
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 201

Manuscript received April 5, 2020
Manuscript revised April 20, 2020

Identification of Network Attacks Using a Deep Learning

Approach
Najwa Altwaijry
ntwaijry@ksu.edu.sa

Computer Science Department
College of Computer and Information Sciences

King Saud University

Summary
Traditional network defense technologies such as firewalls are
unable to detect the evolving types of attacks on networks, leading
to the need for network intrusion detection systems (NIDSs) that
provide better solutions. In this paper, we propose an effective
deep learning method to NIDS based on a two-stage approach with
a sparse autoencoder and a number of different classifiers, to
create three models. The proposed approach uses the autoencoder
for feature learning and dimensionality reduction, thereby
reducing training and testing times. The new feature vector is then
input into three classifiers, improving their detection capability for
intrusion and classification accuracy. We study and compare our
models with a number of other works in the literature as well as
some state-of-the-art methods. Results show that our approach
performs better than all other approaches in terms of detection rate,
and comparably in terms of accuracy.

Keywords:
Sparse Autoencoder, Deep Learning, Anomaly Detection, NIDS.

1. Introduction

Cyber security is becoming a top priority for many countries
around the world. Individuals and organizations are subject
to various types of attacks, such as: malware, phishing, and
denial of service attacks. According to [1], 69% of cyber
security breaches in 2019 were conducted by outsiders.
Network Intrusion Detection Systems (NIDS) are tools that
monitor traffic on networks in order to detect malicious
activity. NIDS analyzes all traffic to distinguish between
intrusions and normal network behavior. NIDS are either
Signature-based (SNIDS) or Anomaly detection-based
(ADNIDS) [2]. SNIDS monitor network traffic and
compare it with a pre-defined list of rules. Although very
efficient in detecting known attacks, SNIDS are not well
suited for identifying previously unseen attack signatures.
ADNIDSs can be thought of as white lists [3]. ADNIDS
detect malicious traffic that potentially deviates from
normal traffic patterns. For example, in the Internet Control
Message Protocol, traffic is considered abnormal when it is
greater than 3% of network traffic, when normally it is only

1% [3]. Thus, ADNIDS are able to effectively detect new
attack forms.

The task of network intrusion detection can be formulated
as a binary classification task, where it is required to classify
network traffic into either normal or abnormal traffic. The
problem can also be modeled as a multi-classification
problem, in which specific types of attacks are classified.
ADNIDS have attracted interest from researchers in various
computer science areas. Many approaches have been used
in ADNIDS, such as statistical and machine learning
methods [4].

Statistical methods for anomaly detection assume that data
is generated in a particular distribution, however, this is not
always true. Traditional machine learning methods cannot
scale up to handle large amounts of data. Research suggests
that commercial NIDS are not effective for todays’
emerging types of attacks [5], as the increasing volume of
network data requires techniques that can analyze it rapidly
and efficiently.

Deep learning is a subset of machine learning algorithms
that has shown success in many real-world applications.
Research shows that the accuracy of deep learning
architectures outperforms traditional approaches by a large
margin [6]. In cyber security, deep learning has been used
to tackle many problems, including: detection, modeling,
monitoring, analysis, and defense against various types of
network attacks [7][8]. Deep learning methods are able to
capture representative features from the dataset and can
generate more effective models than shallow-based
approaches. According to Kim et al. [9], deep learning-
based anomaly detection achieves high accuracy with the
use of different deep learning architectures.
In this paper, we propose three novel deep learning model
for ADNIDS, to be employed within modern computer
networks. Our models are capable of analyzing a wide range
of network traffic and detecting novel network attacks. Our
models are composed of two components, a Sparse
Autoencoder (SAE), followed by a classifier. In particular,

mailto:ntwaijry@ksu.edu.sa

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 202

this work focuses on the performance of various classifiers
incorporated within our models. We evaluate our models on
the well-known NSL-KDD dataset.

The remainder of this paper is organized as follows. In
Section 2, we present the relevant background to our work.
In Section 3, we discuss previous related work in NIDS. In
Section 4, the proposed architecture and the dataset it is
evaluated on are presented. In Section 5, we explain the
experimental setup, and discuss our main findings. Finally,
we conclude the study in Section 6 and provide suggestions
for future work.

2. Background

Autoencoders are an unsupervised machine learning
technique used for representation learning. Autoencoders
compress the original input into a reduced representation,
and from the reduced representation, reconstruct the
original input, i.e. ℎ𝑊𝑊,𝑏𝑏(𝑥𝑥) ≈ 𝑥𝑥 . This allows the
autoencoder to discover correlations within the data, as in
Principal Component Analysis (PCA) [10].

Sparse autoencoders are a type of autoencoder that enforce
a sparsity constraint on the hidden units, thereby forcing the
network to learn a representation that relies on a small
number of units. The sparsity constraint may be enforced
using regularization, such as L1 regularization, on the
activations of hidden units, or via another method such as
KL-Divergence [10].

Autoencoders generally transform the input into a lower
dimensional representation (encoding), then transform the
lower dimensional representation back into the input
(decoding). The final encoded vector, capturing the most
relevant information, may be used as an alternate lower-
dimensional feature representation of the original raw data.
A deep autoencoder has multiple hidden encoding layers,
followed by multiple hidden decoding layers. The layers
may be symmetrical or asymmetrical. The first hidden layer
learns first order features, the second hidden layer learns
second order hidden features from the first layer, and so on.
A simple deep autoencoder is shown in Figure 1.

Figure 1: Deep Autoencoder

Our models are composed of two parts: a sparse
autoencoder, followed by a classifier. For our classifiers, we
implemented three different types:
1. Deep Neural Network (DNN): a fully-connected deep

neural network.
2. Random Forest: an ensemble learning method that

groups so called “weak learners” to form a “strong
learner” [11]. The weak learners in this case are
individual decision trees that are then combined to
form a strong learner, which is the forest.

3. Support Vector Machine (SVM): a non-probabilistic
linear classifier that constructs a hyperplane to classify
data [12].

In Section 4, we present more details pertaining to our
selected algorithms.

3. Literature Review

NIDS have been addressed using various traditional
machine learning techniques in the literature, such as
decision trees, SVM K-Nearest Neighbor, and Random
Forests [13]. Recently, deep learning demonstrated its
effectiveness for many cyber security tasks [7][8], including
intrusion detection. Vinayakumar et al. [14] presented an
evaluation of various deep learning algorithms for the
classification of intrusions in the KDD’99 dataset.
Variations and combinations of deep learning architectures,
such as: Convolutional Neural Networks (CNN), Recurrent
Neural Networks (RNN), Long short-term memory
(LSTM), and Gated Recurrent Unit (GRU) were tested. The
best performance for the multiclass classification problem
was achieved by the combination of CNN and LSTM
architectures. The simple CNN performed better than other
combinations for the binary case.

Shone et al. [15] combined deep and shallow learning in
order to analyze network traffic. In their proposed
architecture, the authors used a Non-Symmetric Deep Auto-
Encoder (NDAE) followed by a Random Forest algorithm.
For unsupervised feature learning, the proposed model

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 203

utilized two NDAEs arranged in a stack. Each NDAE
consisted of three hidden layers. The performance
evaluation of the architecture for the five-class network
traffic classification tasks shows that the obtained accuracy
is 97.85% for the KDD’99 dataset.

Al-Hawawreh et al. [16] proposed a deep learning-based
technique for intrusion detection in industrial internet-of
things systems. The proposed technique operates on
information collected from TCP/IP packets. The proposed
work combines deep auto-encoder and deep feedforward
neural network architectures. Experimental results using
NSL-KDD and UNSW-NB15 datasets showed that the
proposed model can achieve a higher detection rate and
lower false positive rate than similar approaches in the
literature. For the five-class classification task in NSL-KDD
dataset, the detection rate is 99% and the false positive rate
is 1.8%.

Al-Qatf et al. [17] also took a similar approach. The authors
proposed to combine a sparse autoencoder and support
vector machine (SVM). The sparse autoencoder was used
to reconstruct and learn the input training dataset. An SVM
was used to build the NIDS model using the new training
dataset. Experimental results using the NSL-KDD dataset
showed that the proposed architecture accelerates the
training and testing times of the SVM. For the binary
classification task, the model archived 84.96% accuracy,
and for the five-class classification, the model reached an
accuracy of 80.48%. In both cases, the obtained results
surpass those of traditional methods such as: decision trees,
naïve Bayes, and SVM.

Peng et al. [18] proposed a deep confidence neural network
and a back-propagation neural network for intrusion
detection. The dataset features were extracted using a
Restricted Boltzmann machine. The method was validated
using subsets of the KDD'99 dataset. Results showed 95.45%
accuracy. The study concluded that the 5-layer RBM
network structure feature extraction algorithm is more
suitable for feature learning tasks in high-dimensional space.

Javaid et al. [19] propose a deep learning based approach
combining a sparse auto-encoder with Softmax regression.
They evaluated their work on the NSL-KDD dataset,
achieving an average F-score of 75.76% on the multiclass
classification task. Potluri et al. used a DNN to identify
abnormalities in network data, and tested their approach on
the NSL-KDD dataset [20], achieving low accuracy on
some classes.

The literature review shows that there is still room for
improvement in detection accuracy as well as detection rate.
The field of ADNIDS is young, with researchers conducting
various experiments combining different algorithms for

feature extraction, training and optimization, followed by
classification. On the basis of this analysis, we propose a
combination of SAE and three classifiers, and aim to study
the performance of each classifier based on the SAE
encoded features. First, we use SAE for reduced and
effective feature representation of the raw NSL-KDD
dataset, followed by the use of three classifiers for
classification.

4. Proposed Methodology

In this paper, we propose a two-stage approach for the
binary classification of network attacks. The first stage is an
SAE that encodes an effective representation of the raw
NSL-KDD dataset, and the second stage is a classifier that
classifies input based on these features. We implement three
models, each with a different classifier: a deep neural
network, a random forest, and a support vector machine. We
evaluate our models on the well-known NSL-KDD dataset.
All classifiers were trained on KDDTrain+ and tested on
KDDTest+.

4.1 NSL-KDD Dataset

The older KDD’99 dataset contains a large number of
redundant records in both training and test datasets [21],
biasing classification results. Records in the training set also
appear in the testing set, inflating accuracy scores. For this
reason, we use the NSL-KDD benchmark dataset. It is
regarded as an improved and reduced version of the original
KDD’99 dataset [21], and is widely used to assess the
performance of intrusion detection systems. NSL-KDD
does not contain redundant records [21][22]. There are
125,973 records in KDDTrain+, and 22,544 records in
KDDTest+. The dataset contains the following types of
network attacks: (1) Denial of Service (DoS), (2) Probing
Attack, (3) User to Root Attack (U2R), and (4) Remote to
Local Attack (R2L). Records in the dataset come in five
classes, as follows: normal, DoS, Probe, R2L, and U2R,
where the last four labels correspond to the four types of
attacks. Each record in NSL-KDD is described using 41
features.

4.2 Data Preprocessing

The NSL-KDD dataset contains a number of non-numeric
features, which need to be processed prior to using. We used
ordinal encoding to convert non-numeric features to
numeric features. Categorical features were converted into
numerical values, e.g.: ‘protocoltype’ has three types of
attributes: ‘tcp’, ‘udp’, and ‘icmp’ and were converted into

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 204

numerical values: 1,2,3, respectively. This is repeated for
all categorical features (Protocol Type, Service and Flag),
thus mapping the 41-dimensional feature map with textual
categorical features into a 41-dimensional feature map with
numerical categorical features. Next, we scale all samples
in KDDTrain+ and KDDTest+, as the NSL-KDD dataset’s
features have an extremely large gap between minimum and
maximum values. Samples are scaled into a distribution
with 𝜇𝜇 = 0 and 𝜎𝜎2 = 1.

4.3 Sparse Autoencoder

As outlined in Section 2, an autoencoder is able to learn a
reduced non-trivial feature vector that scales well to
accommodate high-dimensional inputs. SAEs are
considered effective learning algorithms for reconstructing
a new feature representation in an unsupervised manner.
Our models all share the same autoencoder, outlined next.

Our autoencoder is composed of two stacked autoencoders,
a symmetrical and asymmetrical sparse autoencoder,
respectively. The number of layers in the first autoencoder
is as follows: the input layer has 41 features, followed by
three encoding layers, with sizes 64, 32, and 26,
respectively. This is followed by two decoding layers of
sizes 32 and 64. Next, we stack the second autoencoder with
encoding layers of size 32 and 26, before the final decoding
layer, of size 41. All hidden layers employ the Leaky ReLU
(see Equation 1) function, with 𝛼𝛼 = 0.2.

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = �𝛼𝛼𝛼𝛼 𝑥𝑥 < 0
𝑥𝑥 𝑥𝑥 ≥ 0

(1)

For the sparsity constraint in our autoencoder, we employ
L1 regularization on all hidden layers, with 𝜆𝜆 = 1 × 10−6.
Our optimizer is Adam [23], with a learning rate of 0.001,
optimizing the mean squared error function (see Equation
2), where 𝑌𝑌𝑖𝑖 is the ground truth, and 𝑌𝑌�𝑖𝑖 is the predicted value
for all examples 𝑖𝑖.

𝑀𝑀𝑀𝑀𝑀𝑀 =
1
𝑛𝑛
��𝑌𝑌𝑖𝑖 − 𝑌𝑌�𝑖𝑖�

2
𝑛𝑛

𝑖𝑖=1

 (2)

We train our autoencoder for a maximum of 150 epochs,
although we employ early stopping if the loss does not
improve for 10 epochs. The model is trained on 80% of the
training set and validated on 20% of the training set. Finally,
we extract our reduced set of features from the second
autoencoder and scale these reduced features such that they
fit into a distribution with 𝜇𝜇 = 0 and 𝜎𝜎2 = 1 . The final
feature vector output is then used as input to our chosen
classifiers. The use of a reduced feature vector reduces
training and testing time for our classifiers.

4.4 Deep Neural Network

Our first classifier is a deep fully connected neural network.
We call this model SAE-DNN. Our network consists of 4
hidden fully connected layers. The numbers of neurons in
each hidden layer are 64, 32, 16 and 8, respectively. The
hidden layers employ the ReLU function (see Equation 3).

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = max(0, 𝑥𝑥) (3)

A loss function is then employed to estimate the loss, in
order to compare and measure the accuracy of the prediction
result compared with the correct result. We calculate the
loss using cross-entropy or log loss as shown in Equation 4,
where 𝑦𝑦𝑖𝑖 is the label (1 for normal traffic and 0 for
anomalous traffic) and 𝑝𝑝(𝑦𝑦𝑖𝑖) is the predicted probability of
the point being normal traffic for all 𝑛𝑛 examples.

𝐻𝐻𝑝𝑝(𝑞𝑞) = −
1
𝑛𝑛
�𝑦𝑦𝑖𝑖

𝑛𝑛

𝑖𝑖=1

lg�𝑝𝑝(𝑦𝑦𝑖𝑖)� + (1 − 𝑦𝑦𝑖𝑖) lg�1 − 𝑝𝑝(𝑦𝑦𝑖𝑖)� (4)

In order to regularize our neural network and prevent
overfitting, we employ dropout, which randomly removes
neurons and their connections. Dropout is employed on all
layers with a probability 𝑝𝑝 = 0.3 . Each layer also
regularizes its output using L2 regularization with 𝜆𝜆 =
0.005.

The output layer is used to output the final class of the
current example, where we used the Sigmoid activation
function, as in Equation 5, which quashes the input into the
range [0,1].

𝜎𝜎(𝑥𝑥) =
1

1 + 𝑒𝑒−𝑥𝑥
(5)

Our deep neural network’s optimizer is Adam [23], with a
learning rate of 0.0008 . We train our network for a
maximum of 150 epochs, although we employ early
stopping if the loss does not improve for 10 epochs. The
model is trained on 80% of the new training set and
validated on 20% of the new training set, and batch size is
set to 128. All parameters were set experimentally.

4.5 Random Forest

A Random Forest is an ensemble learning method, the
principle of which is to group ‘weak learners’ to form a
‘strong learner’. Random forests have many advantages
such as low bias, outlier robustness and overfitting
correction [15], all of which are useful for classifying
ADNIDS scenarios. We call this model SAE-RF. We train

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 205

our random forest classifier using the new features extracted
from the encoded representation learned by the stacked
autoencoders and classify network traffic into normal and
attack scenarios. We used 50 estimators with a maximum
depth of 5.

4.6 Support Vector Machine

The SVM classifier produces a hyperplane to separate a
class of positive instances from a class of negative instances,
maximizing the margin between support vectors [24].
SVMs may be used with many functions such as Linear,
Polynomial, Sigmoid, and RBF kernels. We call this model
SAE-SVC. We use the RBF kernel, also known as the
Gaussian kernel, in our work. In our model, we set the
parameters as follows: 𝐶𝐶 = 1 and 𝛾𝛾 = 1

𝑛𝑛 ∙ 𝑉𝑉𝑉𝑉𝑉𝑉(𝑋𝑋)
.

5. Experimental Results

5.1 Experimental Settings

Our models were implemented using Tensorflow [25], an
open source machine learning library, utilizing Keras [26].
Experiments were carried out using GPUs running on the
Google Colab [27] environment in order to minimize
training time.

5.2 Performance Measures

For the evaluation of the proposed models, we consider the
most important performance indicators for intrusion
detection systems. The following performance measures are
calculated: accuracy, precision, detection rate, and F-
measure, where TP (true positive) indicates the number of
anomaly records that are identified as anomaly, and FP
(False positive) is the number of normal records that are
identified as anomaly. TN (true Negative) is the number of
normal records that are identified as normal, and FN (false
negative) is the number of anomaly records that are
identified as normal.

Accuracy: the percentage of records classified correctly,
calculated as follows:

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇

TP + TN + FP + FN
(6)

Precision (P): the percentage of records correctly classified
as anomaly out of the total number of records classified as
anomaly. Precision is calculated as follows:

𝑃𝑃 =
𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
(7)

Detection Rate (DR): also known as Recall, the percentage
of records correctly classified as anomaly out of the total
number of anomaly records. The detection rate can be
calculated as follows:

𝐷𝐷𝐷𝐷 =
TP

TP + FN
(8)

F-measure (F): a measure that combines both precision and
detection rate and is calculated as follows:

𝐹𝐹 =
2 ∗ 𝑃𝑃 ∗ 𝐷𝐷𝐷𝐷
𝑃𝑃 + 𝐷𝐷𝐷𝐷

(9)

5.3 Performance Evaluation

We designed our experiments to study the efficiency and
effectiveness of our three chosen classifiers using SAE as a
feature extractor. We evaluated our models on KDDTest+
from the NSL-KDD dataset to classify traffic into either
Normal or Anomaly. We compare our results with similar
approaches in the literature as well as various state-of-the-
art (SOTA) classification algorithms on the same dataset. In
particular, we compare our model with Naïve Bayes, J48,
Random Forest, Bagging, and Adaboost, which we
implemented in the Waikato Environment for Knowledge
Analysis (WEKA) [28]. Our models and all SOTA models
were trained and validated on KDDTrain+ and tested on
KDDTest+. KDDTrain+ was split into 80% for training and
20% for validation. Table 1 presents the results of our three
models compared with other models in the literature on a
number of measures: Accuracy (Acc.), Precision (P),
Detection Rate (DR), and F-measure (F).

Model Acc. % P % DR % F %
ANN [29] 81.20 N/A N/A N/A
SDN-DNN [30] 75.75 83.00 75.00 74.00
SAE-SVM [17] 84.96 96.23 76.57 85.28
RNN [31] 83.28 N/A N/A N/A
Naïve Bayes [28] 76.12 92.38 63.27 75.10
J48 [28] 81.53 97.14 69.61 81.10
Random Forest [28] 80.45 97.05 67.72 79.77
Bagging [28] 82.63 91.87 76.23 83.32
Adaboost [28] 78.44 95.28 65.37 77.54
SAE-DNN 82.00 86.00 83.00 82.00
SAE-RF 77.00 83.00 79.00 77.00
SAE-SVC 79.00 85.00 81.00 79.00

Table 1: Results comparison on NSL-KDD KDDTest+ for Binary
Classification of Network Traffic

First, we look at the performance of our three proposed
classifiers. Figure 2Figure 2: Performance comparison of
our three classifiers shows the accuracy (Acc.), precision
(P), detection rate (DR), and F-measure (F) for our
classifiers. We notice that SAE-DNN performs better than

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 206

the other two classifiers on all metrics. The deep neural
network was able to outperform the random forest as well
as the SVM.

Figure 2: Performance comparison of our three classifiers

Next, we compare the three proposed classifiers to the state-
of-art (SOTA) algorithms. Figure 3 shows that our three
classifiers outperform all the SOTA algorithms in terms of
accuracy and detection rate. The SAE-DNN model is
comparable to bagging in terms of accuracy and F-measure.

Figure 3: Performance comparison of our models compared with
SOTA WEKA models

Now, we look at how our three proposed classifiers
compare with similar approaches in the literature. As Table
1 shows, SAE-DNN has the best detection rate, and is able
to detect 83% of all attacks, outperforming all other
methods in the literature. This shows that the DNN is able
to better distinguish network attacks than all other models.
SAE-DNN performs better than ANN [29] and SDN-DNN
[30] in terms of accuracy and F-measure. The table also
shows that our proposed model SAE-DNN is very close to
or better than other approaches in terms of accuracy rate,
with the best detection rate.

6. Conclusion

In this paper, we have proposed three models to address the
problem of ADNIDs. Our models are structured into two

components: an SAE that extracts a relevant feature vector,
followed by three classifiers. The SAE was used for feature
learning and dimensionality reduction, and the reduced
feature vector was used as input to three classifiers. The first
classifier, SAE-DNN, was the best performing one,
outperforming all other models in terms of detection rate,
and very close in terms of accuracy. SAE-DNN
outperformed all SOTA models on all measures except
precision. The use of a reduced feature vector also reduced
training and testing time for our classifiers. For future work,
we plan to expand our model to the multiclass classification
problem. We also plan to investigate different architectures
for our SAE, such as a deeper structure with a smaller
encoding layer size.

Acknowledgments

The authors extend their appreciation to the Deanship of
Scientific Research at King Saud University for funding this
work through the Research Project No R5-16-03-29.

References

[1] “2019 Data Breach Investigations Report | Verizon
Enterprise Solutions.”
https://enterprise.verizon.com/resources/reports/dbir/.

[2] E. Aminanto and K. Kim, “Deep learning in intrusion
detection system: An overview,” in 2016 International
Research Conference on Engineering and Technology (2016
IRCET), 2016.

[3] T. J. Shimeall and J. M. Spring, Introduction to Information
Security. Elsevier, 2014.

[4] “Machine Learning Technique - an overview | ScienceDirect
Topics.” https://www.sciencedirect.com/topics/computer-
science/machine-learning-technique.

[5] R. Vinayakumar, M. Alazab, K. P. Soman, P.
Poornachandran, A. Al-Nemrat, and S. Venkatraman, “Deep
learning approach for intelligent intrusion detection system,”
IEEE Access, vol. 7, pp. 41525–41550, 2019.

[6] A. Garcia-Garcia, S. Orts-Escolano, S. Oprea, V. Villena-
Martinez, and J. Garcia-Rodriguez, “A review on deep
learning techniques applied to semantic segmentation,”
ArXiv Prepr. ArXiv170406857, 2017.

[7] M. Alazab and M. Tang, Deep Learning Applications for
Cyber Security. Springer, 2019.

[8] Z. Chen, K. He, J. Li, and Y. Geng, “Seq2Img: A sequence-
to-image based approach towards IP traffic classification
using convolutional neural networks,” in 2017 IEEE
International Conference on Big Data (Big Data), 2017, pp.
1271–1276.

[9] K. Kim and M. E. Aminanto, “Deep learning in intrusion
detection perspective: Overview and further challenges,” in
2017 International Workshop on Big Data and Information
Security (IWBIS), 2017, pp. 5–10.

[10] A. Ng, “Sparse Autoencoder.” CS294A Lecture notes,
Stanford University.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 207

[11] L. Breiman, “Random forests,” Mach. Learn., vol. 45, no. 1,
pp. 5–32, 2001.

[12] C. Cortes and V. Vapnik, “Support-vector networks,” Mach.
Learn., vol. 20, no. 3, pp. 273–297, 1995.

[13] H. Liu and B. Lang, “Machine Learning and Deep Learning
Methods for Intrusion Detection Systems: A Survey,” Appl.
Sci., vol. 9, no. 20, p. 4396, 2019.

[14] R. Vinayakumar, K. P. Soman, and P. Poornachandran,
“Applying convolutional neural network for network
intrusion detection,” in 2017 International Conference on
Advances in Computing, Communications and Informatics
(ICACCI), 2017, pp. 1222–1228.

[15] N. Shone, T. N. Ngoc, V. D. Phai, and Q. Shi, “A deep
learning approach to network intrusion detection,” IEEE
Trans. Emerg. Top. Comput. Intell., vol. 2, no. 1, pp. 41–50,
2018.

[16] M. AL-Hawawreh, N. Moustafa, and E. Sitnikova,
“Identification of malicious activities in industrial internet of
things based on deep learning models,” J. Inf. Secur. Appl.,
vol. 41, pp. 1–11, 2018.

[17] M. Al-Qatf, Y. Lasheng, M. Al-Habib, and K. Al-Sabahi,
“Deep Learning Approach Combining Sparse Autoencoder
With SVM for Network Intrusion Detection,” IEEE Access,
vol. 6, pp. 52843–52856, 2018, doi:
10.1109/ACCESS.2018.2869577.

[18] W. Peng, X. Kong, G. Peng, X. Li, and Z. Wang, “Network
Intrusion Detection Based on Deep Learning,” in 2019
International Conference on Communications, Information
System and Computer Engineering (CISCE), Jul. 2019, pp.
431–435, doi: 10.1109/CISCE.2019.00102.

[19] A. Javaid, Q. Niyaz, W. Sun, and M. Alam, “A deep learning
approach for network intrusion detection system,” in
Proceedings of the 9th EAI International Conference on Bio-
inspired Information and Communications Technologies
(formerly BIONETICS), 2016, pp. 21–26.

[20] S. Potluri and C. Diedrich, “Accelerated deep neural
networks for enhanced intrusion detection system,” in 2016
IEEE 21st International Conference on Emerging
Technologies and Factory Automation (ETFA), 2016, pp. 1–
8.

[21] M. Tavallaee, E. Bagheri, W. Lu, and A. A. Ghorbani, “A
detailed analysis of the KDD CUP 99 data set,” in 2009 IEEE
symposium on computational intelligence for security and
defense applications, 2009, pp. 1–6.

[22] Y. Hamid, V. R. Balasaraswathi, L. Journaux, and M.
Sugumaran, “Benchmark Datasets for Network Intrusion
Detection: A Review.,” IJ Netw. Secur., vol. 20, no. 4, pp.
645–654, 2018.

[23] D. P. Kingma and J. Ba, “Adam: A method for stochastic
optimization,” ArXiv Prepr. ArXiv14126980, 2014.

[24] S. R. Gunn, “Support vector machines for classification and
regression,” ISIS Tech. Rep., vol. 14, no. 1, pp. 5–16, 1998.

[25] “TensorFlow,” TensorFlow. https://www.tensorflow.org/.
[26] “Keras Documentation.” https://keras.io/.
[27] “Google Colaboratory.”

https://colab.research.google.com/notebooks/intro.ipynb
(accessed Mar. 29, 2020).

[28] E. Frank, M. A. Hall, and I. H. Witten, The WEKA workbench.
Morgan Kaufmann, 2016.

[29] B. Ingre and A. Yadav, “Performance analysis of NSL-KDD
dataset using ANN,” in 2015 international conference on
signal processing and communication engineering systems,
2015, pp. 92–96.

[30] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M.
Ghogho, “Deep learning approach for network intrusion
detection in software defined networking,” in 2016
International Conference on Wireless Networks and Mobile
Communications (WINCOM), 2016, pp. 258–263.

[31] C. Yin, Y. Zhu, J. Fei, and X. He, “A deep learning approach
for intrusion detection using recurrent neural networks,” Ieee
Access, vol. 5, pp. 21954–21961, 2017.

Najwa Altwaijry is an Assistant Professor of Computer Science
at King Saud University. She received her PhD degree in 2014
from the College of Computer Sciences at King Saud University.
Her research interests include machine learning, swarm
intelligence, evolutionary computation, cyber security and
bioinformatics.

	1. Introduction
	2. Background
	3. Literature Review
	4. Proposed Methodology
	5. Experimental Results
	6. Conclusion
	Acknowledgments
	References

