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Summary 
Traditional network defense technologies such as firewalls are 
unable to detect the evolving types of attacks on networks, leading 
to the need for network intrusion detection systems (NIDSs) that 
provide better solutions. In this paper, we propose an effective 
deep learning method to NIDS based on a two-stage approach with 
a sparse autoencoder and a number of different classifiers, to 
create three models. The proposed approach uses the autoencoder 
for feature learning and dimensionality reduction, thereby 
reducing training and testing times. The new feature vector is then 
input into three classifiers, improving their detection capability for 
intrusion and classification accuracy. We study and compare our 
models with a number of other works in the literature as well as 
some state-of-the-art methods. Results show that our approach 
performs better than all other approaches in terms of detection rate, 
and comparably in terms of accuracy. 
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1. Introduction 

Cyber security is becoming a top priority for many countries 
around the world. Individuals and organizations are subject 
to various types of attacks, such as: malware, phishing, and 
denial of service attacks. According to [1], 69% of cyber 
security breaches in 2019 were conducted by outsiders.   
Network Intrusion Detection Systems (NIDS) are tools that 
monitor traffic on networks in order to detect malicious 
activity. NIDS analyzes all traffic to distinguish between 
intrusions and normal network behavior. NIDS are either 
Signature-based (SNIDS) or Anomaly detection-based 
(ADNIDS) [2]. SNIDS monitor network traffic and 
compare it with a pre-defined list of rules. Although very 
efficient in detecting known attacks, SNIDS are not well 
suited for identifying previously unseen attack signatures.  
ADNIDSs can be thought of as white lists [3]. ADNIDS 
detect malicious traffic that potentially deviates from 
normal traffic patterns. For example, in the Internet Control 
Message Protocol, traffic is considered abnormal when it is 
greater than 3% of network traffic, when normally it is only 

1% [3]. Thus, ADNIDS are able to effectively detect new 
attack forms. 
 
The task of network intrusion detection can be formulated 
as a binary classification task, where it is required to classify 
network traffic into either normal or abnormal traffic. The 
problem can also be modeled as a multi-classification 
problem, in which specific types of attacks are classified. 
ADNIDS have attracted interest from researchers in various 
computer science areas. Many approaches have been used 
in ADNIDS, such as statistical and machine learning 
methods [4].  
 
Statistical methods for anomaly detection assume that data 
is generated in a particular distribution, however, this is not 
always true. Traditional machine learning methods cannot 
scale up to handle large amounts of data. Research suggests 
that commercial NIDS are not effective for todays’ 
emerging types of attacks [5], as the increasing volume of 
network data requires techniques that can analyze it rapidly 
and efficiently. 
 
Deep learning is a subset of machine learning algorithms 
that has shown success in many real-world applications. 
Research shows that the accuracy of deep learning 
architectures outperforms traditional approaches by a large 
margin [6]. In cyber security, deep learning has been used 
to tackle many problems, including: detection, modeling, 
monitoring, analysis, and defense against various types of 
network attacks [7][8]. Deep learning methods are able to 
capture representative features from the dataset and can 
generate more effective models than shallow-based 
approaches. According to Kim et al. [9], deep learning-
based anomaly detection achieves high accuracy with the 
use of different deep learning architectures.  
In this paper, we propose three novel deep learning model 
for ADNIDS, to be employed within modern computer 
networks. Our models are capable of analyzing a wide range 
of network traffic and detecting novel network attacks. Our 
models are composed of two components, a Sparse 
Autoencoder (SAE), followed by a classifier. In particular, 
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this work focuses on the performance of various classifiers 
incorporated within our models. We evaluate our models on 
the well-known NSL-KDD dataset. 
 
The remainder of this paper is organized as follows. In 
Section 2, we present the relevant background to our work. 
In Section 3, we discuss previous related work in NIDS. In 
Section 4, the proposed architecture and the dataset it is 
evaluated on are presented. In Section 5, we explain the 
experimental setup, and discuss our main findings. Finally, 
we conclude the study in Section 6 and provide suggestions 
for future work.  

2. Background 

Autoencoders are an unsupervised machine learning 
technique used for representation learning. Autoencoders 
compress the original input into a reduced representation, 
and from the reduced representation, reconstruct the 
original input, i.e. ℎ𝑊𝑊,𝑏𝑏(𝑥𝑥) ≈ 𝑥𝑥 . This allows the 
autoencoder to discover correlations within the data, as in 
Principal Component Analysis (PCA) [10]. 
 
Sparse autoencoders are a type of autoencoder that enforce 
a sparsity constraint on the hidden units, thereby forcing the 
network to learn a representation that relies on a small 
number of units. The sparsity constraint may be enforced 
using regularization, such as L1 regularization, on the 
activations of hidden units, or via another method such as 
KL-Divergence [10]. 
 
Autoencoders generally transform the input into a lower 
dimensional representation (encoding), then transform the 
lower dimensional representation back into the input 
(decoding). The final encoded vector, capturing the most 
relevant information, may be used as an alternate lower-
dimensional feature representation of the original raw data.  
A deep autoencoder has multiple hidden encoding layers, 
followed by multiple hidden decoding layers. The layers 
may be symmetrical or asymmetrical. The first hidden layer 
learns first order features, the second hidden layer learns 
second order hidden features from the first layer, and so on. 
A simple deep autoencoder is shown in Figure 1. 
 

 
Figure 1: Deep Autoencoder 

 
Our models are composed of two parts: a sparse 
autoencoder, followed by a classifier. For our classifiers, we 
implemented three different types: 
1. Deep Neural Network (DNN): a fully-connected deep 

neural network. 
2. Random Forest: an ensemble learning method that 

groups so called “weak learners” to form a “strong 
learner” [11]. The weak learners in this case are 
individual decision trees that are then combined to 
form a strong learner, which is the forest. 

3. Support Vector Machine (SVM): a non-probabilistic 
linear classifier that constructs a hyperplane to classify 
data [12]. 

In Section 4, we present more details pertaining to our 
selected algorithms. 

3. Literature Review 

NIDS have been addressed using various traditional 
machine learning techniques in the literature, such as  
decision trees, SVM K-Nearest Neighbor, and Random 
Forests [13]. Recently, deep learning demonstrated its 
effectiveness for many cyber security tasks [7][8], including 
intrusion detection. Vinayakumar et al. [14] presented an 
evaluation of various deep learning algorithms for the 
classification of intrusions in the KDD’99 dataset. 
Variations and combinations of deep learning architectures, 
such as: Convolutional Neural Networks (CNN), Recurrent 
Neural Networks (RNN), Long short-term memory 
(LSTM), and Gated Recurrent Unit (GRU) were tested. The 
best performance for the multiclass classification problem 
was achieved by the combination of CNN and LSTM 
architectures. The simple CNN performed better than other 
combinations for the binary case.  

Shone et al. [15] combined deep and shallow learning in 
order to analyze network traffic. In their proposed 
architecture, the authors used a Non-Symmetric Deep Auto-
Encoder (NDAE) followed by a Random Forest algorithm.  
For unsupervised feature learning, the proposed model 
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utilized two NDAEs arranged in a stack. Each NDAE 
consisted of three hidden layers. The performance 
evaluation of the architecture for the five-class network 
traffic classification tasks shows that the obtained accuracy 
is 97.85% for the KDD’99 dataset.  
 
Al-Hawawreh et al. [16] proposed a deep learning-based 
technique for intrusion detection in industrial internet-of 
things systems. The proposed technique operates on 
information collected from TCP/IP packets.  The proposed 
work combines deep auto-encoder and deep feedforward 
neural network architectures.  Experimental results using 
NSL-KDD and UNSW-NB15 datasets showed that the 
proposed model can achieve a higher detection rate and 
lower false positive rate than similar approaches in the 
literature. For the five-class classification task in NSL-KDD 
dataset, the detection rate is 99% and the false positive rate 
is 1.8%. 
 
Al-Qatf et al. [17] also took a similar approach. The authors 
proposed to combine a sparse autoencoder and support 
vector machine (SVM). The sparse autoencoder was used 
to reconstruct and learn the input training dataset. An SVM 
was used to build the NIDS model using the new training 
dataset. Experimental results using the NSL-KDD dataset 
showed that the proposed architecture accelerates the 
training and testing times of the SVM. For the binary 
classification task, the model archived 84.96% accuracy, 
and for the five-class classification, the model reached an 
accuracy of 80.48%. In both cases, the obtained results 
surpass those of traditional methods such as: decision trees, 
naïve Bayes, and SVM. 

Peng et al. [18] proposed a deep confidence neural network 
and a back-propagation neural network for  intrusion 
detection.  The dataset features were extracted using a 
Restricted Boltzmann machine. The method was validated 
using subsets of the KDD'99 dataset. Results showed 95.45% 
accuracy.  The study concluded that the 5-layer RBM 
network structure feature extraction algorithm is more 
suitable for feature learning tasks in high-dimensional space. 

Javaid et al. [19] propose a deep learning based approach 
combining a sparse auto-encoder with Softmax regression. 
They evaluated their work on the NSL-KDD dataset, 
achieving an average F-score of 75.76% on the multiclass 
classification task. Potluri et al. used a DNN to identify 
abnormalities in network data, and tested their approach on 
the NSL-KDD dataset [20], achieving low accuracy on 
some classes. 

The literature review shows that there is still room for 
improvement in detection accuracy as well as detection rate. 
The field of ADNIDS is young, with researchers conducting 
various experiments combining different algorithms for 

feature extraction, training and optimization, followed by 
classification. On the basis of this analysis, we propose a 
combination of SAE and three classifiers, and aim to study 
the performance of each classifier based on the SAE 
encoded features. First, we use SAE for reduced and 
effective feature representation of the raw NSL-KDD 
dataset, followed by the use of three classifiers for 
classification. 

4. Proposed Methodology 

In this paper, we propose a two-stage approach for the 
binary classification of network attacks. The first stage is an 
SAE that encodes an effective representation of the raw 
NSL-KDD dataset, and the second stage is a classifier that 
classifies input based on these features. We implement three 
models, each with a different classifier: a deep neural 
network, a random forest, and a support vector machine. We 
evaluate our models on the well-known NSL-KDD dataset. 
All classifiers were trained on KDDTrain+ and tested on 
KDDTest+. 
 

4.1 NSL-KDD Dataset 

The older KDD’99 dataset contains a large number of 
redundant records in both training and test datasets [21], 
biasing classification results. Records in the training set also 
appear in the testing set, inflating accuracy scores. For this 
reason, we use the NSL-KDD benchmark dataset. It is 
regarded as an improved and reduced version of the original 
KDD’99 dataset [21], and is widely used to assess the 
performance of intrusion detection systems. NSL-KDD 
does not contain redundant records [21][22]. There are 
125,973 records in KDDTrain+, and 22,544 records in 
KDDTest+. The dataset contains the following types of 
network attacks: (1) Denial of Service (DoS), (2) Probing 
Attack, (3) User to Root Attack (U2R), and (4) Remote to 
Local Attack (R2L). Records in the dataset come in five 
classes, as follows: normal, DoS, Probe, R2L, and U2R, 
where the last four labels correspond to the four types of 
attacks. Each record in NSL-KDD is described using 41 
features. 

 

4.2 Data Preprocessing 

The NSL-KDD dataset contains a number of non-numeric 
features, which need to be processed prior to using. We used 
ordinal encoding to convert non-numeric features to 
numeric features. Categorical features were converted into 
numerical values, e.g.: ‘protocoltype’ has three types of 
attributes: ‘tcp’, ‘udp’, and ‘icmp’ and were converted into 
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numerical values: 1,2,3, respectively. This is repeated for 
all categorical features (Protocol Type, Service and Flag), 
thus mapping the 41-dimensional feature map with textual 
categorical features into a 41-dimensional feature map with 
numerical categorical features. Next, we scale all samples 
in KDDTrain+ and KDDTest+, as the NSL-KDD dataset’s 
features have an extremely large gap between minimum and 
maximum values. Samples are scaled into a distribution 
with 𝜇𝜇 = 0 and 𝜎𝜎2 = 1. 

 

4.3 Sparse Autoencoder 

As outlined in Section 2, an autoencoder is able to learn a 
reduced non-trivial feature vector that scales well to 
accommodate high-dimensional inputs. SAEs are 
considered effective learning algorithms for reconstructing 
a new feature representation in an unsupervised manner. 
Our models all share the same autoencoder, outlined next. 

Our autoencoder is composed of two stacked autoencoders, 
a symmetrical and asymmetrical sparse autoencoder, 
respectively. The number of layers in the first autoencoder 
is as follows: the input layer has 41 features, followed by 
three encoding layers, with sizes 64, 32, and 26, 
respectively. This is followed by two decoding layers of 
sizes 32 and 64. Next, we stack the second autoencoder with 
encoding layers of size 32 and 26, before the final decoding 
layer, of size 41. All hidden layers employ the Leaky ReLU 
(see Equation  1) function, with 𝛼𝛼 = 0.2. 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) =  �𝛼𝛼𝛼𝛼 𝑥𝑥 < 0
𝑥𝑥    𝑥𝑥 ≥ 0

(1) 

For the sparsity constraint in our autoencoder, we employ 
L1 regularization on all hidden layers, with 𝜆𝜆 = 1 × 10−6. 
Our optimizer is Adam [23], with a learning rate of 0.001, 
optimizing the mean squared error function (see Equation 
2), where 𝑌𝑌𝑖𝑖 is the ground truth, and 𝑌𝑌�𝑖𝑖 is the predicted value 
for all examples 𝑖𝑖. 

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

 (2) 

We train our autoencoder for a maximum of 150 epochs, 
although we employ early stopping if the loss does not 
improve for 10 epochs. The model is trained on 80% of the 
training set and validated on 20% of the training set. Finally, 
we extract our reduced set of features from the second 
autoencoder and scale these reduced features such that they 
fit into a distribution with 𝜇𝜇 = 0  and 𝜎𝜎2 = 1 . The final 
feature vector output is then used as input to our chosen 
classifiers. The use of a reduced feature vector reduces 
training and testing time for our classifiers. 

 

4.4 Deep Neural Network 

Our first classifier is a deep fully connected neural network. 
We call this model SAE-DNN. Our network consists of 4 
hidden fully connected layers. The numbers of neurons in 
each hidden layer are 64, 32, 16 and 8, respectively. The 
hidden layers employ the ReLU function (see Equation 3). 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = max(0, 𝑥𝑥) (3) 

A loss function is then employed to estimate the loss, in 
order to compare and measure the accuracy of the prediction 
result compared with the correct result.  We calculate the 
loss using cross-entropy or log loss as shown in Equation 4, 
where 𝑦𝑦𝑖𝑖  is the label (1 for normal traffic and 0 for 
anomalous traffic) and 𝑝𝑝(𝑦𝑦𝑖𝑖) is the predicted  probability of 
the point being normal traffic for all 𝑛𝑛 examples. 

𝐻𝐻𝑝𝑝(𝑞𝑞) = −
1
𝑛𝑛
�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

lg�𝑝𝑝(𝑦𝑦𝑖𝑖)� + (1 − 𝑦𝑦𝑖𝑖) lg�1 − 𝑝𝑝(𝑦𝑦𝑖𝑖)� (4) 

In order to regularize our neural network and prevent 
overfitting, we employ dropout, which randomly removes 
neurons and their connections. Dropout is employed on all 
layers with a probability 𝑝𝑝 = 0.3 . Each layer also 
regularizes its output using L2 regularization with 𝜆𝜆 =
0.005. 

The output layer is used to output the final class of the 
current example, where we used the Sigmoid activation 
function, as in Equation 5, which quashes the input into the 
range [0,1]. 

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
(5) 

Our deep neural network’s optimizer is Adam [23], with a 
learning rate of 0.0008 . We train our network for a 
maximum of 150 epochs, although we employ early 
stopping if the loss does not improve for 10 epochs. The 
model is trained on 80% of the new training set and 
validated on 20% of the new training set, and batch size is 
set to 128. All parameters were set experimentally. 

4.5 Random Forest 

A Random Forest is an ensemble learning method, the 
principle of which is to group ‘weak learners’ to form a 
‘strong learner’. Random forests have many advantages 
such as low bias, outlier robustness and overfitting 
correction [15], all of which are useful for classifying 
ADNIDS scenarios. We call this model SAE-RF. We train 
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our random forest classifier using the new features extracted 
from the encoded representation learned by the stacked 
autoencoders and classify network traffic into normal and 
attack scenarios. We used 50 estimators with a maximum 
depth of 5. 

4.6 Support Vector Machine 

The SVM classifier produces a hyperplane to separate a 
class of positive instances from a class of negative instances, 
maximizing the margin between support vectors [24]. 
SVMs may be used with many functions such as Linear, 
Polynomial, Sigmoid, and RBF kernels. We call this model 
SAE-SVC. We use the RBF kernel, also known as the 
Gaussian kernel, in our work. In our model, we set the 
parameters as follows: 𝐶𝐶 = 1 and 𝛾𝛾 = 1

𝑛𝑛 ∙ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)
.  

5. Experimental Results 

5.1 Experimental Settings 

Our models were implemented  using  Tensorflow [25],  an  
open source machine learning library, utilizing Keras [26]. 
Experiments were carried out using GPUs running on the 
Google Colab [27] environment in order to minimize 
training time. 

5.2 Performance Measures 

For the evaluation of the proposed models, we consider the 
most important performance indicators for intrusion 
detection systems. The following performance measures are 
calculated: accuracy, precision, detection rate, and F-
measure, where TP (true positive) indicates the number of 
anomaly records that are identified as anomaly, and FP 
(False positive) is the number of normal records that are 
identified as anomaly. TN (true Negative) is the number of 
normal records that are identified as normal, and FN (false 
negative) is the number of anomaly records that are 
identified as normal. 

Accuracy: the percentage of records classified correctly, 
calculated as follows: 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

TP + TN + FP + FN
(6) 

Precision (P): the percentage of records correctly classified 
as anomaly out of the total number of records classified as 
anomaly. Precision is calculated as follows: 

𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(7) 

Detection Rate (DR): also known as Recall, the percentage 
of records correctly classified as anomaly out of the total 
number of anomaly records. The detection rate can be 
calculated as follows: 

𝐷𝐷𝐷𝐷 =
TP

TP + FN
(8) 

F-measure (F): a measure that combines both precision and 
detection rate and is calculated as follows: 

𝐹𝐹 =
2 ∗ 𝑃𝑃 ∗ 𝐷𝐷𝐷𝐷
𝑃𝑃 + 𝐷𝐷𝐷𝐷

(9) 

5.3 Performance Evaluation 

We designed our experiments to study the efficiency and 
effectiveness of our three chosen classifiers using SAE as a 
feature extractor. We evaluated our models on KDDTest+ 
from the NSL-KDD dataset to classify traffic into either 
Normal or Anomaly. We compare our results with similar 
approaches in the literature as well as various state-of-the-
art (SOTA) classification algorithms on the same dataset. In 
particular, we compare our model with Naïve Bayes, J48, 
Random Forest, Bagging, and Adaboost, which we 
implemented in the Waikato Environment for Knowledge 
Analysis (WEKA) [28]. Our models and all SOTA models 
were trained and validated on KDDTrain+ and tested on 
KDDTest+. KDDTrain+ was split into 80% for training and 
20% for validation. Table 1 presents the results of our three 
models compared with other models in the literature on a 
number of measures: Accuracy (Acc.), Precision (P), 
Detection Rate (DR), and F-measure (F). 
 

Model Acc. % P % DR % F % 
ANN [29] 81.20 N/A N/A N/A 
SDN-DNN [30] 75.75 83.00 75.00 74.00 
SAE-SVM [17] 84.96 96.23 76.57 85.28 
RNN [31] 83.28 N/A N/A N/A 
Naïve Bayes [28] 76.12 92.38 63.27 75.10 
J48 [28] 81.53 97.14 69.61 81.10 
Random Forest [28] 80.45 97.05 67.72 79.77 
Bagging [28] 82.63 91.87 76.23 83.32 
Adaboost [28] 78.44 95.28 65.37 77.54 
SAE-DNN 82.00 86.00 83.00 82.00 
SAE-RF 77.00 83.00 79.00 77.00 
SAE-SVC 79.00 85.00 81.00 79.00 

Table 1: Results comparison on NSL-KDD KDDTest+ for Binary 
Classification of Network Traffic 

First, we look at the performance of our three proposed 
classifiers. Figure 2Figure 2: Performance comparison of 
our three classifiers shows the accuracy (Acc.), precision 
(P), detection rate (DR), and F-measure (F) for our 
classifiers. We notice that SAE-DNN performs better than 
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the other two classifiers on all metrics. The deep neural 
network was able to outperform the random forest as well 
as the SVM.  
 

 
Figure 2: Performance comparison of our three classifiers 

Next, we compare the three proposed classifiers to the state-
of-art (SOTA) algorithms. Figure 3 shows that our three 
classifiers outperform all the SOTA algorithms in terms of 
accuracy and detection rate. The SAE-DNN model is 
comparable to bagging in terms of accuracy and F-measure. 
 

 
Figure 3: Performance comparison of our models compared with 
SOTA WEKA models 

 
Now, we look at how our three proposed classifiers 
compare with similar approaches in the literature. As Table 
1 shows, SAE-DNN has the best detection rate, and is able 
to detect 83% of all attacks, outperforming all other 
methods in the literature. This shows that the DNN is able 
to better distinguish network attacks than all other models.  
SAE-DNN performs better than ANN [29] and SDN-DNN 
[30] in terms of accuracy and F-measure. The table also 
shows that our proposed model SAE-DNN is very close to 
or better than other approaches in terms of accuracy rate, 
with the best detection rate.  

6. Conclusion 

In this paper, we have proposed three models to address the 
problem of ADNIDs. Our models are structured into two 

components: an SAE that extracts a relevant feature vector, 
followed by three classifiers. The SAE was used for feature 
learning and dimensionality reduction, and the reduced 
feature vector was used as input to three classifiers. The first 
classifier, SAE-DNN, was the best performing one, 
outperforming all other models in terms of detection rate, 
and very close in terms of accuracy. SAE-DNN 
outperformed all SOTA models on all measures except 
precision. The use of a reduced feature vector also reduced 
training and testing time for our classifiers. For future work, 
we plan to expand our model to the multiclass classification 
problem. We also plan to investigate different architectures 
for our SAE, such as a deeper structure with a smaller 
encoding layer size. 
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