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Summary 
Models are centrally important in many scientific fields. A model 
is a representation of a selected part of the world, which is the 
model’s target system. Here, a system consists of a software 
portion as a component among many others. Event-B is a 

modeling method for formalizing and developing systems whose 
components can be modeled based on set theory and first-order 
logic. The thinging machine (TM) is a diagram-based model 
establishes three levels of representation: (1) a static structural 
description, which is constructed upon the flow of things in five 
generic operations (activities; i.e., create, process, release, transfer, 
and receive); (2) a dynamic representation, which identifies 
hierarchies of events based on five generic events; and (3) a 

behavioral representation according to the chronology of events. 
This paper is an exercise in contrasting the formal Event-B to the 
diagrammatic TM. The purpose is to further understand modeling 
in computer science. This is motivated by the claim that computer 
scientists should not invent specific languages to do the modeling. 
Important notions such as events and behavior are contrasted, and 
a case study system of traffic on a bridge is modeled in Event-B 
and TM. The results seem to indicate the need for both modeling 

approaches. 

Key words:  
Event-B; conceptual model; thinging machine; event; 
diagrammatic representation 

1. Introduction 

Models are centrally important to many scientific fields, 

including models that represent a selected part of the world, 

which is the model’s target system [1]. Such 

representational models seem to comprise different styles 

(e.g., mathematical models and data models). They can be 

considered as structures with mappings between the model 

and the target system [2]. Usually, a model has its own 

language, which contains symbols that are interpreted as 

referring to a structure’s objects, relations, or functions [1]. 

According to Abrial [3], physicists who construct models 
use classical set-theoretic notations and never invent 

specific languages to model their systems. Abrial [3] 

continues by claiming that computer scientists believe it is 

necessary to invent specific languages to do the modeling 

and this, according to Abrial [3], “is an error” because set  

theoretic notations are well suited to perform system 

modeling in computer science. Abrial’s [3] intention is to 

build a general system within which is a certain piece of 

software, which is a component among many others. The 

aim is to construct a complete model of the target system, 

including the software and its physical environment. Abrial 

[3] affirms, “We propose to do it by constructing 

mathematical models which will be analyzed by doing 

proofs.” The result of this methodology is Event-B. 

This paper is an exercise of contrasting this formal Event-B 

with a non-formal model called the thinging machine (TM), 
which is based on diagrams, to discover what has motivated 

computer scientists to adopt a non-formal approaches to 

modeling. 

1.1 Event-B 

Event-B [2] is a modeling methodology for formalizing and 

developing general systems (including software) whose 

components can be modeled based on set theory and first-

order logic. Event-B is currently centered on the general 

notion of events [4]. This event-based scheme is useful in 

requirements analysis, modeling of distributed systems, and 

in the discovery/design of distributed and sequential 

programming algorithms [5]. 

Event-B is described as formalism that is “relatively simple, 
but not very expressive… [in] real-life systems: [this 

requires] a lot of details [and] huge formal specifications, 

which are hard to maintain” [6]. The diagrammatic 

language UML-B (based on UML) has been proposed to 

complement modeling in Event-B. It combines state 

machine refinement with class refinement techniques [7]. 

Four kind of diagrams are provided: package, context, class, 

and state diagrams. A package diagram is a top-level 

diagram that shows the structure and relationships between 

components in a project [7]. UML state diagrams can be 

used to generate an Event-B specification [6]. 
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Example: Consider the state diagram shown in Fig. 1 [6]. 

The Event-B specification includes the axioms 

 

  
typeof_On:      ON ε trafficlight_states 

typeof_Off:     Off ε trafficlight_states 

distinct_states_in_trafficlight_STATES:             

               partition (trafficlight_STATES, {On}, 

{off}) 

 

The specification of Event-B events for the state diagram 

includes the following: 

 
EVENTS 

INITIALIZATION 

       STATUS 

 ordinary 

BEGIN 

    Init_trafficlight :  trafficlight On 

END 

TurnOn 

    STATUS 

ordinary 

WHEN 

     Isin_Off: trafficlight = Off 

1.2 Thinging Machine 

The TM model is a diagram-based conceptual modeling 

tool that establishes three levels of representation: (1) a 
static structural description, which is constructed upon the 

flow of things in five generic operations (activities; i.e., 

create, process, release, transfer, and receive); (2) a 

dynamic representation, which identifies hierarchies of 

events based on the five generic events; and (3) a 

chronology of events. To achieve a self-contained paper and 

because TM is a new model that is not widely known, we 

will review the basic concepts of TM in section 2. 

1.3 About this Paper 

Our aim is to further the understanding of modeling in 

computer science. Important notions such as events and 

behavior are contrasted in terms of how each model 

conceives of these notions, that is Event-B and TM. The 
results seem to indicate the need for both approaches to 

modeling. 

The next section reviews the basic philosophy of TM. The 

example in that section is a new contribution. Section 2 

discusses the Event-B development approach (e.g., its 

refinement and proof). This aspect is important because we 

aim to develop a TM version of an Event-B model. The 

remaining sections of the paper involve modeling a system 

of traffic on a bridge, which is specified in Event-B in detail 

(74 pages) [3]. The system is remodeled in TM.  

2. Modeling Development 

In Event-B, a model is developed through refinement, 

which is used to relate the abstract model of a system to 

another, more concrete model while maintaining the same 

properties of the abstract model [8]. A refinement technique 

allows the modeler to focus on different aspects of the 

system at different abstraction levels [7]. According to 

Abrial [3], a large system has to be modeled in successive 

steps. Each of these steps makes the model richer by 

creating and then enriching the various components. In 
remodeling the bridge example, we will follow this 

refinement process because the Event-B model of the bridge 

is developed according to this process. 

In Event-B, modeling also consists of proving that the 

representation fulfills certain desired properties. Proof-

based development methods integrate formal proof 

techniques into system development. Starting with an 

abstract model, details are added by building a sequence of 

more concrete ones [5]. This proof-based development is 

one of the strong aspects of Event-B. In our development of 

the TM version of the bridge model, we will ignore this 
feature to limit the focus when contrasting the two models 

because TM is underdeveloped in this area. 

3. Thinging Model Theory 

This section will briefly review TM modeling to provide a 

base for this paper’s aim of applying TM to the Event-B 

bridge system. A more elaborate discussion of TM’s 

philosophical foundations can be found in [9-17]. 

3.1 Basics of the Thinging Machine 

Typically, ontology requires classifications such as a 

functional classification of human bodily functions: mental, 

sensory, speech, respiratory, digestive, and so on [18]. Yet, 

even with the impressive progress in developing ontologies 

of things (i.e., entities, objects), the ontology of processes 

(TM machines) is still a problem [18]. In TM, ontology is 

based on a single category of entities called thimacs 

(things/machines). The thimac is simultaneously an “object” 

(called a thing) and a “process” (called a machine)—thus, 

the name thimac. The thimac notion is not new. In physics, 

subatomic entities must be regarded as both particles and 

waves to fully describe and explain observed phenomena 
[19]. According to Sfard [20], abstract notions can be 

conceived of in two fundamentally different ways: 

structurally, as objects/things (static constructs), and 

operationally, as processes. Thus, distinguishing between 

On Off 

Turn_ON 

Turn_Off 

Fig. 1  Sample state diagram 
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form and content and between process and object is popular, 

but, “like waves and particles, they have to be united in order 

to appreciate light” [21]. TM adopts this notion of duality in 

conceptual modeling and generalizes it beyond mathematics.  

The term “thing” relies more on Heidegger’s [22] notion of 

“things” than it does on the classical notion of objects. 
According to Heidegger [22], a thing is self-sustained, self-

supporting, or independent—something that stands on its 

own. More importantly, it is that which can be spoken about, 

“that which can be talked about [or] that which is named” 

[23]. “Talking about” a thing denotes being modeled in 

terms of being created, processed (change), released, 

transferred, and/or received. According to Johnson [23], 

“there is no thing that we cannot speak about.” In 

Heidegger’s [22] words, a thing “things”. That is, it ties 

together its constituents in the same way that a bridge unifies 

environmental aspects (e.g., a stream, its banks, and the 

surrounding landscape). In our TM ontology of dual being, 
the thing’s machine (the machine side of the thing) 

“machines”; that is, it operates on (other) things by creating, 

processing, releasing, transferring, and/or receiving them. 

The term “machine” refers to a special abstract machine 

called a TM (see Fig. 2). The TM is built under the 

postulation that it only performs five generic operations: 

creating, processing (changing), releasing, transferring, and 

receiving.  

A thimac has dual being as a thing and as a machine. A thing 

is created, processed, released, transferred, and/or received. 

A machine creates, processes, releases, transfers, and/or 
receives things. We will alternate among the terms “thimac”, 

“thing”, and “machine” according to the context. 

The five TM operations (also called stages) form the 

foundation for thimacs. Among the five stages, flow (a solid 

arrow in Fig. 2) signifies conceptual movement from one 

machine to another or among a machine’s stages. The TM’s 

stages can be described as follows. 

 

 

 

 

 
 

 

 

 

 Arrival: A thing reaches a new machine.  

 Acceptance: A thing is permitted to enter the 

machine. If arriving things are always accepted, 

then arrival and acceptance can be combined into 

the “receive” stage. For simplicity, this paper’s 

examples assume a receive stage exists. 

 Processing (change): A thing undergoes a 
transformation that changes it without creating a 

new thing.  

 Release: A thing is marked as ready to be 

transferred outside of the machine. 

 Transference: A thing is transported somewhere 

outside of the machine. 

 Creation: A new thing is born (created) within a 

machine. A machine creates in the sense that it 

finds or originates a thing; it brings a thing into the 
system and then becomes aware of it. Creation can 

designate “bringing into existence” in the system 

because what exists is what is found. Additionally, 

creation does not necessarily mean existence in the 

sense of being alive.  

 

Creation in a TM also means appearance in the system. 

Appearance here is not limited to form or solidity but also to 

any sense of the system’s awareness of the new thing. Even 

nominals (which have no existence except in names) may be 

things that appear in the system model. 
In addition, the TM model includes memory and triggering 

(represented as dashed arrows), or relations among the 

processes’ stages (machines), for example the process in Fig. 

2 triggers the creation of a new thing. 

The TM in Fig. 2 can be specified in a texual language 

(which we call TM language), wherein the arrows are 

represented by dots. For example, the following shows the 

different flows in Fig. 2 in this TM language: 
Flow.Create.release.transfer.output 
Flow.Create.process.release.transfer.output 
Flow.Transfer.input.receive.arrive.release.transfer.output 
Flow.Transfer.input.receive.arrive.accept.release.transfer.

output 
Flow.Transfer.input.receive.arrive.accept.process.release.

transfer.output 
The period is used to denote flow or containment. We use 
“-->” to indicate triggering. 

3.2 Example 

Fig. 3 shows the TM model of y = 10/x, x ≠ 0. The whole 

diagram is a thimac. The constraint x ≠ 0 is integrated into 

the model as a subthimac (the dark box). In Fig. 3, the value 

of x (as an independent variable) flows (circle 1) to  

 

 
 

Fig. 3. The TM static model  of y = 10/x, x ≠ 0. 
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the calculating subthimac, where it is received (2) and sent 

to the constraint subthimac (3). There, it is processed, and if 

it is not zero, (4) it flows back (5) to the calculating thimac 

that retrieves the constant 10 (6). Both values are processed 

(division; 7) to trigger (dashed arrow) creation of the value 

of y (8).  
To construct the dynamic model, we need to introduce the 

concept of an event. Consider the event The value of x is 

inputted into the system. Fig. 4 shows its representation in 

TM. It is simply a thimac that involves a time subthimac (the 

flow at the top). The region in the figure (dark box) is a 

subdiagram of the static model (Fig. 3). In general, an event 

may include other subthimacs (e.g., intensity or importance). 

For simplicity sake, we will represent each event by its 

region. 

Thus, the dynamic model can now be represented in five 

events, as shown in Fig. 5. 

Event A: The value of x is inputted. 
Event B: The constant 10 is brought from its storage. 

Event C: y is calculated. 

Event D: The value of x is not zero. 

Event E: The value of x is zero.  

Fig. 6 shows the behavioral model of y = 10/x, x ≠ 0 in term 

of the event chronology. It embeds two types of behavior: 

A→D→B→C and A→E, where → indicates a sequence of 

events. 

 

 
 

 
 
 

 

 

 

4. Case Study: Bridge–Island System 

Abrial [3] modeled a physical/digital system that involves 

controlling cars on a narrow bridge that links the mainland 

to a small island. The system is equipped with two traffic 

lights (green and red) that control the entrance to the bridge 

at both ends. The system is equipped with sensors with two 

states—on or off—which are used to detect the presence of 

a car entering or leaving. The number of cars on the bridge 

and island is limited. The bridge is one-way or the other, not 

both at the same time. 

Abrial [3] starts the model by developing a simple first 

version in which the various pieces of the traffic lights and 

sensors are introduced in subsequent refinements. The initial 
version includes a compound made of the bridge and the 

island together (see Fig. 7). 

 

 
 

According to Abrial [3], “The idea is to take account initially 
of only a very few constraints. This is because we want to be 

able to reason about this system in a simple way, considering 

in turn each requirement.” Abrial’s [3] first task is to 

formalize the state of this simple version of the system and 

then formalize the two events of movement of cars between 

the mainland and the island–bridge. 

In Event-B, the model’s state is made up of two parts:  

 The static part contains the definition and axioms 

associated with some constants. It contains a single 

constant d, which is a natural number denoting the 

maximum number of cars allowed on the island– 
bridge compound at the same time. 

 The dynamic part contains the variables that are 

modified as the system evolves. It is made up of a 

single variable n, which denotes the actual number 

of cars in the island–bridge compound at a given 

moment. 

 

The Event-B understanding of static is different from the 

TM use of this term. In TM, the number d is a thimac, while 

its value is subthimac in addition to its other subthimacs (e.g., 

its type).  
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Fig. 4. Model of the event x is inputted into the system. 
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Fig. 7. Initial model of the mainland and the island/bridge 
(Adapted from [3]). 
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Fig. 5. The dynamic model of y = 10/x. 
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The thimac d can be processed, released, transferred, and/or 
received. As shown in the example in the previous section, 

in TM, d is in the static model, which means that its 

operations may be specified but not as events in time. This 

is similar to the constant 10 in the example, which is a single 

value but is nevertheless released from its storage and 

transferred and then participates in calculating y. These are 

operations, not events, because they do not involve time. 

In TM, describing d as a single-value thimac means that the 

value (and its type) is created (or initialized) once in the 

system. That is, no creation or transfer.receive occurs beside 

the original ones. The model in this case is static. 
 Fig. 8 shows the TM static model of this initial version of 

the example. It is important to emphasize the difference 

between the notions of an event in TM versus Event-B. To 

avoid redundancy, TM events of the bridge–island system 

are developed in the last refinement (sections 6-8). The 

flows between the mainland and the island–bridge (circles 

1 and 2 in Fig. 8) are events in Events-B but are not events 

in TM.  

We assume d and n are initialized from outside (circles 3 

and 4, respectively) at the start of the system and stored in 

the system (5 and 6 circles, respectively). The thimac dεN 

(7; we use dεN as a name) is responsible for the basic 
requirement of the axiom “d ε N”: that d is a natural number. 

The thimac n≤d (8; we use n≤d as a name) is responsible for 

“n ≤ d.” Because we assume d—the maximum number of 

cars on the island–bridge—is inputted (3) at the start of the 

system, then when this value is received (9), it is sent to dεN 

before it is accepted as a valid value and stored (5). 

Similarly, when n is inputted (4) and received, n is sent to 

dεN and n ≤ d before it is accepted as a valid value and 

stored (6). In TM, the thimacs dεN and n ≤ d are realizations 

of mathematical axioms. Any constraints on the system are 

treated as thimacs. 
In the Event-B model, the static, dynamic, and behavioral 

models (in the TM sense) are mixed into a single 

mathematical representation. According to Abrial [3], a 

discrete transition component is made of a state and some 

transitions. Roughly, a state is defined by means of a 

number of variables, which might be any integers, pairs, 

sets, relations, functions, etc. In Event-B, the state might 

have any predicate expressed within the notation of first-

order logic and set theory. Thus, “By putting all this 

together, a state can be simply abstracted to a set” [3]. 
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An event in Event-B can be abstracted to a simple binary 

relation built on the state set. This relation represents the 

connection between two successive states, considered just 

before and just after the event’s “execution”. An event can 

be split into two parts: the guards and the actions. An action 

is an assignment to a state variable.  
A guard is a predicate, and all the guards conjoined together 

in an event form the domain of the corresponding relation. 

The actions of an event are supposed to 

be ’executed‘ simultaneously on different variables. 

Variables that are not assigned are unchanged. [3] 

As we can see, the Event-B model has completely different 

conceptualizations of events, state, dynamism, behavior, 

etc., than TM does. Accordingly, we re-model the same 

system (the Event-B model in [3]) to contrast the two 

methodologies side-by-side.  

In the TM static model of Fig. 8, the flow of cars between 

the mainland and the island–bridge (circles 1 and 2) causes 
(triggers) the updating of n (6). (Here, we mix the physical 

and the digital systems.) For example, the flow of a car to 

the island–bridge (11) triggers (12) the “pulling” of n (13) 

to be incremented by 1 (14). The new value of n (15) flows 

(16) to its thimac, where, upon arrival (17) and prior to 

storing it, it is sent to dεN (18) and n ≤ d (19) to check its 

new value. Note that, to simplify the diagram, we did not 

completely draw the flow from 18 since it is similar to the 

neighboring flow of d in dεN. The flow of n to n ≤ d is 

received and processed (20; that it satisfies the axiom n ≤ d) 

to send a signal (21) that the new value of n is acceptable 
(22); hence, this value is stored (23). 

A similar explanation can be written when a car leaves the 

island–bridge (2) and n is updated by decrementing it (24).  

5. First Refinement: One-Way Bridge 

In Abrial’s [3] first refinement of the initial model, the 

bridge is a one-way bridge and the constant d remains, but 

the variable n is now replaced by three variables: a, b, and 
c. Variable a denotes the number of cars on the bridge and 

going to the island, variable b denotes the number of cars 

on the island, and variable c denotes the number of cars on 

the bridge and going to the mainland, as illustrated in Fig. 

9. The mathematical model continues to include the axioms: 

a + b + c = d 

a = 0 or c = 0 

 

To save space and as we are going to present a fully detailed 

model of the system in the next section, we only show a 

partial view of the TM representation. Fig. 10 shows this 
TM static representation of this first refinement model. Note 

that due to space considerations, the diagram still does not 

separate the physical and digital thimacs. 

 

There are three main physical thimacs: the mainland, bridge, 

and island. The bridge has two thimacs: one is the (physical) 

cars moving from the mainland to the island, and the other 

is the cars moving in the opposite direction.  

 Assume that the bridge is initially open for cars 

coming from the mainland. A car moves from the 
mainland to the bridge (1), which triggers (2) 

retrieval of the (information system) value a and it 

being incremented (3). The new value is processed 

(4). 

 

 
 

 

 
 

- If a + b + c = d (5), then the state (of the bridge) is 

full (6), and a close signal is sent to the gate 
(transfer) from the mainland (transfer; 7). For 

simplicity, this close signal is represented by a 

triggering. We assume the value of a is initialized 

to zero at the start of the system. 

- If a + b + c < d (8; else, in the diagram), then the 

new value is stored. 

 

 A car moves from the bridge to the island (9). This 

triggers (10) retrieving of the (information system) 

value of a, decrementing it (11), and 

Fig. 9. Variables in the first version of the mainland and the island–bridge 

(Adapted from [3]). 

Island 

and 

bridge 

Mainland 
a 

b 

c 

Fig. 10. Partial view of the TM static model of the first 
version of the mainland and island–bridge example. 

 
 

T
ra

n
sf

er
 

R
ec

ei
v

e 

 

Process: 

decreme

nt 

Releas

e 

a 

Create 

Bridge 

M
a
in

la
n

d
 

Car

s 

2 

7 

9 

11 

12 

 State 

Create 

 
 

Not full 

 

 

Process 

  

 

Full 

R
el

ea
se

 

C
re

at
e
 

P
ro

ce
ss

: 

in
cr

em
en

t 

Else 

If a + b + c = 

d 

Releas

e 
Transf

er 

3 

5 

6 

4 

17 

8 

10 

13 

1 

Isla
n

d
 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 214 

 - Storing the new value (12) in a. 

 - Triggering of the gate’s state (transfer) from the 

mainland to “not full” (13), which will open it if it 

was closed (14). 

  

 Similar descriptions can be given for a car moving 
from the island to the bridge and for a car moving 

from the bridge to the mainland. 

 Note that all of the thimacs in the initial model that 

check for values, nεN, are preserved in the first 

revision model, but for simplicity, they are not 

shown in Fig. 10. 

6. Second Refinement: One-Way Bridge 

In this last refinement, the sensors are introduced, which 

detect the physical presence of cars entering or leaving the 

bridge. These sensors are situated on each side of the road 

and at both extremities of the bridge. Additionally, traffic 

lights are installed at both ends of the bridge. Fig. 11 shows 

the static TM model of this refinement.  

6.1 Bridge Traffic: From the Mainland/To the Island 

Traffic from the mainland: A car enters the bridge (2). This 

triggers the sensor (3), which in turn triggers (4) to update a 

(5). The sensor also turns the traffic light to red, to prevent 

the entry of any additional cars while the current car is being 

processed. Note that the box labeled a is a module in the 
information system that maintains and stores the latest value 

of a. This involves retrieving (releasing from storage) a (6) 

and incrementing it (7). The resulting value is examined (8), 

and accordingly, 

- If a (new value) + b + c = d, then a is stored, the 

bridge is full (cannot accept more cars; 9), and the 

traffic light is turned to red (10). 

- Otherwise, the new value of a is stored (11), and 

the light is turned green to permit a new car to enter 

the bridge from the mainland.  

Traffic out to the island: A car leaves the bridge (12), 

which triggers the sensor (13) to trigger a to be retrieved (14) 
and decremented (15). Additionally, 

- A is stored (16). 

- The state of the bridge is now “not full” (17); hence, 

the light is turned green (1). 

6.2 Island Traffic: From Bridge/To Bridge 

Traffic in from the bridge: On the island side, assuming 

the light (18) is on, a car enters the island from the bridge 

(19) to trigger the sensor (20), which triggers the retrieval of 

b (21). As explained before, the sensor also turns the light 

red. The value b is incremented (22) to be processed (23) as 

follows: 

- If a + b + c = d, then b is stored, the island is full, 

(24) and the light is turned red (25). Note that if the 

light is already red, then the color is not changed.  

- Else (27), the new value of b is stored (28), and the 

light is turned on (29 and 18).  
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Fig. 11. The TM static model of the first version of the mainland and island–bridge example. 

 Island  

 

 

T
ra

n
sf

er
 

R
ec

ei
v

e 

T
ra

n
sf

er
 

R
e
le

a
se

 

T
ra

n
sf

e
r 

 

Process: 

decrement Release 
R

ec
ei

v
e 

R
ec

ei
v

e 

a 

Create 

 

Process: 

decrement 

b 

Create Release 

T
ra

n
sf

er
 

R
el

ea
se

 

T
ra

n
sf

er
 

Bridge M
a
in

la
n

d
 

 State Create 

 
 

Not full 

 

 

Process 
  

 

Full 

R
el

ea
se

 

C
re

at
e
 

P
ro

ce
ss

: 
in

cr
em

en
t 

Else 

 State 

Create 

 
 

Not full 

Full 

If a + b + c = n 

 

 

Process 

  

 

If a + b + c = n 

Else 

 Release 

c 

Create 

Release Transfer 

Process 

  
 

R
el

ea
se

 

P
ro

ce
ss

: 
In

c
re

m
e
n

t 

Else 

If a + b + c = n 

 State Create 

 
 

Full 

Not 

full 

Process: Decrement 

R
el

ea
se

 

T
ra

n
sf

er
 

C
re

at
e
 

P
ro

ce
ss

: 
In

cr
em

en
t 

C
re

at
e
 

 Sensor 1 
 Traffic light 1 

Create 

Create 

Green Red 

 
Traffic light 3 

Create 

Green 
Red 

 Sensor 3 

Create 

T
ra

n
sf

er
 

 
Sensor 2 Create 

 Sensor 4 Create 
 

Sensor 5 

Create 

1 

6 

3 4 

2 

5 

7 

5 
8 

9 

10 

11 

12 
13 

14 15 16 

17 

 
Sensor 6 

Create 

 Traffic light 2 

Create 

Green 
Red 

18 

19 

20 

21 

22 

23

3 

24

3 

25

3 

26

3 

30

3 

31

73 

32

73 

33 34 35 

27 
28 

29 

45 

37 

38 

39 

40 
41 

42 

43 

43 

46 

36 

47 

48 

49 

50 
51 

52 53 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.4, April 2020 216 

Traffic to the bridge: If a car leaves the island (assuming 

the light on the bridge side is green, as will be explained 

when describing the bridge traffic from the island to the 

mainland), then releasing the car (30) will trigger the sensor 

(31), which triggers the retrieval of b (32) and decremented 

(33). The new value is stored (34), and the light is turned on 
(35) to indicate that a space is available in the island.  

6.3 Bridge Traffic: From Island/To Mainland 

Traffic out to the bridge: Assuming that the traffic light on 

the bridge facing the island is green (36), a car enters the 

bridge (37) to trigger the sensor (38), which in turn turns the 

light red (39). Additionally, the sensor triggers the retrieval 

of c (49), which is processed (41) to be examined (42) as 

follows. 

- If a + b + c = d, then c is stored, the bridge is full 

(43), and the light is turned red (45). 

- Else (46), the bridge is full (47), and the light is 

turned red (36). 

 
Traffic to the mainland: To simplify the figure, we ignore 

the traffic light on the mainland facing the bridge because 

this requires the mainland box to be expanded to the right of 

Fig. 11. Accordingly, we start with a car leaving the bridge 

to the mainland (48). This triggers the sensor (49), which 

triggers the retrieval of c (50). The value of c is decremented 

(51) and stored (52), and the light is turned to green (53).  

7. Second Refinement: Dynamic Model 

Fig. 12 shows the dynamic model that corresponds to the 

static representation in Fig. 11. Twenty-nine events are 

identified as follows. 

 

Events in the bridge (traffic from the mainland to the 

island) 

Event 1 (E1): The traffic light is green. 

Event 2 (E2): A car enters the bridge. 

Event 3 (E3): The sensor is triggered. 

Event 4 (E4): The light is turned red. 
Event 5 (E5): a is retrieved, incremented, and processed. 

Event 6 (E6): a + b + c is equal d. 

Event 7 (E7): a is stored 

Event 8 (E8): (Else: a + b + c < d) 

Event 9 (E9): A car leaves toward the island. 

Event 9 (E10): The sensor is triggered. 

Event 10 (E11): a is decremented, and a new a is created. 

 

 

 

Events in the island (traffic from the bridge and to the 

bridge) 
Event 12 (E12): The traffic light facing the bridge is green. 

Event 13 (E13): A car enters the island. 

Event 14 (E14): The sensor is triggered. 

Event 15 (E15): The light is turned red. 

Event 16 (E16): b is retrieved, incremented, and processed. 

Event 17 (E17): a + b + c = d. 

Event 18 (E18): (Else: a + b + c < d). 

Event 19 (E19): b is stored 
Event 20 (E20): A car enters the bridge. 

Event 21 (E21): The sensor is triggered. 

Event 22 (E22): b is decremented, and a new b is created. 

 

Events in the bridge (traffic from the island and to the 

mainland) 

Event 23 (E23): The traffic light facing the island is green. 

Event 24 (E24): A car enters the bridge. 

Event 25 (E25): The sensor is triggered. 

Event 26 (E26): The light is turned red. 

Event 27 (E27): c is retrieved, incremented, and processed. 

Event 28 (E28): a + b + c = d. 
Event 29 (E29): (Else) a + b + c < d, then c is stored. 

Event 30 (E30):  c is stored 

Event 31 (E31): A car leaves toward the mainland. 

Event 32 (E32): The sensor is triggered.  

Event 33 (E32): c is decremented, and a new c is created. 

 

These events provide us with a tool to construct different 

chronologies of events. We will specify each behavior 

according to the three areas: the bridge to the island, the 

island, and the bridge from the island.  

8. Second Refinement: Behavioral Model 

Fig. 13 shows the behavior of the bridge system that 

receives cars from the mainland and sends them to the 

island. It includes two streams of events: one starts when a 

car enters (events 1 and 2), and the other starts when a car 

leaves (event 9). As mentioned previously, this system 

involves the physical cars, traffic lights, and sensors in 

addition to the information system.  
Similarly, Figs. 14 and 15 show the behavior of the system 

in the island and in the bridge leading to the mainland. Note 

the similarity of the three subsystems’ behaviors. Fig. 16 

shows the general behavior when all types of behaviors are 

connected together in terms of the chronology of events.  
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Fig. 12. The dynamic model of the bridge–island system. 
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9. Digital System 

Note that the chronology of events in the behavioral model 

is mandated by flows among the generic operations (e.g., a 

variable is released from storage and processed), which 

generates a release event that precedes a process event. 

However, if there is no flow (e.g., receiving a new car cannot 

generate flow in the sensor), then triggering is used to “force” 

a sequence 

 

 
among different streams of (disconnected) flows (e.g., 
receiving a car triggers a signal being created in the sensor). 

Thus, triggering is a mechanism in the static model for early 

enforcement of a certain chronology of events in the 

behavior model when there is no flow. The triggering can be 

implemented as a communication signal in further 

refinements of the behavior model to develop the control 

through an information system. 

 

Fig. 17 is an example of such a development, in which the 

information is separated from the physical system. In 

addition, triggering in the static model (e.g., the sensor 
triggers updating a) is implemented as a communications 

signal (dotted boxes). The same information system can be 

used to control all three regions of the system, as shown in 

Fig. 18. Depending on which sensor is sending a signal, a, b, 

or c is used, assuming that d is a global variable.  

 

  

Fig. 13. Two behaviors in the bridge where cars are coming from the 
mainland (upper) and/or leaving toward the island (lower). 
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10. Conclusion 

In this paper, we examined two modeling methodologies—

the formal Event-B and the diagrammatic TM—through a 

single case study of a bridge–island system. Contrasting the 

two diverse models for the same large problem is an 

inspiring venture. It has enhanced the advantages and 

limitations of the modeling experience. On one hand, 

Event-B is an attractively molded formalism of 

mathematically scattered notations with no focusing center 
that ties together the whole in a main structure. TM seems 

to be a holistic assembly with a recognizable center, but it 

has a voluminous form that needs much fastening elements 

(e.g., triggering). Event-B facilitates proving but seems 

impractical, at least for large systems. TM is easy to apply 

but seems difficult to maintain, at least for large systems. 

This contrasting process may be extended to many aspects 

in the two models. It seems that mixing formal and 

diagrammatic styles is a promising approach. This approach 

has already been adopted in Event-B through developing 

UML-B [7]. 
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