodology,” IEEE transactions on systems,

man, and cybernetics, vol. 21, no. 3, pp. 660–674, 1991

[8] S. B. Kotsiantis, “Decision trees: a recent overview,”

Artificial Intelligence Review, vol. 39, no. 4, pp. 261–283,

2013

[9] V. Stankovski and J. Trnkoczy, “Application of decision

trees to smart homes,” in Designing smart homes. Springer,

2006, pp. 132–145

[10] M. Grochowski, “Simple incremental instance selection

wrapper for classification,” in International Conference on

Artificial Intelligence and Soft Computing. Springer, 2012,

pp. 64–72

[11] N. Jankowski and M. Grochowski, “Comparison of

instances seletion algorithms i. algorithms survey,” in

International conference on artificial intelligence and soft

computing. Springer, 2004, pp. 598–603

[12] Y.-c. I. Chang, Y.-J. Lee, H.-K. Pao, M.-H. Lee, and S.-Y.

Huang, “Data visualization via kernel machines,” in

Handbook of Data Visualization. Springer, 2008, pp. 539–

559

[13] C. Liu, W. Wang, M. Wang, F. Lv, and M. Konan, “An

efficient instance election algorithm to reconstruct training

set for support vector machine,” Knowledge-Based Systems,

vol. 116, pp. 58–73, 2017

[14] J. R. Cano, F. Herrera, and M. Lozano, “On the

combination of evolutionary algorithms and stratified

strategies for training set selection in data mining,”

Applied Soft Computing, vol. 6, no. 3, pp. 323–332, 2006

[15] S. Garc ı́a and F. Herrera, “Evolutionary training set

selection to optimize c4. 5 in imbalanced problems,” in

2008 Eighth International Conference on Hybrid Intelligent

Systems. IEEE, 2008, pp. 567–572

[16] N. Verbiest, J. Derrac, C. Cornelis, S. Garc ı́a, and F.

Herrera, “Evolutionary wrapper approaches for training set

selection as preprocessing mechanism for support vector

machines: Experimental evaluation and support vector

analysis,” Applied Soft Computing, vol. 38, pp. 10–22,

2016

[17] A. Alhindi, Q. Zhang, and E. Tsang, “Hybridisation of

decomposition and grasp for combinatorial multiobjective

optimisation,” in 2014 14th UK Workshop on

Computational Intelligence (UKCI). IEEE, 2014, pp. 1–7

[18] D. Pisinger and P. Toth, “Knapsack problems,” in

Handbook of combinatorial optimization. Springer, 1998,

pp. 299–428

[19] D. Whitley, “A genetic algorithm tutorial,” Statistics and

computing, vol. 4, no. 2, pp. 65–85, 1994

[20] L. Davis, “Handbook of genetic algorithms,” 1991

[21] R. Wazirali, W. Alasmary, M. M. Mahmoud, and A.

Alhindi, “An optimized steganography hiding capacity and

imperceptibly using genetic algorithms,” IEEE Access, vol.

7, pp. 133 496–133 508, 2019

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B.

Thirion, O. Grisel M. Blondel, P. Prettenhofer, R. Weiss,

V. Dubourg et al., “Scikit-learn: Machine learning in

python,” Journal of machine learning research, vol. 12, no.

Oct, pp. 2825–2830, 2011

Ahmad Alhindi received the B.Sc.

degree in computer science from Umm

Al-Qura University (UQU), Makkah,

Saudi Arabia in 2006, the M.Sc. degree in

computer science and the Ph.D degree in

computing and electronic systems from

University of Essex, Colchester, UK , in

2010 and 2015, respectively. He is

currently an assistant professor in

Artificial Intelligence (AI) with computer science department at

UQU. His research focuses on Evolutionary Multi-objective

Optimization and Machine Learning techniques. Currently, he is

working on AI algorithms, focusing particularly on machine

learning and optimization with a willingness to implement them

in a context of decision making and solving combinatorial

problems in real world projects.

