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Abstract 
This paper proposes the construction of binary 6-point non 
stationary subdivision scheme using hyperbolic B-spline basis 
function. Hyperbolic B-spline basis functions are more 

consistent and have immense propensity to produce curves 
which are proximate to the control polygon unlike non-
stationary subdivision scheme by trigonometric B-spline basis 
function in computational mathematics. Using the concept of 
asymptotically equivalence, smoothness and convergence are 
analyzed. Parabolas, hyperbolic polynomials and hyperbolic 
splines are constructed using the proposed scheme. 
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1. Introduction 

Subdivision defines a curve or surface from an initial 

control mesh by recursive refinement. Starting with initial 

control points 
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subdivision rule Sn defines a new set of points 
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,which can be written as: 

Pn= Sn....S0P0,n∈Z+ 

 

If Sn does not depend on n, subdivision schemes are 

stationary otherwise these are non stationary schemes. In 

interpolating subdivision schemes refinement of control 

points is obtained by assigning different values 

corresponding to the intermediate points with the help of 

linear combination of neighboring points. Approximating 

subdivision schemes do not preserve the original control 

points while original points are preserved by interpolating 
subdivision schemes exactly. Stationary subdivision 

schemes produce curves and surfaces but are devoid of 

the construction of conic sections and spiral bands. Non 

stationary schemes paved the way for the production of 

analytical shapes. Non stationary subdivision schemes are 

constructed with the aid of trigonometric Lagrange, 

trigonometric B-spline and hyperbolic B-spline functions. 

Non-stationary subdivision schemes by using Lagrange 

and Trigonometric B-spline functions generate only cubic 

polynomials and specific families of conics. Reproduction 

of ellipses and circles using tension parameter are the 

salient features of non stationary schemes [1-3]. However, 
these schemes were devoid of generation of hyperbolas 

and parabolas. So, in order to overcome this deficiency 

Siddiqi et. al. [4-7] present non-stationary subdivision 

schemes using hyperbolic Lagrange interpolation and 

hyperbolic B-spline. Consistency level of hyperbolic non-

stationary subdivision schemes is higher than that of non-

stationary subdivision schemes using trigonometric B-

spline. Also in case of large parametric values, the 

resultant curves are more smooth and flexible. The 

proposed scheme by hyperbolic B-spline is able to 

generate parabolas/hyperbolas and excluding the zeros of 

sine hyperbolic function, is convergent for positive real 
values of parameter. No approximating non stationary 

subdivision scheme has been found using hyperbolic 

functions. Conti and Romani [8] produce a new family of 

interpolating 6-point non-stationary subdivision scheme 

by hyperbolic B-spline. Cubic exponential B-spline 

symbol generating functions helped the 6-point non-

stationary scheme to develop conics. Cm-1 Limiting 

curves are produced by using uniform trigonometric B-

spline basis function of order m-1 from non stationary 

schemes [9-11]. Moreover, the generalized forms 

generated by [9-11] are the competent producer of 
trigonometric polynomials, trigonometric splines and 

conics. Mustafa and Bari [12] proposes a new family of 

odd point ternary non-stationary subdivision schemes by 

using Lagrange identities. The resultant ellipses have a 

contrast with the virtual ellipses. Deviation from actual 
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ellipses is reduced up to great extent in these schemes. 

The generalized symbols of uni-variate stationary and 

non-stationary subdivision schemes proposed by Asghar 

[13] with base of Lane Riesenfeld generate B-spline 

schemes, Hormann and Sabin family schemes. As non-

stationary schemes produce spiral curves but odd-point 
non-stationary schemes with fewer initial control points 

that are presented by Ghaffar et. al. [14] have less 

propensity to detach from tangent and osculating plane. 

In organization of the remaining work, Section-2, holds 

preliminaries and asymptotic equivalence while Section-3, 

describes the definition of hyperbolic B-spline. 

Convergence analysis with some properties of scheme are 

also the part of Section-4. In Section-5, graphical 

representation of proposed hyperbolic scheme is done. 

2. Preliminaries 

Given a set of control points P0 = {Pi0 ∈ R : i ∈ Z} at 

level 0, a binary scheme for designing curves generates 

recursively a new set of control 

points    thn
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The set of coefficients an  : = {αin: i ∈ Z} determines the 

subdivision rule at level n and is termed as the mask at nth 

level. If the mask an is independent of n, the subdivision 

scheme S n corresponding to the mask an  is called 

stationary otherwise it is called non-stationary. In case of 

binary scheme if up to order m the limit-function has 

continuous derivatives, for any initial data then 

convergence exists. A subdivision scheme Sa with symbol 

   zb
z

z

m








 


2

1


is said to be Cm continuous if b(z) is 
convergent and c(z) is contractive. Where c(z) is a 

difference scheme of b(z). 

3. Construction of hyperbolic B-spline 

scheme 

Theorem-2.1: Two binary schemes Sa
n and Sb

n are 
asymptotically equivalent if  
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The proof is exactly similar to the proof given in 

(Theorem 2.2). 

 

Theorem-2.2: The binary non-stationary six point 
scheme Sα

n is C1. 
 
Proof: Let S n and Sα be two asymptotically equivalent 

subdivision schemes having finite mask of the same 

support. Suppose S n is non-stationary and Sα is 

stationary. As the binary 6-point stationary scheme Sα is 

C1 continuous, so in order to prove the proposed non-

stationary scheme to be C1 continuous [7], it is sufficient 

to show that the scheme Sαn corresponding to αn(z) is C1 

continuous. Therefore it is necessary to show 
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By using Lemma 3.2 we have, 
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we can write it as: 
 





 SS
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n
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Hence Sα

n is C1 continuous. 

4. Hyperbolic B-spline 

Uniform hyperbolic B-spline is denoted by 
n

iT
of order n 

knot sequence 

 
X := {ti := iα : i = 0,1,....m + n} are defined by the 
following Recurrence relation 
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Where 

S(t) = sin h(t). 

The mesh size is α and 
  :0 itTT

nn

i 
. The support 

of hyperbolic B-spline 

Tin(t;α) is [ti, ti+n] and in the interior of its support it 

remains positive. Hence each uniform hyperbolic B-spline 

f(t) of order “n” knot sequence X has a unique 

representation 
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where Pi are real numbers. 

4.1 Definition of Binary 6-Point Non-Stationary 
Subdivision Scheme by Hyperbolic B-Spline 

Now mask of binary 6-point approximating non-stationary 

subdivision scheme by hyperbolic B-spline, structure and 

its Laurant polynomial is presented here. 

 

Mask of proposed scheme 

 

To obtain the mask 
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the following  “Recreance relation” for any value of n is 
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is a trigonometric B-spline basis function of order n-1. 
 

The mask of binary 6-point scheme for any “n” can be 

obtained as: 
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The mask of the proposed scheme converges to the mask 

of stationary scheme. So 
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Remark-3.3: Sum of the weights of the proposed scheme 

tends to one as n. Let 
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By using the above mentioned inequalities, we have 
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This implies λn ≥ 1.When n. 
 

Again, using above inequalities, we get 
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This implies n ≤ 1. When n, so λn = 1 for n. 

5. Convergence Analysis 

Convergence and smoothness of the proposed scheme are 

attained through the method of asymptotic equivalence. 

We denote the stationary scheme by Sα and proposed 

non-stationary scheme by Sα
n,  

 
where 
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Some estimations of βi

n, i = 0,1,...5 are needed in the 
following Lemmas. 
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Lemma-1: Since the proposed scheme is: 
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Proof. By using the following inequalities, Lemmas can 
be proved 
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This proof was missing so, please change it as I used the 

image 

Proof of 1st inequality is missing 

Hence first inequality is proved. 

Lemma-2: For the constants di, i = 

0,1,2,3,4,5 ,independent of n, the following inequalities 

hold. 
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Proof: Now we prove the first inequality by using the 

above mentioned lemma. We take 
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Using the Maclaurin series [see Computer Algebra 

Systems], 
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n

n d
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so,  
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Proof of lemma-2 is also incorrect and incomplete, please 

type the whole proof again. Hence inequality (1) is proved. 

By adopting same method the remaining inequalities can 

be proved. 
Lemma-3: The symbol αn(z) corresponding to the nth 

level of the non stationary scheme S n is presented in 

the form 
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Now we will prove 
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Proof: Since, 
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so “Affine Invariance” property, 

 
β0 + β1 + β2 + β3 + β4 + β5 = 1, 
 
helps to get the required result[see Remark 3.3]. 

 

Lemma-4: The stationary scheme Sα corresponding to the 
symbol is c1. 
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Proof: To check the “continuity” of the scheme {Sα} we 

know that if w(z) is contractive and g(z) is convergent, 

α(z) will be C1 continuous. Where, 
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Hence α(z) is C1 continuous.  
 
Properties of Scheme 

Basis Limit Function 
 

The limit function of the data is the basis limit function of 

the proposed scheme. 
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Lemma-5: Symmetry of the basic limit function holds 

about Y-axis. 

Proof: Let B be the basic limit function and define 
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By using induction method on n we can prove the 

symmetry of B about Y-axis. It is easily seen that 
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then 
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and also from the continuity of basic limit function we can 

say 
B(x) = B(−x),x ∈ R. 

6. Conclusion 

A 6-point binary approximating non stationary hyperbolic 
subdivision scheme has been produced which is able to 

construct C1 limiting curve. Hyperbolic B-spline basis 

function is used to regenerate parabolas/hyperbolas. 

Asymptotic equivalence relation has been used to analyze 

the smoothness. Numerical results of the proposed scheme 

authenticates the generation of parabolas and hyperbolic 

spline. It gives a new era in hyperbolic field. 
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