
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020

208

Manuscript received April 5, 2020

Manuscript revised April 20, 2020

Modeling Physical/Digital Systems: Formal Event-B vs.

Diagrammatic Thinging Machine

Sabah Al-Fedaghi

sabah.alfedaghi@ku.edu.kw
Computer Engineering Department, Kuwait University, Kuwait

Summary
Models are centrally important in many scientific fields. A model
is a representation of a selected part of the world, which is the
model’s target system. Here, a system consists of a software
portion as a component among many others. Event-B is a

modeling method for formalizing and developing systems whose
components can be modeled based on set theory and first-order
logic. The thinging machine (TM) is a diagram-based model
establishes three levels of representation: (1) a static structural
description, which is constructed upon the flow of things in five
generic operations (activities; i.e., create, process, release, transfer,
and receive); (2) a dynamic representation, which identifies
hierarchies of events based on five generic events; and (3) a

behavioral representation according to the chronology of events.
This paper is an exercise in contrasting the formal Event-B to the
diagrammatic TM. The purpose is to further understand modeling
in computer science. This is motivated by the claim that computer
scientists should not invent specific languages to do the modeling.
Important notions such as events and behavior are contrasted, and
a case study system of traffic on a bridge is modeled in Event-B
and TM. The results seem to indicate the need for both modeling

approaches.

Key words:
Event-B; conceptual model; thinging machine; event;
diagrammatic representation

1. Introduction

Models are centrally important to many scientific fields,

including models that represent a selected part of the world,

which is the model’s target system [1]. Such

representational models seem to comprise different styles

(e.g., mathematical models and data models). They can be

considered as structures with mappings between the model

and the target system [2]. Usually, a model has its own

language, which contains symbols that are interpreted as

referring to a structure’s objects, relations, or functions [1].

According to Abrial [3], physicists who construct models
use classical set-theoretic notations and never invent

specific languages to model their systems. Abrial [3]

continues by claiming that computer scientists believe it is

necessary to invent specific languages to do the modeling

and this, according to Abrial [3], “is an error” because set

theoretic notations are well suited to perform system

modeling in computer science. Abrial’s [3] intention is to

build a general system within which is a certain piece of

software, which is a component among many others. The

aim is to construct a complete model of the target system,

including the software and its physical environment. Abrial

[3] affirms, “We propose to do it by constructing

mathematical models which will be analyzed by doing

proofs.” The result of this methodology is Event-B.

This paper is an exercise of contrasting this formal Event-B

with a non-formal model called the thinging machine (TM),
which is based on diagrams, to discover what has motivated

computer scientists to adopt a non-formal approaches to

modeling.

1.1 Event-B

Event-B [2] is a modeling methodology for formalizing and

developing general systems (including software) whose

components can be modeled based on set theory and first-

order logic. Event-B is currently centered on the general

notion of events [4]. This event-based scheme is useful in

requirements analysis, modeling of distributed systems, and

in the discovery/design of distributed and sequential

programming algorithms [5].

Event-B is described as formalism that is “relatively simple,
but not very expressive… [in] real-life systems: [this

requires] a lot of details [and] huge formal specifications,

which are hard to maintain” [6]. The diagrammatic

language UML-B (based on UML) has been proposed to

complement modeling in Event-B. It combines state

machine refinement with class refinement techniques [7].

Four kind of diagrams are provided: package, context, class,

and state diagrams. A package diagram is a top-level

diagram that shows the structure and relationships between

components in a project [7]. UML state diagrams can be

used to generate an Event-B specification [6].

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 209

Example: Consider the state diagram shown in Fig. 1 [6].

The Event-B specification includes the axioms

typeof_On: ON ε trafficlight_states

typeof_Off: Off ε trafficlight_states

distinct_states_in_trafficlight_STATES:

 partition (trafficlight_STATES, {On},

{off})

The specification of Event-B events for the state diagram

includes the following:

EVENTS

INITIALIZATION

 STATUS

 ordinary

BEGIN

 Init_trafficlight : trafficlight On

END

TurnOn

 STATUS

ordinary

WHEN

 Isin_Off: trafficlight = Off

1.2 Thinging Machine

The TM model is a diagram-based conceptual modeling

tool that establishes three levels of representation: (1) a
static structural description, which is constructed upon the

flow of things in five generic operations (activities; i.e.,

create, process, release, transfer, and receive); (2) a

dynamic representation, which identifies hierarchies of

events based on the five generic events; and (3) a

chronology of events. To achieve a self-contained paper and

because TM is a new model that is not widely known, we

will review the basic concepts of TM in section 2.

1.3 About this Paper

Our aim is to further the understanding of modeling in

computer science. Important notions such as events and

behavior are contrasted in terms of how each model

conceives of these notions, that is Event-B and TM. The
results seem to indicate the need for both approaches to

modeling.

The next section reviews the basic philosophy of TM. The

example in that section is a new contribution. Section 2

discusses the Event-B development approach (e.g., its

refinement and proof). This aspect is important because we

aim to develop a TM version of an Event-B model. The

remaining sections of the paper involve modeling a system

of traffic on a bridge, which is specified in Event-B in detail

(74 pages) [3]. The system is remodeled in TM.

2. Modeling Development

In Event-B, a model is developed through refinement,

which is used to relate the abstract model of a system to

another, more concrete model while maintaining the same

properties of the abstract model [8]. A refinement technique

allows the modeler to focus on different aspects of the

system at different abstraction levels [7]. According to

Abrial [3], a large system has to be modeled in successive

steps. Each of these steps makes the model richer by

creating and then enriching the various components. In
remodeling the bridge example, we will follow this

refinement process because the Event-B model of the bridge

is developed according to this process.

In Event-B, modeling also consists of proving that the

representation fulfills certain desired properties. Proof-

based development methods integrate formal proof

techniques into system development. Starting with an

abstract model, details are added by building a sequence of

more concrete ones [5]. This proof-based development is

one of the strong aspects of Event-B. In our development of

the TM version of the bridge model, we will ignore this
feature to limit the focus when contrasting the two models

because TM is underdeveloped in this area.

3. Thinging Model Theory

This section will briefly review TM modeling to provide a

base for this paper’s aim of applying TM to the Event-B

bridge system. A more elaborate discussion of TM’s

philosophical foundations can be found in [9-17].

3.1 Basics of the Thinging Machine

Typically, ontology requires classifications such as a

functional classification of human bodily functions: mental,

sensory, speech, respiratory, digestive, and so on [18]. Yet,

even with the impressive progress in developing ontologies

of things (i.e., entities, objects), the ontology of processes

(TM machines) is still a problem [18]. In TM, ontology is

based on a single category of entities called thimacs

(things/machines). The thimac is simultaneously an “object”

(called a thing) and a “process” (called a machine)—thus,

the name thimac. The thimac notion is not new. In physics,

subatomic entities must be regarded as both particles and

waves to fully describe and explain observed phenomena
[19]. According to Sfard [20], abstract notions can be

conceived of in two fundamentally different ways:

structurally, as objects/things (static constructs), and

operationally, as processes. Thus, distinguishing between

On Off

Turn_ON

Turn_Off

Fig. 1 Sample state diagram

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 210

form and content and between process and object is popular,

but, “like waves and particles, they have to be united in order

to appreciate light” [21]. TM adopts this notion of duality in

conceptual modeling and generalizes it beyond mathematics.

The term “thing” relies more on Heidegger’s [22] notion of

“things” than it does on the classical notion of objects.
According to Heidegger [22], a thing is self-sustained, self-

supporting, or independent—something that stands on its

own. More importantly, it is that which can be spoken about,

“that which can be talked about [or] that which is named”

[23]. “Talking about” a thing denotes being modeled in

terms of being created, processed (change), released,

transferred, and/or received. According to Johnson [23],

“there is no thing that we cannot speak about.” In

Heidegger’s [22] words, a thing “things”. That is, it ties

together its constituents in the same way that a bridge unifies

environmental aspects (e.g., a stream, its banks, and the

surrounding landscape). In our TM ontology of dual being,
the thing’s machine (the machine side of the thing)

“machines”; that is, it operates on (other) things by creating,

processing, releasing, transferring, and/or receiving them.

The term “machine” refers to a special abstract machine

called a TM (see Fig. 2). The TM is built under the

postulation that it only performs five generic operations:

creating, processing (changing), releasing, transferring, and

receiving.

A thimac has dual being as a thing and as a machine. A thing

is created, processed, released, transferred, and/or received.

A machine creates, processes, releases, transfers, and/or
receives things. We will alternate among the terms “thimac”,

“thing”, and “machine” according to the context.

The five TM operations (also called stages) form the

foundation for thimacs. Among the five stages, flow (a solid

arrow in Fig. 2) signifies conceptual movement from one

machine to another or among a machine’s stages. The TM’s

stages can be described as follows.

 Arrival: A thing reaches a new machine.

 Acceptance: A thing is permitted to enter the

machine. If arriving things are always accepted,

then arrival and acceptance can be combined into

the “receive” stage. For simplicity, this paper’s

examples assume a receive stage exists.

 Processing (change): A thing undergoes a
transformation that changes it without creating a

new thing.

 Release: A thing is marked as ready to be

transferred outside of the machine.

 Transference: A thing is transported somewhere

outside of the machine.

 Creation: A new thing is born (created) within a

machine. A machine creates in the sense that it

finds or originates a thing; it brings a thing into the
system and then becomes aware of it. Creation can

designate “bringing into existence” in the system

because what exists is what is found. Additionally,

creation does not necessarily mean existence in the

sense of being alive.

Creation in a TM also means appearance in the system.

Appearance here is not limited to form or solidity but also to

any sense of the system’s awareness of the new thing. Even

nominals (which have no existence except in names) may be

things that appear in the system model.
In addition, the TM model includes memory and triggering

(represented as dashed arrows), or relations among the

processes’ stages (machines), for example the process in Fig.

2 triggers the creation of a new thing.

The TM in Fig. 2 can be specified in a texual language

(which we call TM language), wherein the arrows are

represented by dots. For example, the following shows the

different flows in Fig. 2 in this TM language:
Flow.Create.release.transfer.output
Flow.Create.process.release.transfer.output
Flow.Transfer.input.receive.arrive.release.transfer.output
Flow.Transfer.input.receive.arrive.accept.release.transfer.

output
Flow.Transfer.input.receive.arrive.accept.process.release.

transfer.output
The period is used to denote flow or containment. We use
“-->” to indicate triggering.

3.2 Example

Fig. 3 shows the TM model of y = 10/x, x ≠ 0. The whole

diagram is a thimac. The constraint x ≠ 0 is integrated into

the model as a subthimac (the dark box). In Fig. 3, the value

of x (as an independent variable) flows (circle 1) to

Fig. 3. The TM static model of y = 10/x, x ≠ 0.

x 10

Release

Transfer

R
ec

ei
v

e

Process If not zero

Transfer

Receive Release

Transfer

T
ra

n
sf

e

r T
ra

n
sf

e

r

P
ro

ce
ss

C
re

at
e

Transfer
y

R
ec

ei
v

e

Constrain

t

1
2

3

4

5

6
7

8

Fig. 2. Thinging machine.

Create

Receive

Transfer

Release

Process

Accept Arrive

Output Input

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 211

the calculating subthimac, where it is received (2) and sent

to the constraint subthimac (3). There, it is processed, and if

it is not zero, (4) it flows back (5) to the calculating thimac

that retrieves the constant 10 (6). Both values are processed

(division; 7) to trigger (dashed arrow) creation of the value

of y (8).
To construct the dynamic model, we need to introduce the

concept of an event. Consider the event The value of x is

inputted into the system. Fig. 4 shows its representation in

TM. It is simply a thimac that involves a time subthimac (the

flow at the top). The region in the figure (dark box) is a

subdiagram of the static model (Fig. 3). In general, an event

may include other subthimacs (e.g., intensity or importance).

For simplicity sake, we will represent each event by its

region.

Thus, the dynamic model can now be represented in five

events, as shown in Fig. 5.

Event A: The value of x is inputted.
Event B: The constant 10 is brought from its storage.

Event C: y is calculated.

Event D: The value of x is not zero.

Event E: The value of x is zero.

Fig. 6 shows the behavioral model of y = 10/x, x ≠ 0 in term

of the event chronology. It embeds two types of behavior:

A→D→B→C and A→E, where → indicates a sequence of

events.

4. Case Study: Bridge–Island System

Abrial [3] modeled a physical/digital system that involves

controlling cars on a narrow bridge that links the mainland

to a small island. The system is equipped with two traffic

lights (green and red) that control the entrance to the bridge

at both ends. The system is equipped with sensors with two

states—on or off—which are used to detect the presence of

a car entering or leaving. The number of cars on the bridge

and island is limited. The bridge is one-way or the other, not

both at the same time.

Abrial [3] starts the model by developing a simple first

version in which the various pieces of the traffic lights and

sensors are introduced in subsequent refinements. The initial
version includes a compound made of the bridge and the

island together (see Fig. 7).

According to Abrial [3], “The idea is to take account initially
of only a very few constraints. This is because we want to be

able to reason about this system in a simple way, considering

in turn each requirement.” Abrial’s [3] first task is to

formalize the state of this simple version of the system and

then formalize the two events of movement of cars between

the mainland and the island–bridge.

In Event-B, the model’s state is made up of two parts:

 The static part contains the definition and axioms

associated with some constants. It contains a single

constant d, which is a natural number denoting the

maximum number of cars allowed on the island–
bridge compound at the same time.

 The dynamic part contains the variables that are

modified as the system evolves. It is made up of a

single variable n, which denotes the actual number

of cars in the island–bridge compound at a given

moment.

The Event-B understanding of static is different from the

TM use of this term. In TM, the number d is a thimac, while

its value is subthimac in addition to its other subthimacs (e.g.,

its type).

R
ec

ei
v

e

T
ra

n
sf

e

r

P
ro

ce
ss

C
re

at
e

Fig. 4. Model of the event x is inputted into the system.

x

Releas

e

Process: takes its

course

Transf

er

Receiv

e

Transf

er

Region

T
ra

n
sf

e

r

Time

The event

itself

x

T
ra

n
sf

er
 A

 10
Release

Transfer

R
ec

ei
v

e

 = Zero Process If not

zero

Transfer

Receive Release

Transfer

T
ra

n
sf

er

P
ro

ce
ss

C
re

at
e

Transfer
y

R
ec

ei
v

e

Constraint

B

C

D
E

A

B C D

E

Fig. 6. The behavioral model of y = 10/x, x ≠ 0.

Fig. 7. Initial model of the mainland and the island/bridge
(Adapted from [3]).

Island and

bridge
Mainland

Fig. 5. The dynamic model of y = 10/x.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 212

The thimac d can be processed, released, transferred, and/or
received. As shown in the example in the previous section,

in TM, d is in the static model, which means that its

operations may be specified but not as events in time. This

is similar to the constant 10 in the example, which is a single

value but is nevertheless released from its storage and

transferred and then participates in calculating y. These are

operations, not events, because they do not involve time.

In TM, describing d as a single-value thimac means that the

value (and its type) is created (or initialized) once in the

system. That is, no creation or transfer.receive occurs beside

the original ones. The model in this case is static.
 Fig. 8 shows the TM static model of this initial version of

the example. It is important to emphasize the difference

between the notions of an event in TM versus Event-B. To

avoid redundancy, TM events of the bridge–island system

are developed in the last refinement (sections 6-8). The

flows between the mainland and the island–bridge (circles

1 and 2 in Fig. 8) are events in Events-B but are not events

in TM.

We assume d and n are initialized from outside (circles 3

and 4, respectively) at the start of the system and stored in

the system (5 and 6 circles, respectively). The thimac dεN

(7; we use dεN as a name) is responsible for the basic
requirement of the axiom “d ε N”: that d is a natural number.

The thimac n≤d (8; we use n≤d as a name) is responsible for

“n ≤ d.” Because we assume d—the maximum number of

cars on the island–bridge—is inputted (3) at the start of the

system, then when this value is received (9), it is sent to dεN

before it is accepted as a valid value and stored (5).

Similarly, when n is inputted (4) and received, n is sent to

dεN and n ≤ d before it is accepted as a valid value and

stored (6). In TM, the thimacs dεN and n ≤ d are realizations

of mathematical axioms. Any constraints on the system are

treated as thimacs.
In the Event-B model, the static, dynamic, and behavioral

models (in the TM sense) are mixed into a single

mathematical representation. According to Abrial [3], a

discrete transition component is made of a state and some

transitions. Roughly, a state is defined by means of a

number of variables, which might be any integers, pairs,

sets, relations, functions, etc. In Event-B, the state might

have any predicate expressed within the notation of first-

order logic and set theory. Thus, “By putting all this

together, a state can be simply abstracted to a set” [3].

d
(Constant)

n (variable)

Create: n

Cars

T
ra

n
sf

er

R
ec

ei
v

e

Receive

dεN

Process: increment

Transfer

Transfer

Receive

Transfer

Release

Transfer

Receive

Transfer

Release

Receive

Transfer

OK signal

n≤d

Transfer Release

Transfer

Process: decrement

Release

Transfer

Receive

Create: n

Release
Receive

Transfer

Island and bridge M
a
in

la
n

d

T
ra

n
sf

er

T
ra

n
sf

er

R
e
le

a
se

T
ra

n
sf

er

Transfer

1

2 5

6

3 4

7
8

10

9

Process Create

Process

Transfer

Receive

Release

Transfer

Release

Transfer

Transfer

Receive

Process Create

Transfer

Receive
Release

Transfer

Transfer

Receive
Release

Transfer

Process

11

12

13

14 15

16

17

18 19

Transfer

…

20

22

23

Fig. 8. The TM static model of the first version of the mainland and island–bridge example.

21

24

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 213

An event in Event-B can be abstracted to a simple binary

relation built on the state set. This relation represents the

connection between two successive states, considered just

before and just after the event’s “execution”. An event can

be split into two parts: the guards and the actions. An action

is an assignment to a state variable.
A guard is a predicate, and all the guards conjoined together

in an event form the domain of the corresponding relation.

The actions of an event are supposed to

be ’executed‘ simultaneously on different variables.

Variables that are not assigned are unchanged. [3]

As we can see, the Event-B model has completely different

conceptualizations of events, state, dynamism, behavior,

etc., than TM does. Accordingly, we re-model the same

system (the Event-B model in [3]) to contrast the two

methodologies side-by-side.

In the TM static model of Fig. 8, the flow of cars between

the mainland and the island–bridge (circles 1 and 2) causes
(triggers) the updating of n (6). (Here, we mix the physical

and the digital systems.) For example, the flow of a car to

the island–bridge (11) triggers (12) the “pulling” of n (13)

to be incremented by 1 (14). The new value of n (15) flows

(16) to its thimac, where, upon arrival (17) and prior to

storing it, it is sent to dεN (18) and n ≤ d (19) to check its

new value. Note that, to simplify the diagram, we did not

completely draw the flow from 18 since it is similar to the

neighboring flow of d in dεN. The flow of n to n ≤ d is

received and processed (20; that it satisfies the axiom n ≤ d)

to send a signal (21) that the new value of n is acceptable
(22); hence, this value is stored (23).

A similar explanation can be written when a car leaves the

island–bridge (2) and n is updated by decrementing it (24).

5. First Refinement: One-Way Bridge

In Abrial’s [3] first refinement of the initial model, the

bridge is a one-way bridge and the constant d remains, but

the variable n is now replaced by three variables: a, b, and
c. Variable a denotes the number of cars on the bridge and

going to the island, variable b denotes the number of cars

on the island, and variable c denotes the number of cars on

the bridge and going to the mainland, as illustrated in Fig.

9. The mathematical model continues to include the axioms:

a + b + c = d

a = 0 or c = 0

To save space and as we are going to present a fully detailed

model of the system in the next section, we only show a

partial view of the TM representation. Fig. 10 shows this
TM static representation of this first refinement model. Note

that due to space considerations, the diagram still does not

separate the physical and digital thimacs.

There are three main physical thimacs: the mainland, bridge,

and island. The bridge has two thimacs: one is the (physical)

cars moving from the mainland to the island, and the other

is the cars moving in the opposite direction.

 Assume that the bridge is initially open for cars

coming from the mainland. A car moves from the
mainland to the bridge (1), which triggers (2)

retrieval of the (information system) value a and it

being incremented (3). The new value is processed

(4).

- If a + b + c = d (5), then the state (of the bridge) is

full (6), and a close signal is sent to the gate
(transfer) from the mainland (transfer; 7). For

simplicity, this close signal is represented by a

triggering. We assume the value of a is initialized

to zero at the start of the system.

- If a + b + c < d (8; else, in the diagram), then the

new value is stored.

 A car moves from the bridge to the island (9). This

triggers (10) retrieving of the (information system)

value of a, decrementing it (11), and

Fig. 9. Variables in the first version of the mainland and the island–bridge

(Adapted from [3]).

Island

and

bridge

Mainland
a

b

c

Fig. 10. Partial view of the TM static model of the first
version of the mainland and island–bridge example.

T
ra

n
sf

er

R
ec

ei
v

e

Process:

decreme

nt

Releas

e

a

Create

Bridge

M
a
in

la
n

d

Car

s

2

7

9

11

12

 State

Create

Not full

Process

Full

R
el

ea
se

C
re

at
e

P
ro

ce
ss

:

in
cr

em
en

t

Else

If a + b + c =

d

Releas

e
Transf

er

3

5

6

4

17

8

10

13

1

Isla
n

d

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 214

 - Storing the new value (12) in a.

 - Triggering of the gate’s state (transfer) from the

mainland to “not full” (13), which will open it if it

was closed (14).

 Similar descriptions can be given for a car moving
from the island to the bridge and for a car moving

from the bridge to the mainland.

 Note that all of the thimacs in the initial model that

check for values, nεN, are preserved in the first

revision model, but for simplicity, they are not

shown in Fig. 10.

6. Second Refinement: One-Way Bridge

In this last refinement, the sensors are introduced, which

detect the physical presence of cars entering or leaving the

bridge. These sensors are situated on each side of the road

and at both extremities of the bridge. Additionally, traffic

lights are installed at both ends of the bridge. Fig. 11 shows

the static TM model of this refinement.

6.1 Bridge Traffic: From the Mainland/To the Island

Traffic from the mainland: A car enters the bridge (2). This

triggers the sensor (3), which in turn triggers (4) to update a

(5). The sensor also turns the traffic light to red, to prevent

the entry of any additional cars while the current car is being

processed. Note that the box labeled a is a module in the
information system that maintains and stores the latest value

of a. This involves retrieving (releasing from storage) a (6)

and incrementing it (7). The resulting value is examined (8),

and accordingly,

- If a (new value) + b + c = d, then a is stored, the

bridge is full (cannot accept more cars; 9), and the

traffic light is turned to red (10).

- Otherwise, the new value of a is stored (11), and

the light is turned green to permit a new car to enter

the bridge from the mainland.

Traffic out to the island: A car leaves the bridge (12),

which triggers the sensor (13) to trigger a to be retrieved (14)
and decremented (15). Additionally,

- A is stored (16).

- The state of the bridge is now “not full” (17); hence,

the light is turned green (1).

6.2 Island Traffic: From Bridge/To Bridge

Traffic in from the bridge: On the island side, assuming

the light (18) is on, a car enters the island from the bridge

(19) to trigger the sensor (20), which triggers the retrieval of

b (21). As explained before, the sensor also turns the light

red. The value b is incremented (22) to be processed (23) as

follows:

- If a + b + c = d, then b is stored, the island is full,

(24) and the light is turned red (25). Note that if the

light is already red, then the color is not changed.

- Else (27), the new value of b is stored (28), and the

light is turned on (29 and 18).

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 215

Fig. 11. The TM static model of the first version of the mainland and island–bridge example.

 Island

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er

R
e
le

a
se

T
ra

n
sf

e
r

Process:

decrement Release
R

ec
ei

v
e

R
ec

ei
v

e

a

Create

Process:

decrement

b

Create Release

T
ra

n
sf

er

R
el

ea
se

T
ra

n
sf

er

Bridge M
a
in

la
n

d

 State Create

Not full

Process

Full

R
el

ea
se

C
re

at
e

P
ro

ce
ss

:
in

cr
em

en
t

Else

 State

Create

Not full

Full

If a + b + c = n

Process

If a + b + c = n

Else

 Release

c

Create

Release Transfer

Process

R
el

ea
se

P
ro

ce
ss

:
In

c
re

m
e
n

t

Else

If a + b + c = n

 State Create

Full

Not

full

Process: Decrement

R
el

ea
se

T
ra

n
sf

er

C
re

at
e

P
ro

ce
ss

:
In

cr
em

en
t

C
re

at
e

 Sensor 1
 Traffic light 1

Create

Create

Green Red

Traffic light 3

Create

Green
Red

 Sensor 3

Create

T
ra

n
sf

er

Sensor 2 Create

 Sensor 4 Create

Sensor 5

Create

1

6

3 4

2

5

7

5
8

9

10

11

12
13

14 15 16

17

Sensor 6

Create

 Traffic light 2

Create

Green
Red

18

19

20

21

22

23

3

24

3

25

3

26

3

30

3

31

73

32

73

33 34 35

27
28

29

45

37

38

39

40
41

42

43

43

46

36

47

48

49

50
51

52 53

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 216

Traffic to the bridge: If a car leaves the island (assuming

the light on the bridge side is green, as will be explained

when describing the bridge traffic from the island to the

mainland), then releasing the car (30) will trigger the sensor

(31), which triggers the retrieval of b (32) and decremented

(33). The new value is stored (34), and the light is turned on
(35) to indicate that a space is available in the island.

6.3 Bridge Traffic: From Island/To Mainland

Traffic out to the bridge: Assuming that the traffic light on

the bridge facing the island is green (36), a car enters the

bridge (37) to trigger the sensor (38), which in turn turns the

light red (39). Additionally, the sensor triggers the retrieval

of c (49), which is processed (41) to be examined (42) as

follows.

- If a + b + c = d, then c is stored, the bridge is full

(43), and the light is turned red (45).

- Else (46), the bridge is full (47), and the light is

turned red (36).

Traffic to the mainland: To simplify the figure, we ignore

the traffic light on the mainland facing the bridge because

this requires the mainland box to be expanded to the right of

Fig. 11. Accordingly, we start with a car leaving the bridge

to the mainland (48). This triggers the sensor (49), which

triggers the retrieval of c (50). The value of c is decremented

(51) and stored (52), and the light is turned to green (53).

7. Second Refinement: Dynamic Model

Fig. 12 shows the dynamic model that corresponds to the

static representation in Fig. 11. Twenty-nine events are

identified as follows.

Events in the bridge (traffic from the mainland to the

island)

Event 1 (E1): The traffic light is green.

Event 2 (E2): A car enters the bridge.

Event 3 (E3): The sensor is triggered.

Event 4 (E4): The light is turned red.
Event 5 (E5): a is retrieved, incremented, and processed.

Event 6 (E6): a + b + c is equal d.

Event 7 (E7): a is stored

Event 8 (E8): (Else: a + b + c < d)

Event 9 (E9): A car leaves toward the island.

Event 9 (E10): The sensor is triggered.

Event 10 (E11): a is decremented, and a new a is created.

Events in the island (traffic from the bridge and to the

bridge)
Event 12 (E12): The traffic light facing the bridge is green.

Event 13 (E13): A car enters the island.

Event 14 (E14): The sensor is triggered.

Event 15 (E15): The light is turned red.

Event 16 (E16): b is retrieved, incremented, and processed.

Event 17 (E17): a + b + c = d.

Event 18 (E18): (Else: a + b + c < d).

Event 19 (E19): b is stored
Event 20 (E20): A car enters the bridge.

Event 21 (E21): The sensor is triggered.

Event 22 (E22): b is decremented, and a new b is created.

Events in the bridge (traffic from the island and to the

mainland)

Event 23 (E23): The traffic light facing the island is green.

Event 24 (E24): A car enters the bridge.

Event 25 (E25): The sensor is triggered.

Event 26 (E26): The light is turned red.

Event 27 (E27): c is retrieved, incremented, and processed.

Event 28 (E28): a + b + c = d.
Event 29 (E29): (Else) a + b + c < d, then c is stored.

Event 30 (E30): c is stored

Event 31 (E31): A car leaves toward the mainland.

Event 32 (E32): The sensor is triggered.

Event 33 (E32): c is decremented, and a new c is created.

These events provide us with a tool to construct different

chronologies of events. We will specify each behavior

according to the three areas: the bridge to the island, the

island, and the bridge from the island.

8. Second Refinement: Behavioral Model

Fig. 13 shows the behavior of the bridge system that

receives cars from the mainland and sends them to the

island. It includes two streams of events: one starts when a

car enters (events 1 and 2), and the other starts when a car

leaves (event 9). As mentioned previously, this system

involves the physical cars, traffic lights, and sensors in

addition to the information system.
Similarly, Figs. 14 and 15 show the behavior of the system

in the island and in the bridge leading to the mainland. Note

the similarity of the three subsystems’ behaviors. Fig. 16

shows the general behavior when all types of behaviors are

connected together in terms of the chronology of events.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 217

E1

Fig. 12. The dynamic model of the bridge–island system.

T
ra

n
sf

er

M
a
in

la
n

d

T
ra

n
sf

er
 E2

 Island

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er

R
el

ea
se

Process:

decrement Release

R
ec

ei
v

e

R
ec

ei
v

e

a

Create

Process:

decrement Create Release

T
ra

n
sf

er

R
el

ea
se

T
ra

n
sf

er

Bridge

 State Create

Not full

Process

Full

R
el

ea
se

C
re

at
e

P
ro

ce
ss

:
in

cr
em

en
t

Else

If a + b + c = n

Process

Else

 Release

c

Create

Release

Transfer

Process

R
el

ea
se

P
ro

ce
ss

:
In

cr
em

en
t

Else

If a + b + c = n

 State

Create

Full

Not

Full

Process: decrement

R
el

ea
se

T
ra

n
sf

er

C
re

at
e

P
ro

ce
ss

:
in

cr
em

en
t

C
re

at
e

 Sensor 1
 Traffic light 1

Create

Create

Green Red

Traffic

light 3

Create

Red

Green

Sensor 3

Create

Sensor 2

Create

 Sensor 4 Create

Sensor 5

Create

E3

E4

E5

E6

E7

E9 E10

E11

0

E15

E13

E16

E19

E18

E21

 Sensor 6

Create

E32

E29

E28 E27

E24

E20

E23

E30
b

State

Create

Not full

Full

If a + b + c=n

E17

E14
 Traffic light 2

Create

Green Red

E12

E25

E26

E8

E22 E31

E33

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 218

9. Digital System

Note that the chronology of events in the behavioral model

is mandated by flows among the generic operations (e.g., a

variable is released from storage and processed), which

generates a release event that precedes a process event.

However, if there is no flow (e.g., receiving a new car cannot

generate flow in the sensor), then triggering is used to “force”

a sequence

among different streams of (disconnected) flows (e.g.,
receiving a car triggers a signal being created in the sensor).

Thus, triggering is a mechanism in the static model for early

enforcement of a certain chronology of events in the

behavior model when there is no flow. The triggering can be

implemented as a communication signal in further

refinements of the behavior model to develop the control

through an information system.

Fig. 17 is an example of such a development, in which the

information is separated from the physical system. In

addition, triggering in the static model (e.g., the sensor
triggers updating a) is implemented as a communications

signal (dotted boxes). The same information system can be

used to control all three regions of the system, as shown in

Fig. 18. Depending on which sensor is sending a signal, a, b,

or c is used, assuming that d is a global variable.

Fig. 13. Two behaviors in the bridge where cars are coming from the
mainland (upper) and/or leaving toward the island (lower).

E1 E2 E3 E4

E6

E5

E7

E4
Green

light

a +b + c <d

a + b + c =

d

E8

Red light

(full system)

Store

new a

E8

Car

enters Sensor

Red light (no

additional car

while processing)

Car
leaves

New a

Green

light

Store new a

E9 E10 E11

1

E8

E1

Fig. 14. Two behaviors in the island where cars are coming from the bridge
(upper) and/or leaving toward the bridge (lower).

E12 E13 E14 E15

E17

E16

E18

E14

E19

E19

E20 E21 E22

1

E19

E12

Fig. 15. Two behaviors in the bridge where cars are coming from the island
(upper) and/or leaving toward the mainland (lower).

E23 E24 E25 E26

E28

E27

E29

E26

E30

E30

E31 E32 E33

1

E30

E23

E1 E2 E3 E4

E6

E5

E7

E4

Green
light

E8

E8

E9 E10 E11

1

E8

Fig. 16. The general behavior of the bridge–island system.

E1

2

E13 E14 E15

E17

E16

E18

E14

E19

E19

 E21 E22

1

E19

E2

3

E24 E25 E26

E28

E27

E29

E26

E30

E30

E3

1

E32 E33

1

E30

Green

light

Green

light

Mainland

Bridge

Island

Mainland

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 219

E2

E3
E6

E5

E7

a + b + c <

n

a + b + c =

n

E8

Store
new a

E8

Car

enters

Sensor

Car

leaves

Fig. 17. Physical and information domains in the bridge.

Information system
E9

E10

E11

1

E8

Receiving a

signal from the

sensor that a car

has entered the

bridge.

Generating and

sending a signal

to the light to
turn red.

Generating and

sending a signal

to the light to
turn red.

Generating and

sending a signal

to the light to

turn green.

Incrementing a

and comparing a

+ b + c with n

Sensor

Receiving a

signal from the

sensor that a car

has left the
bridge.

Decrementing a

Store

new a

E4

Light

E1

Mainland

Bridge

Island

E2

E3
E6

E5

E7

a + b + c < n

a + b + c =

n

E8

Store

new x

E8

Car

enters

Sensor

Car
leaves

Fig. 18. The information system is activated according to the sensors.

Information system
E9

E10

E11

1

E8

Receiving a

signal from the

sensor that a car

has entered the
bridge.

Generating and

sending a signal

to the light to

turn red.

Generating and

sending a signal

to the light to

turn red.

Generating and

sending a signal

to the light to
turn green.

Incrementing x

and comparing a

+ b + c with n

Sensor

Receiving a

signal from the

sensor that a car

has left the

bridge.

Decrementing x

Store

new x

E4

Light

E1

Bridge/Island/Mainland

Mainland

Bridge

Bridge

Island

Island

Bridge

If sensor 2, use a

If sensor 4, use b

If sensor 6, use c

If sensor 1, use a

If sensor 3, use b

If sensor 5, use c

Traffic light 1, 2,

or 3 depending on

a, b, or c.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 220

10. Conclusion

In this paper, we examined two modeling methodologies—

the formal Event-B and the diagrammatic TM—through a

single case study of a bridge–island system. Contrasting the

two diverse models for the same large problem is an

inspiring venture. It has enhanced the advantages and

limitations of the modeling experience. On one hand,

Event-B is an attractively molded formalism of

mathematically scattered notations with no focusing center
that ties together the whole in a main structure. TM seems

to be a holistic assembly with a recognizable center, but it

has a voluminous form that needs much fastening elements

(e.g., triggering). Event-B facilitates proving but seems

impractical, at least for large systems. TM is easy to apply

but seems difficult to maintain, at least for large systems.

This contrasting process may be extended to many aspects

in the two models. It seems that mixing formal and

diagrammatic styles is a promising approach. This approach

has already been adopted in Event-B through developing

UML-B [7].

References
[1] R. Frigg, and S. Hartmann, "Models in Science", The

Stanford Encyclopedia of Philosophy (Spring 2020 Edition),
Edward N. Zalta (ed.),
https://plato.stanford.edu/archives/spr2020/entries/models-
science/.

[2] R. Frigg, and J. Nguyen, "Scientific Representation", The
Stanford Encyclopedia of Philosophy (Spring 2020 Edition),
Edward N. Zalta (ed.), URL =
https://plato.stanford.edu/archives/spr2020/entries/scientific-
representation/.

[3] J.-R. Abrial, Modeling in Event-B System and Software
Engineering, Cambridge University Press, Cambridge, UK,
2010.

[4] T. S. Hoang, “An introduction to the event-B modeling

method,” in Industrial Deployment of System Engineering
Methods, eds. A. Romanovsky and M. Thomas, pp. 211-259,
Springer-Verlag, Springer, 2013.

[5] D. Cansell and D. Méry, “Tutorial on the event-based B
method: Concepts and case studies,” 26th IFIP WG 6.1
International Conference on Formal Methods for Networked
and Distributed Systems, Paris, France, Sept. 2006.

[6] A. Serebrenik and U. Tikhonova, Formal Specification in

Event-B, Technische Universiteit Eindhoven, n.d.,
https://www.win.tue.nl/~aserebre/2IW80/2013-
2014/07%20-%202IW80%20-%20Event-B.pdf

[7] M. Y. Said, M. Butler, and C. Snook, “Language and tool
support for class and state machine refinement in UML-B,”
in FM 2009: Formal Methods. Lecture Notes in Computer
Science, eds. A. Cavalcanti and D. R. Dams, pp.579-595,
vol.5850, Springer, Berlin, 2009.

[8] R. Abrial and S. Hallerstede, “Refinement, decomposition
and instantiation of discrete models: Application to event-B,”
Journal Fundamentae Informatica. vol. 77, pp.1-28., 2007.

[9] S. Al-Fedaghi, “Computer science approach to philosophy:
Schematizing Whitehead’s processes,” Int. J. Adv. Comput.
Sci. Appl., vol.7, no.11, 2016.

[10] S. Al-Fedaghi, “Thing/machines (thimacs) applied to
structural description in software engineering,” Int. J.
Comput. Sci. Inf. Sec., vol.17, no.8, Aug. 2019.

[11] S. Al-Fedaghi, “Five generic processes for behaviour
description in software engineering,” Int. J. Comput. Sci. and

Inf. Sec., vol.17, no.7, pp. 120-131, July 2019.
[12] S. Al-Fedaghi and D. Al-Qemlas, Modeling Network

Architecture: A Cloud Case Study, IJCSNS International
Journal of Computer Science and Network Security, VOL.20
No.3, March 2020.

[13] S. Al-Fedaghi, “Thinging as a way of modeling in poiesis:
Applications in software engineering,” Int. J. Comput. Sci.
Inf. Sec., vol.17, no.11, Nov. 2019.

[14] S. Al-Fedaghi, “Thinging vs. objectfying in software
engineering,” Int. J. Comput. Sci. Inf. Sec., vol.16, no.10,
July 2018.

[15] S. Al-Fedaghi, “Thinging for software engineers,” Int. J.
Comput. Sci. and Inf. Sec., vol.16, no.7, pp.21-29, July 2018.

[16] S. Al-Fedaghi and M. Al-Saraf, “Thinging the robotic
architectural structure,” 2020 3rd International Conference
on Mechatronics, Control and Robotics, Tokyo, Japan, Feb.

22-24, 2020.
[17] S. Al-Fedaghi, “Modeling events and events of events in

software engineering,” Int. J. Comput. Sci. Inf. Sec., vol.18,
no.1, Aug. 2020.

[18] A. Kumar and B. Smith, “The ontology of processes and
functions: A study of the international classification of
functioning, disability and health,” Sharing Knowledge
Through the ICF: 13th Annual North American WHO

Collaborating Center Conference on the ICF, Niagara Falls,
June 2007.

[19] H. G. Steiner, “Theory of mathematics education: An
introduction,” For the Learning of Math., vol.5, no.2, pp.11-
17, 1985.

[20] A. Sfard, “On the dual nature of mathematical conceptions:
Reflections on processes and objects as different sides of the
same coin,” Educ. Studies in Math., vol.22, no.1, pp.1-36,
1991.

[21] J. Mason and A. Waywood, “The role of theory in
mathematics: Education and research,” in International
Handbook of Mathematics Education, eds. A. Bishop, M. A.
Clements, C. Keitel-Kreidt, J. Kilpatrick, and C. Laborde,
Springer Science and Business Media, 2012.

[22] M. Heidegger, “The thing,” in Poetry, Language, Thought,
trans. A. Hofstadter, pp.161-184, Harper and Row, New York.

[23] E. Johnson, Nuces Philosophicae; Or, the Philosophy of

Things as Developed from the Study of the Philosophy of
Words, Wentworth Press, Aug. 2016.

