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Summary: 
In security protocols, there is a well-known theorem about the 

undecidability of security properties such as secrecy and 

authentication. That is, it is not possible to develop an automatic 

procedure that in finite time and space always decides correctly 

whether or not a security property holds for any given protocol 

model. With respect to the importance of security protocols in 

the Internet nowadays, to deal with this limitation, several 

approaches imposing assumptions in the model are presented in 

order to make protocol design more reliable. These approaches 

are classified into relaxing some restrictions on the theorem 

requirements. This paper presents in details a notable technique, 

namely the combination of process calculus and Horn clauses-

based reasoning in an automatic decision procedure. In particular, 

the characteristics of process calculus for modeling and Horn 

clauses for automatic verification are presented. Some strengths 

and weaknesses of this combination compared with other 

approaches are also given. This combination technique is 

implemented in ProVerif an automatic symbolic verifier of 

security protocols. 
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1. Introduction 

Security protocols are programs that aim at securing 

communications on insecure networks, such as Internet, 

by relying on cryptographic primitives. For instance, in 

practice, security protocols are usually used to establish 

shared key between parties. This shared key is sent over 

hostile networks under the asymmetric encryption scheme 

among involving parties (or principals). Once the shared 

key has been exchanged, a session of symmetrically 

encrypted data transmission can be executed between 

principals. When the data session is completed, the shared 

key is also discarded. However, public and private keys 

associated with a principal remain for future run of the 

security protocol. 

With the evolution of Internet, security protocols are 

becoming more important than ever as our lives are more 

dependent on Internet and its reliability. However, the 

design of security protocols is errorprone, e.g. the notable 

flaw in the very famous Needham-Schroeder public-key 

protocol was found 17 years after the protocol publication 

[1]. An automatic decision procedure with regards to a 

security protocol is very much needed. Unfortunately, 

there is a well-known theorem about the undecidability of 

security properties such as secrecy and authentication. 

That is, it is not possible to develop an automatic 

procedure that in finite time and space always decides 

correctly whether or not a security property holds for any 

given protocol model. This undecidability problem is 

fundamental in protocol design and verification. To 

overcome this limitation, some further restrictions to the 

model are imposed. These can be grouped into 3 model 

restriction types. They are: (1) bounding number of finite 

sessions to make a finite-state model; (2) accepting semi-

automatic decision procedure via interactive verification 

process; and (3) allowing semi-decision procedure which 

is automatic but may not terminate or may terminate with 

uncertain result. 

This paper presents a notable technique in the 3rd 

approach, i.e. overestimating the possibilities of attacks. 

This is done most of the time by computing an over-

approximation of the intruder knowledge. The Horn 

clause approach is one such method and Horn clauses are 

at the basis of the automatic protocol verifier ProVerif [2]. 

The paper discusses the rationale of the selected technique, 

characteristics deciding strengths and weaknesses of the 

Horn clauses-based deduction compared with other 

techniques. The paper is structured as follows. Section II 

presents briefly about formal modeling and security 

properties of protocols, the theorem of undecidability 

issue. Section III is about some approaches to deal with 

the undecidability problem by imposing some restrictions 

in protocol model and the choice of the Horn clauses-

based method. The method is selected in this section due 

to its inherent strength in an automatic decision procedure 

about a given process calculus-based protocol model. 

Compared with other techniques, the most significant 

contribution of the method is on the decidability with 

respect to protocol models while keeping unbounded 

number of sessions. However, this method has to pay the 

price, i.e. the overapproximation can ensure the soundness 

of the procedure but not its completeness. It is sound, in 

the sense that if the procedure does not find a flaw in the 

protocol, then there is no flaw. The procedure therefore 

provides real security guarantees. In contrast, it may give 

a false attack against the protocol. Section IV discusses 

key points in protocol modeling in the method via applied 
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π-calculus [3]. Later, Section V goes to the theoretical 

aspects of Horn clauses-based deduction. An example of 

protocol verification in the method is shown in Section VI. 

Some discussion about the inherent strength and weakness 

of the method is also presented. 

2. Technology Overview  

A. Formal Model of Security Protocol 

In order to obtain proofs that security protocols are correct, 

the first job is to model them mathematically. Along this 

research line, two model types of protocols have been 

considered [1]. 

First, in the symbolic model, aka. Dolev-Yao model, the 

cryptographic primitives are represented by function 

symbols considered as black boxes, the messages are 

terms on these primitives, and the intruder is restricted to 

compute only using these primitives. This model assumes 

perfect cryptography. Perfect encryption means that, one 

can decrypt a message only when he has the 

corresponding key. Second, in the computational model, 

the messages are bitstrings, the cryptographic primitives 

are functions from bitstrings to bitstrings. Encryption is 

not perfect as the intruder’s decrypting capability is 

represented by a probabilistic function. A security 

property is considered to hold when the probability that it 

does not hold is negligible [1]. This paper considers 

symbolic model only. 

Next is about security properties ensured by protocols. 

Among them, secrecy and authentication are the most 

important. Secrecy means that the intruder cannot obtain 

some information on data manipulated by the protocol. In 

the symbolic model, secrecy can be more often formalized 

as the fact that the intruder cannot compute exactly the 

considered piece of data. Authentication means that, if an 

agent A runs the protocol apparently with an agent B, then 

B runs the protocol apparently with A, and conversely. In 

general, one also requires that A and B share the same 

values of the parameters of the protocol. 

B. Undecidability Theorem 

It is proved that there exists no algorithm to decide on a 

property with regards to an input security protocol. That is, 

the algorithm can not confirm whether the protocol is 

secure or not. And if not, it shows an attack scenario. This 

leads to the fundamental undecidability theorem in 

security protocols. Both secrecy and authentication among 

all the interesting properties are undecidable in the 

symbolic model [4], [5], [6]. More details on the rationale 

of undecidability are given below. 

Despite this limitation, there exist semi-decision 

techniques which can be automated in various ways. First, 

observe that it is possible to design an algorithm which 

will always find an attack by an intruder in finite time if 

an attack exists and may not terminate if the protocol is 

correct. This can be done by simply enumerating all traces 

of the protocol’s state transition system. Then, in each 

state, it can be decided if secrecy has been violated. Other 

semidecision techniques, e.g. the inductive method [7], 

correspond to the fact that the algorithm may not provide 

a definite answer. 

There are several sources of undecidability. First, the 

protocol itself can simulate one step of computation for a 

universal computation model: each state of the machine is 

an agent who, upon reception of a configuration, sends the 

next configuration to the appropriate state. The intruder 

only has to bridge two successive sessions forwarding the 

last message of one session to the appropriate principal as 

the first message of the next session. The overall effect is 

a non-terminating protocol session as many single 

sessions are concatenated together due to the intruder’s 

attack. With regards to this non-terminating sessions, the 

decision procedure is not decidable. That is why decision 

methods have to either impose a bound on the number of 

instances [5], or restrict manipulation of the messages 

(e.g., impose a "single reference to previous messages" 

restriction [6]). The second source of undecidability is the 

ability to generate nonces, which may be used, roughly, to 

simulate arbitrarily many memory locations and therefore 

encode machines with unbounded memory [4]. Again, if 

the number of protocol instances is bounded in advance, 

this cannot occur. In fact, it is sufficient to bound the total 

number of nonces which are generated in any trace. Even 

if it is assumed that there is a bounded number of 

instances, it is not yet easy to design a decision algorithm 

since, according to the Dolev-Yao model, the intruder still 

has an unbounded number of possible choices at any point. 

In particular, the number of messages that can be created 

by the intruder is unbounded. An additional restriction 

bounding the intruder’s memory allows development of 

finite-state decision techniques. 

3. Over-Approximation Of The Intruder For 

The Decidability Of Security Protocols 

As mentioned in Section II-B, there is no decision 

procedure giving definite answer on whether a property 

holds in a general security protocol due to the infinite 

space constructed from the general protocol parameters. 

Typical protocol parameters are: 

1) The number of involving principals; 

2) The number protocol sessions which could be 

executed concurrently; 

3) Protocol depth or number of steps within the 

input protocol; 

4) The maximum data size within a message 

transmitted in the protocol; 
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5) The number of times each cryptographic 

operation can be applied by the intruder (or 

attacker); 

 

Certainly, if these parameters are unbounded, the search 

space should be infinite and that is the rationale for the 

undecidability theorem. Some techniques are required to 

impose restriction on the general models at some aspects. 

Even the protocol depth (3rd parameter), data size (4th 

parameter) and set of possible principals (1st parameter) 

are finite, the secrecy and authentication properties are 

still undecidable [4]. Indeed, 2nd and 5th parameters are 

the most important elements in security protocol analysis. 

Many research lines only focus on handling these two 

parameters. Hence, the decidable classes of protocols are 

further restricted. Note that the 2nd parameter is about 

concurrent protocol sessions, while the 5th parameter 

represents the intruder in terms of traffic analysis and 

message forging synthesis. 

A first group of techniques tries to bound the number of 

sessions (2nd parameter) and the capability of the intruder 

(5th parameter). The model becomes finite and a finite-

state analysis on the model can yield a definite response, 

i.e. decidable. The finite-state analysis in this group is 

often done by model checking [8]. 

Within these parameters, the number of protocol sessions 

(2nd parameter) is always the most challenging for 

protocol analysis. When the number of executions of the 

protocol is not bounded, the problem is undecidable for a 

reasonable model of protocols. Hence, there exists no 

automatic tool that always terminates and solves this 

problem. However, there are several approaches that can 

tackle an undecidable problem: 

1) Relying on interactive help from the user. This is 

done for example using the interactive theorem 

prover Isabelle as inductive method [7] which 

just requires the user to give a few lemmas to 

help the tool. Here, we lose the automatic 

mechanism of the procedure. 

2) Allowing non-terminating or incomplete tools, 

which sometimes answer "I do not know" but 

succeed on many practical examples. For 

instance, one can use abstractions based on tree-

automata to represent the knowledge of the 

intruder. Horn clauses approach and its tool - 

ProVerif belong to this approach [2]. 

 

ProVerif uses an abstract representation of protocols by 

Horn clauses which is more precise than tree-automata 

because it keeps relational information on messages. 

However, using this approach, termination is not 

guaranteed in general. 

4. Process Calculus-Based Protocol Modeling 

A. Applied π-Calculus  

The applied π-calculus is a language for describing 

concurrent processes and their interactions. It is based on 

the π-calculus but is specifically targeted at modeling 

security protocols. 

The calculus assumes an infinite set of names, an infinite 

set of variables, and a signature Σ consisting of a finite set 

of function symbols each with an associated arity. A 

function symbol with arity 0 is a constant. Terms are built 

by applying function symbols to names, variables and 

other terms. A term is ground when it does not contain 

variables. 

 

L,M,N ::=     terms  

a,b,c name 

x,y,z variable 

g(M1,...,Ml) function application  

 

where g ranges over the functions of signature Σ and l is 

the arity of g. 

The grammar for processes is shown below: 

P,Q,R ::= [plain] processes 

0 null process 

P |Q 

!P 

parallel composition 

replication 

ν n.P name restriction 

ν x.P variable restriction 

{M/x} if M = N then P 

else Q 

active substitution 

conditional 

u(x) : P message input 

u (̄M) : P message output 

 

The null process 0 does nothing; P |Q is the parallel 

composition of processes P and Q, used to represent 

principals of a protocol running in parallel; and 

replication !P is the infinite composition P |P |..., which is 

often used to capture an unbounded number of sessions. 

Name restriction ν n.P binds n inside P, the introduction 

of restricted names (or private names) is useful to capture 

both fresh random numbers (modeling nonces and keys, 

for example) and private channels. The conditional if M = 

N then P else Q is standard. Notice that M = N represents 

equality (modulo an equational theory) rather than strict 

syntactic identity. Finally, communication is captured by 

message input and message output. The process u(x) : P 

waits for a message from channel u and then behaves as P 

with the received message bound to the variable x; that is, 

every free occurrence of x in P refers to the message 

received. The process u¯(M) : P is ready to send M on 

channel u and then run P. P{M/x} stands for P with all 
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free occurrences of x replaced by M and it is similar to the 

notation let x = M in P. 

B. Protocol Modeling 

From components defined in Section IV-A, security 

protocols are defined via a sequence of message 

exchanges. A message X is sent from principal A to 

principal B with the standard notation A → B: X. 

Asymmetric data encryption of message m via public key 

of S is shown by {m}pkS, while signature of S for the 

message m is {m}pkS, On the other hand, symmetric data 

exchange of m via shared key k is [m]k. As an illustrated 

example, a simple handshake protocol is used. This 

protocol is to generate a fresh shared key k used for a data 

session between C - a client and S - a server under the 

public key scheme. It is assumed that each of them has a 

public/private key pair, and that the client knows the 

server’s public key pkS. The aim of the protocol is to 

establish a secret symmetric key k, enabling the client to 

communicate a secret s to the server. Once the data 

session is over, k is discarded while the public/private 

keys associated with C and S remain for future protocol 

run. The simplified protocol is shown below: 

• Step 1. S → C : {{k}skS}pkC 

• Step 2. C → S : [s]k 

Informally, the protocol proceeds as follows. On request 

from a client C, server S generates a fresh session key k, 

signs it with her private key skS and encrypts it using her 

client’s public key pkC. When C receives this message he 

decrypts it using his private key skC, verifies the signature 

made by S using her public key pkS, and extracts the 

session key k. C uses this key to symmetrically encrypt 

the secret s and sends the encrypted message to S. The 

rationale behind the protocol is that C receives the 

signature asymmetrically encrypted with his public key 

and hence he should be the only one able to decrypt its 

content. Moreover, the signature should ensure that S is 

the originator of the message. 

Informally, the three basic security properties this protocol 

should provide are: 

1) Secrecy: The value s is known only to C and S. 

2) Authentication of S: if C reaches the end of the 

protocol with session key k, then S proposed k 

for use by C. 

3) Authentication of C: if S reaches the end of the 

protocol and believes session key k has been 

shared with C, then C was indeed her counterpart 

and has k. 

Careful analysis reveals that the protocol does not satisfy 

all three of the intended properties. Verification by 

ProVerif is shown in Section VI. This part only explains 

informally the way protocol could be attacked. If an 

intruder I starts a session with S, then I is able to 

impersonate S in a subsequent session he starts with C. At 

the end of the protocol C believes that he shares the secret 

s with S, while he actually shares s with I. 

• Step 1. S → I : {{k}skS}pkI 

• Step 1’. I → C : {{k}skS}pkC 

• Step 2. C → I : [s]k 

The protocol can easily be corrected by adding the 

identities of the intended agents to the data that is signed 

in the first message: 

• Step 1. S → C : {{pkS,pkC,k}skS}pkC 

• Step 2. C → S : [s]k 

With this correction, I is not able to re-use the signed key 

from S in his session with C. 

The simple handshake protocol is defined with respect to 

the signature Σ, which is used to capture primitives 

modeling cryptographic operators, data structures and 

constants: Σ = 

{true,fst,snd,hash,pk,getmsg,pair,sdec,senc,adec,aenc,sign

,chksign,mac} where true is a constant; fst,snd,hash,pk, 

getmsg are unary functions; and 

pair,sdec,senc,adec,aenc,sign,chksign,mac are binary 

functions. The behavior of these functions is captured by a 

simple equational theory E satisfying the following 

equations over variables x,y: 

fst(pair(x,y)) = x - projection 

snd(pair(x,y)) = y - projection 

sdec(x,senc(x,y)) = y - symmetric 

adec(x,aenc(pk(x),y)) = y - asymmetric 

getmsg(sign(x,y)) = y - signature 

chksign(pk(x),sign(x,y)) = true 

 

For example, the application of the symmetric decryption 

function sdec to the term modeling a symmetric 

encryption senc(k,m) should return the plaintext m if the 

correct key k is supplied, i.e. the equation 

sdec(x,senc(x,y)) = y. The handshake protocol can now be 

captured in our calculus as the process P, defined as 

follows. 

 

The process begins by constructing the private keys skC, 

skS for principals C, S respectively. The public key parts 

pkC, pkS are then output on the public communication 
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channel c, ensuring they are available to the intruder. The 

protocol then launches multiple copies of processes PC, 

PS representing multiple sessions of the roles of C and S. 

Indeed, the sessions are unbounded. Note that syntactic 

scope does not represent the knowledge of a protocol’s 

participants. For example, the server’s private key skS is 

assumed not to be known by the client C (hence it does 

not occur in PC), even though skS is in the scope of PC. 

We assume that S is willing to run the protocol with any 

other principal; the choice of her counterpart will be made 

by the environment. This is captured by modeling the first 

input c(x_pk) to PS as the counterpart’s public key. C on 

the other hand only wishes to share his secret s with S, 

and C is assumed to know S’s public key; accordingly, S’s 

public key is hard-coded into the process PC. We 

additionally assume that each principal is willing to 

engage in an unbounded number of sessions and hence PC, 

PS  are under replication. 

On request from her counterpart (or interlocutor), server S 

starts the protocol by selecting key k and outputting 

aenc(x_pk,sign(skS,k)), that is, her signature on the key k 

encrypted with her interlocutor’s public key x_pk. 

Meanwhile C waits for the input of his counterpart’s 

signature on the key k encrypted using his public key. C 

decrypts the message and verifies the signature. Next, if C 

believes he is indeed talking to S, he outputs his secret s 

encrypted with the symmetric key k. Note that he inserts a 

tag (modeled as a free name), so that the decryptor can 

verify that the decryption has worked correctly. Principal 

S inputs z and confirms the presence of the tag. Finally, 

principal S executes the process Q. The description of Q is 

independent of the protocol, but one would expect the 

recovery of the counterpart’s secret; that is, Q is defined 

by the process let z_s = snd(sdec(k,z)) in Q′ for some Q′. 

The purpose of the protocol is to establish a session key to 

transport the secret represented by . We abstract away 

from the details of what s is, and how many such secrets 

there are, by modeling it simply as a restricted name. 

5. Theoretical Foundation In Protocol 

Verification  

Horn clauses are used the basis for deduction system of 

ProVerif (shown in Figure 1). All primitives, intruder’s 

initial knowledge as well as its reasoning via the protocol 

model are all translated into Horn clauses for later 

automatic deduction. 

 

Hình 1: The structure of ProVerif 

In Figure 1, the protocol is formally modeled in process 

calculus, i.e. applied π-calculus as presented in Section 

IV-A. The properties are also specified informally. Next, 

the model and properties are automatically translated into 

equivalent Horn clauses and derivability queries 

respectively. These clauses are used to validate queries 

about properties. In this Horn clauses-based deduction 

system, if the properties holds, they are validated. 

Otherwise, potential attacks could be shown as evidences 

of protocol vulnerability. This paper does not go into 

details of resolution algorithms of the approach, 

particularly those implemented in ProVerif. Rather, we 

focus on the overall approach via process calculus 

modeling and Horn clauses-based deduction. 

A. Protocol Primitives 

Cryptographic primitives are represented by functions. 

For instance, we represent the publickey encryption by a 

function aenc(m,pk), which takes two arguments: the 

message m to encrypt and the public key pk. There is a 

function pk that builds the public key from the secret key. 

The secret key is represented by a name that has no 

arguments skS[ ] for S and skC[ ] for C. Then pkS = 

pk(skS[ ]) and pkC = pk(skC[ ]).  

There are two kinds of functions: constructors and 

destructors. The constructors are the functions that 

explicitly appear in the terms that represent messages. For 

instance, aenc and pk are constructors. Destructors 

manipulate terms. For instance, the decryption adec is a 

destructor, defined by adec(aenc(m,pk(sk)),sk) = m. This 

rewrite rule models that, by decrypting a ciphertext with 

the corresponding secret key, one obtains the cleartext. 

Other functions are defined similarly. 

1 . Protocol: Pi calculus and encryption 
2 . Properties: secrecy, authentication... 

Automatic translator 

1 . Horn clauses 
2 . Derivability queries 

Resolution with  
selection 

Properties  
are validated 

Potential attack  
scenarios 
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B. Protocol Primitives 

We assume that the protocol is executed in the presence of 

an intruder that can intercept all messages, compute new 

messages from the messages it has received, and send any 

message it can build. During its computations, the intruder 

can apply all constructors and destructors. If f is a 

constructor of arity n, this leads to the general clause 

form: intruder(x1) ∧  ... ∧  intruder(xn) = ⇒ 

intruder(f(x1,...,xn)). On the contrary, if g is a destructor, 

for each rewrite rule g(M1,...,Mn) −→ M in def(g), the 

general clause is: intruder(M1)∧ ...∧ intruder(Mn) =⇒ 

intruder(M). 

The destructors never appear in the clauses, they are 

coded by pattern-matching on their parameters in the 

hypothesis of the clause and generating their result in the 

conclusion. For example, in the case of public-key 

encryption, this yields: 

• intruder(m) ∧ intruder(pk) =⇒ 

intruder(aenc(m,pk)) 

• intruder(sk) =⇒ intruder(pk(sk)) 

• intruder(aenc(m,pk(sk))) ∧ intruder(sk) =⇒ 

intruder(m) 

Where the first two clauses correspond to the constructors 

aenc and pk, and the last clause corresponds to the 

destructor adec showing that m is known to the intruder. 

C. Protocol Primitives 

This section describes how the protocol itself is 

represented by Horn clauses. This is the theoretical 

foundation for the translation from applied πcalculus into 

equivalent Horn clauses. 

We consider that S and C can talk not only to any honest 

principal, but also malicious principals that are 

represented by the intruder. Therefore, the first message 

sent by S can be aenc(pk(x),sign(skS[ ],k)) for any x. We 

leave to the intruder the task of starting the protocol with 

the principal it wants, that is, the intruder will send a 

preliminary message to S, mentioning the public key of 

the principal with which S should talk. 

This principal can be C, or another principal represented 

by the intruder. Hence, if the intruder has some key pk(x), 

it can send pk(x) to S. S replies with his first message, 

which the intruder can intercept, so the intruder obtains 

aenc(pk(x),sign(skS[ ],k)). Therefore, we have a clause of 

the form: intruder(pk(x)) = ⇒ 

intruder(aenc(pk(x),sign(skS[ ],k))). 

Moreover, a new key k is created each time the protocol is 

run. Hence, if two different keys pk(x) are received by S, 

the generated keys k are certainly different: k depends on 

pk(x). The clause becomes: intruder(pk(x)) = ⇒ 

intruder(aenc(pk(x),sign(k[pk(x)],skA[ ]))). When C 

receives a message, he decrypts it with his secret key skC, 

so C expects a message of the form aenc(pk(skB[ ]),x′). 

Next, C tests whether S has signed x′, that is, C evaluates 

chksign(pkS,x′), and this succeeds only when x′ = 

sign(skS[ ],y). If so, he assumes that the key y is only 

known by S, and sends a secret s (a constant that the 

intruder does not have a priori) encrypted under y. We 

assume that the intruder relays the message coming from 

S, and intercepts the message sent by C. Hence the clause: 

intruder(aenc(pk(skC[ ]),sign(skS[ ],y))) = ⇒ 

intruder(senc(y,s)). 

D. Protocol Primitives 

A protocol can be represented by three sets of 
Horn clauses, as detailed below in the context of 
handshake protocol. 

• Clauses representing the computation abilities of the 

intruder: constructors, destructors, and name 

generation (Section V-A). 

• Facts corresponding to the initial knowledge of the 

intruder. In general, there are facts giving the public 

keys of the participants and/or their names to the 

intruder (Section V-B). 

• Clauses representing the messages of the protocol 

itself. There is one set of clauses for each message in 

the protocol. In the set corresponding to the i-th 

message, sent by principal X, the clauses are of the 

form intruder(Mj1 ∧ ...∧intruder(Mjn) =⇒ 

intruder(Mi) where Mj1,...,Mjn are the patterns of the 

messages received by X before sending the i-th 

message, and Mi is the pattern of the i-th message 

(Section V-C). 

This Horn clause-based representation of protocols is 

approximate. Specifically, the number of repetitions of 

each action (i.e. a message exchange/action) is ignored, 

since Horn clauses can be applied any number of times. 

So a step of the protocol (i.e. a message transmission) can 

be completed several times (instead of once as in the 

protocol model), as long as the previous steps have been 

completed at least once between the same principals. This 

is called over-estimation of intruder (or environment) 

capability. 

However, the important point is that the approximations 

are sound: if an attack exists in a more precise model, 

such as the applied π-calculus, then it also exists in this 

representation. Performing approximations allows a much 

more efficient verifier, which will be able to handle larger 

and more complex protocols. Another advantage is that 
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the verifier does not have to limit the number of runs of 

the protocol - unbounded number of sessions. 

7. Conclusion 

On the hostile communication environment like Internet, 

this paper presents a technique based on strong theoretical 

foundation to deal with the decidability of security 

protocols. Due to the undecidability theorem, there are 

some approaches to overcome the limitation by dealing 

with fundamental point in the theorem. This paper 

attempts to make definite verification result with regards 

to any given security protocol via semi-decision procedure 

(sometimes the results are not certain, i.e. false attacks). 

The procedure is based on the applied π-calculus 

modeling and Horn clauses-based deduction. By accepting 

sound abstraction, the technique can handle unbounded 

protocol sessions, which means to analyze infinite-state 

space. On the other hand, the method ignores repetitions 

of computation from the intruder’s viewpoint. This is the 

cause for the method’s incompleteness. The model and 

property verification in the proposed method are well 

defined and supported by ProVerif. A simplified 

handshake protocol is taken as an illustrated example of 

the method. 
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