
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

11

Manuscript received May 5, 2020

Manuscript revised May 20, 2020

Process Calculus and Horn Clauses-Based Deduction in the

Verification of Security Protocols

Nguyen Truong Thang†, Khuat Thanh Son†

ntthang@ioit.ac.vn ktson@ioit.ac.vn
† Institution of Information Technology, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Summary:
In security protocols, there is a well-known theorem about the

undecidability of security properties such as secrecy and

authentication. That is, it is not possible to develop an automatic

procedure that in finite time and space always decides correctly

whether or not a security property holds for any given protocol

model. With respect to the importance of security protocols in

the Internet nowadays, to deal with this limitation, several

approaches imposing assumptions in the model are presented in

order to make protocol design more reliable. These approaches

are classified into relaxing some restrictions on the theorem

requirements. This paper presents in details a notable technique,

namely the combination of process calculus and Horn clauses-

based reasoning in an automatic decision procedure. In particular,

the characteristics of process calculus for modeling and Horn

clauses for automatic verification are presented. Some strengths

and weaknesses of this combination compared with other

approaches are also given. This combination technique is

implemented in ProVerif an automatic symbolic verifier of

security protocols.

Key words:
Undecidability, security protocols, process calculus, Horn

clauses, formal verification.

1. Introduction

Security protocols are programs that aim at securing

communications on insecure networks, such as Internet,

by relying on cryptographic primitives. For instance, in

practice, security protocols are usually used to establish

shared key between parties. This shared key is sent over

hostile networks under the asymmetric encryption scheme

among involving parties (or principals). Once the shared

key has been exchanged, a session of symmetrically

encrypted data transmission can be executed between

principals. When the data session is completed, the shared

key is also discarded. However, public and private keys

associated with a principal remain for future run of the

security protocol.

With the evolution of Internet, security protocols are

becoming more important than ever as our lives are more

dependent on Internet and its reliability. However, the

design of security protocols is errorprone, e.g. the notable

flaw in the very famous Needham-Schroeder public-key

protocol was found 17 years after the protocol publication

[1]. An automatic decision procedure with regards to a

security protocol is very much needed. Unfortunately,

there is a well-known theorem about the undecidability of

security properties such as secrecy and authentication.

That is, it is not possible to develop an automatic

procedure that in finite time and space always decides

correctly whether or not a security property holds for any

given protocol model. This undecidability problem is

fundamental in protocol design and verification. To

overcome this limitation, some further restrictions to the

model are imposed. These can be grouped into 3 model

restriction types. They are: (1) bounding number of finite

sessions to make a finite-state model; (2) accepting semi-

automatic decision procedure via interactive verification

process; and (3) allowing semi-decision procedure which

is automatic but may not terminate or may terminate with

uncertain result.

This paper presents a notable technique in the 3rd

approach, i.e. overestimating the possibilities of attacks.

This is done most of the time by computing an over-

approximation of the intruder knowledge. The Horn

clause approach is one such method and Horn clauses are

at the basis of the automatic protocol verifier ProVerif [2].

The paper discusses the rationale of the selected technique,

characteristics deciding strengths and weaknesses of the

Horn clauses-based deduction compared with other

techniques. The paper is structured as follows. Section II

presents briefly about formal modeling and security

properties of protocols, the theorem of undecidability

issue. Section III is about some approaches to deal with

the undecidability problem by imposing some restrictions

in protocol model and the choice of the Horn clauses-

based method. The method is selected in this section due

to its inherent strength in an automatic decision procedure

about a given process calculus-based protocol model.

Compared with other techniques, the most significant

contribution of the method is on the decidability with

respect to protocol models while keeping unbounded

number of sessions. However, this method has to pay the

price, i.e. the overapproximation can ensure the soundness

of the procedure but not its completeness. It is sound, in

the sense that if the procedure does not find a flaw in the

protocol, then there is no flaw. The procedure therefore

provides real security guarantees. In contrast, it may give

a false attack against the protocol. Section IV discusses

key points in protocol modeling in the method via applied

mailto:ntthang@ioit.ac.vn
mailto:ktson@ioit.ac.vn

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

12

π-calculus [3]. Later, Section V goes to the theoretical

aspects of Horn clauses-based deduction. An example of

protocol verification in the method is shown in Section VI.

Some discussion about the inherent strength and weakness

of the method is also presented.

2. Technology Overview

A. Formal Model of Security Protocol

In order to obtain proofs that security protocols are correct,

the first job is to model them mathematically. Along this

research line, two model types of protocols have been

considered [1].

First, in the symbolic model, aka. Dolev-Yao model, the

cryptographic primitives are represented by function

symbols considered as black boxes, the messages are

terms on these primitives, and the intruder is restricted to

compute only using these primitives. This model assumes

perfect cryptography. Perfect encryption means that, one

can decrypt a message only when he has the

corresponding key. Second, in the computational model,

the messages are bitstrings, the cryptographic primitives

are functions from bitstrings to bitstrings. Encryption is

not perfect as the intruder’s decrypting capability is

represented by a probabilistic function. A security

property is considered to hold when the probability that it

does not hold is negligible [1]. This paper considers

symbolic model only.

Next is about security properties ensured by protocols.

Among them, secrecy and authentication are the most

important. Secrecy means that the intruder cannot obtain

some information on data manipulated by the protocol. In

the symbolic model, secrecy can be more often formalized

as the fact that the intruder cannot compute exactly the

considered piece of data. Authentication means that, if an

agent A runs the protocol apparently with an agent B, then

B runs the protocol apparently with A, and conversely. In

general, one also requires that A and B share the same

values of the parameters of the protocol.

B. Undecidability Theorem

It is proved that there exists no algorithm to decide on a

property with regards to an input security protocol. That is,

the algorithm can not confirm whether the protocol is

secure or not. And if not, it shows an attack scenario. This

leads to the fundamental undecidability theorem in

security protocols. Both secrecy and authentication among

all the interesting properties are undecidable in the

symbolic model [4], [5], [6]. More details on the rationale

of undecidability are given below.

Despite this limitation, there exist semi-decision

techniques which can be automated in various ways. First,

observe that it is possible to design an algorithm which

will always find an attack by an intruder in finite time if

an attack exists and may not terminate if the protocol is

correct. This can be done by simply enumerating all traces

of the protocol’s state transition system. Then, in each

state, it can be decided if secrecy has been violated. Other

semidecision techniques, e.g. the inductive method [7],

correspond to the fact that the algorithm may not provide

a definite answer.

There are several sources of undecidability. First, the

protocol itself can simulate one step of computation for a

universal computation model: each state of the machine is

an agent who, upon reception of a configuration, sends the

next configuration to the appropriate state. The intruder

only has to bridge two successive sessions forwarding the

last message of one session to the appropriate principal as

the first message of the next session. The overall effect is

a non-terminating protocol session as many single

sessions are concatenated together due to the intruder’s

attack. With regards to this non-terminating sessions, the

decision procedure is not decidable. That is why decision

methods have to either impose a bound on the number of

instances [5], or restrict manipulation of the messages

(e.g., impose a "single reference to previous messages"

restriction [6]). The second source of undecidability is the

ability to generate nonces, which may be used, roughly, to

simulate arbitrarily many memory locations and therefore

encode machines with unbounded memory [4]. Again, if

the number of protocol instances is bounded in advance,

this cannot occur. In fact, it is sufficient to bound the total

number of nonces which are generated in any trace. Even

if it is assumed that there is a bounded number of

instances, it is not yet easy to design a decision algorithm

since, according to the Dolev-Yao model, the intruder still

has an unbounded number of possible choices at any point.

In particular, the number of messages that can be created

by the intruder is unbounded. An additional restriction

bounding the intruder’s memory allows development of

finite-state decision techniques.

3. Over-Approximation Of The Intruder For

The Decidability Of Security Protocols

As mentioned in Section II-B, there is no decision

procedure giving definite answer on whether a property

holds in a general security protocol due to the infinite

space constructed from the general protocol parameters.

Typical protocol parameters are:

1) The number of involving principals;

2) The number protocol sessions which could be

executed concurrently;

3) Protocol depth or number of steps within the

input protocol;

4) The maximum data size within a message

transmitted in the protocol;

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

13

5) The number of times each cryptographic

operation can be applied by the intruder (or

attacker);

Certainly, if these parameters are unbounded, the search

space should be infinite and that is the rationale for the

undecidability theorem. Some techniques are required to

impose restriction on the general models at some aspects.

Even the protocol depth (3rd parameter), data size (4th

parameter) and set of possible principals (1st parameter)

are finite, the secrecy and authentication properties are

still undecidable [4]. Indeed, 2nd and 5th parameters are

the most important elements in security protocol analysis.

Many research lines only focus on handling these two

parameters. Hence, the decidable classes of protocols are

further restricted. Note that the 2nd parameter is about

concurrent protocol sessions, while the 5th parameter

represents the intruder in terms of traffic analysis and

message forging synthesis.

A first group of techniques tries to bound the number of

sessions (2nd parameter) and the capability of the intruder

(5th parameter). The model becomes finite and a finite-

state analysis on the model can yield a definite response,

i.e. decidable. The finite-state analysis in this group is

often done by model checking [8].

Within these parameters, the number of protocol sessions

(2nd parameter) is always the most challenging for

protocol analysis. When the number of executions of the

protocol is not bounded, the problem is undecidable for a

reasonable model of protocols. Hence, there exists no

automatic tool that always terminates and solves this

problem. However, there are several approaches that can

tackle an undecidable problem:

1) Relying on interactive help from the user. This is

done for example using the interactive theorem

prover Isabelle as inductive method [7] which

just requires the user to give a few lemmas to

help the tool. Here, we lose the automatic

mechanism of the procedure.

2) Allowing non-terminating or incomplete tools,

which sometimes answer "I do not know" but

succeed on many practical examples. For

instance, one can use abstractions based on tree-

automata to represent the knowledge of the

intruder. Horn clauses approach and its tool -

ProVerif belong to this approach [2].

ProVerif uses an abstract representation of protocols by

Horn clauses which is more precise than tree-automata

because it keeps relational information on messages.

However, using this approach, termination is not

guaranteed in general.

4. Process Calculus-Based Protocol Modeling

A. Applied π-Calculus

The applied π-calculus is a language for describing

concurrent processes and their interactions. It is based on

the π-calculus but is specifically targeted at modeling

security protocols.

The calculus assumes an infinite set of names, an infinite

set of variables, and a signature Σ consisting of a finite set

of function symbols each with an associated arity. A

function symbol with arity 0 is a constant. Terms are built

by applying function symbols to names, variables and

other terms. A term is ground when it does not contain

variables.

L,M,N ::= terms

a,b,c name

x,y,z variable

g(M1,...,Ml) function application

where g ranges over the functions of signature Σ and l is

the arity of g.

The grammar for processes is shown below:

P,Q,R ::= [plain] processes

0 null process

P |Q

!P

parallel composition

replication

ν n.P name restriction

ν x.P variable restriction

{M/x} if M = N then P

else Q

active substitution

conditional

u(x) : P message input

u (̄M) : P message output

The null process 0 does nothing; P |Q is the parallel

composition of processes P and Q, used to represent

principals of a protocol running in parallel; and

replication !P is the infinite composition P |P |..., which is

often used to capture an unbounded number of sessions.

Name restriction ν n.P binds n inside P, the introduction

of restricted names (or private names) is useful to capture

both fresh random numbers (modeling nonces and keys,

for example) and private channels. The conditional if M =

N then P else Q is standard. Notice that M = N represents

equality (modulo an equational theory) rather than strict

syntactic identity. Finally, communication is captured by

message input and message output. The process u(x) : P

waits for a message from channel u and then behaves as P

with the received message bound to the variable x; that is,

every free occurrence of x in P refers to the message

received. The process u¯(M) : P is ready to send M on

channel u and then run P. P{M/x} stands for P with all

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

14

free occurrences of x replaced by M and it is similar to the

notation let x = M in P.

B. Protocol Modeling

From components defined in Section IV-A, security

protocols are defined via a sequence of message

exchanges. A message X is sent from principal A to

principal B with the standard notation A → B: X.

Asymmetric data encryption of message m via public key

of S is shown by {m}pkS, while signature of S for the

message m is {m}pkS, On the other hand, symmetric data

exchange of m via shared key k is [m]k. As an illustrated

example, a simple handshake protocol is used. This

protocol is to generate a fresh shared key k used for a data

session between C - a client and S - a server under the

public key scheme. It is assumed that each of them has a

public/private key pair, and that the client knows the

server’s public key pkS. The aim of the protocol is to

establish a secret symmetric key k, enabling the client to

communicate a secret s to the server. Once the data

session is over, k is discarded while the public/private

keys associated with C and S remain for future protocol

run. The simplified protocol is shown below:

• Step 1. S → C : {{k}skS}pkC

• Step 2. C → S : [s]k

Informally, the protocol proceeds as follows. On request

from a client C, server S generates a fresh session key k,

signs it with her private key skS and encrypts it using her

client’s public key pkC. When C receives this message he

decrypts it using his private key skC, verifies the signature

made by S using her public key pkS, and extracts the

session key k. C uses this key to symmetrically encrypt

the secret s and sends the encrypted message to S. The

rationale behind the protocol is that C receives the

signature asymmetrically encrypted with his public key

and hence he should be the only one able to decrypt its

content. Moreover, the signature should ensure that S is

the originator of the message.

Informally, the three basic security properties this protocol

should provide are:

1) Secrecy: The value s is known only to C and S.

2) Authentication of S: if C reaches the end of the

protocol with session key k, then S proposed k

for use by C.

3) Authentication of C: if S reaches the end of the

protocol and believes session key k has been

shared with C, then C was indeed her counterpart

and has k.

Careful analysis reveals that the protocol does not satisfy

all three of the intended properties. Verification by

ProVerif is shown in Section VI. This part only explains

informally the way protocol could be attacked. If an

intruder I starts a session with S, then I is able to

impersonate S in a subsequent session he starts with C. At

the end of the protocol C believes that he shares the secret

s with S, while he actually shares s with I.

• Step 1. S → I : {{k}skS}pkI

• Step 1’. I → C : {{k}skS}pkC

• Step 2. C → I : [s]k

The protocol can easily be corrected by adding the

identities of the intended agents to the data that is signed

in the first message:

• Step 1. S → C : {{pkS,pkC,k}skS}pkC

• Step 2. C → S : [s]k

With this correction, I is not able to re-use the signed key

from S in his session with C.

The simple handshake protocol is defined with respect to

the signature Σ, which is used to capture primitives

modeling cryptographic operators, data structures and

constants: Σ =

{true,fst,snd,hash,pk,getmsg,pair,sdec,senc,adec,aenc,sign

,chksign,mac} where true is a constant; fst,snd,hash,pk,

getmsg are unary functions; and

pair,sdec,senc,adec,aenc,sign,chksign,mac are binary

functions. The behavior of these functions is captured by a

simple equational theory E satisfying the following

equations over variables x,y:

fst(pair(x,y)) = x - projection

snd(pair(x,y)) = y - projection

sdec(x,senc(x,y)) = y - symmetric

adec(x,aenc(pk(x),y)) = y - asymmetric

getmsg(sign(x,y)) = y - signature

chksign(pk(x),sign(x,y)) = true

For example, the application of the symmetric decryption

function sdec to the term modeling a symmetric

encryption senc(k,m) should return the plaintext m if the

correct key k is supplied, i.e. the equation

sdec(x,senc(x,y)) = y. The handshake protocol can now be

captured in our calculus as the process P, defined as

follows.

The process begins by constructing the private keys skC,

skS for principals C, S respectively. The public key parts

pkC, pkS are then output on the public communication

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

15

channel c, ensuring they are available to the intruder. The

protocol then launches multiple copies of processes PC,

PS representing multiple sessions of the roles of C and S.

Indeed, the sessions are unbounded. Note that syntactic

scope does not represent the knowledge of a protocol’s

participants. For example, the server’s private key skS is

assumed not to be known by the client C (hence it does

not occur in PC), even though skS is in the scope of PC.

We assume that S is willing to run the protocol with any

other principal; the choice of her counterpart will be made

by the environment. This is captured by modeling the first

input c(x_pk) to PS as the counterpart’s public key. C on

the other hand only wishes to share his secret s with S,

and C is assumed to know S’s public key; accordingly, S’s

public key is hard-coded into the process PC. We

additionally assume that each principal is willing to

engage in an unbounded number of sessions and hence PC,

PS are under replication.

On request from her counterpart (or interlocutor), server S

starts the protocol by selecting key k and outputting

aenc(x_pk,sign(skS,k)), that is, her signature on the key k

encrypted with her interlocutor’s public key x_pk.

Meanwhile C waits for the input of his counterpart’s

signature on the key k encrypted using his public key. C

decrypts the message and verifies the signature. Next, if C

believes he is indeed talking to S, he outputs his secret s

encrypted with the symmetric key k. Note that he inserts a

tag (modeled as a free name), so that the decryptor can

verify that the decryption has worked correctly. Principal

S inputs z and confirms the presence of the tag. Finally,

principal S executes the process Q. The description of Q is

independent of the protocol, but one would expect the

recovery of the counterpart’s secret; that is, Q is defined

by the process let z_s = snd(sdec(k,z)) in Q′ for some Q′.

The purpose of the protocol is to establish a session key to

transport the secret represented by . We abstract away

from the details of what s is, and how many such secrets

there are, by modeling it simply as a restricted name.

5. Theoretical Foundation In Protocol

Verification

Horn clauses are used the basis for deduction system of

ProVerif (shown in Figure 1). All primitives, intruder’s

initial knowledge as well as its reasoning via the protocol

model are all translated into Horn clauses for later

automatic deduction.

Hình 1: The structure of ProVerif

In Figure 1, the protocol is formally modeled in process

calculus, i.e. applied π-calculus as presented in Section

IV-A. The properties are also specified informally. Next,

the model and properties are automatically translated into

equivalent Horn clauses and derivability queries

respectively. These clauses are used to validate queries

about properties. In this Horn clauses-based deduction

system, if the properties holds, they are validated.

Otherwise, potential attacks could be shown as evidences

of protocol vulnerability. This paper does not go into

details of resolution algorithms of the approach,

particularly those implemented in ProVerif. Rather, we

focus on the overall approach via process calculus

modeling and Horn clauses-based deduction.

A. Protocol Primitives

Cryptographic primitives are represented by functions.

For instance, we represent the publickey encryption by a

function aenc(m,pk), which takes two arguments: the

message m to encrypt and the public key pk. There is a

function pk that builds the public key from the secret key.

The secret key is represented by a name that has no

arguments skS[] for S and skC[] for C. Then pkS =

pk(skS[]) and pkC = pk(skC[]).

There are two kinds of functions: constructors and

destructors. The constructors are the functions that

explicitly appear in the terms that represent messages. For

instance, aenc and pk are constructors. Destructors

manipulate terms. For instance, the decryption adec is a

destructor, defined by adec(aenc(m,pk(sk)),sk) = m. This

rewrite rule models that, by decrypting a ciphertext with

the corresponding secret key, one obtains the cleartext.

Other functions are defined similarly.

1 . Protocol: Pi calculus and encryption
2 . Properties: secrecy, authentication...

Automatic translator

1 . Horn clauses
2 . Derivability queries

Resolution with
selection

Properties
are validated

Potential attack
scenarios

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

16

B. Protocol Primitives

We assume that the protocol is executed in the presence of

an intruder that can intercept all messages, compute new

messages from the messages it has received, and send any

message it can build. During its computations, the intruder

can apply all constructors and destructors. If f is a

constructor of arity n, this leads to the general clause

form: intruder(x1) ∧ ... ∧ intruder(xn) = ⇒

intruder(f(x1,...,xn)). On the contrary, if g is a destructor,

for each rewrite rule g(M1,...,Mn) −→ M in def(g), the

general clause is: intruder(M1)∧ ...∧ intruder(Mn) =⇒

intruder(M).

The destructors never appear in the clauses, they are

coded by pattern-matching on their parameters in the

hypothesis of the clause and generating their result in the

conclusion. For example, in the case of public-key

encryption, this yields:

• intruder(m) ∧ intruder(pk) =⇒

intruder(aenc(m,pk))

• intruder(sk) =⇒ intruder(pk(sk))

• intruder(aenc(m,pk(sk))) ∧ intruder(sk) =⇒

intruder(m)

Where the first two clauses correspond to the constructors

aenc and pk, and the last clause corresponds to the

destructor adec showing that m is known to the intruder.

C. Protocol Primitives

This section describes how the protocol itself is

represented by Horn clauses. This is the theoretical

foundation for the translation from applied πcalculus into

equivalent Horn clauses.

We consider that S and C can talk not only to any honest

principal, but also malicious principals that are

represented by the intruder. Therefore, the first message

sent by S can be aenc(pk(x),sign(skS[],k)) for any x. We

leave to the intruder the task of starting the protocol with

the principal it wants, that is, the intruder will send a

preliminary message to S, mentioning the public key of

the principal with which S should talk.

This principal can be C, or another principal represented

by the intruder. Hence, if the intruder has some key pk(x),

it can send pk(x) to S. S replies with his first message,

which the intruder can intercept, so the intruder obtains

aenc(pk(x),sign(skS[],k)). Therefore, we have a clause of

the form: intruder(pk(x)) = ⇒

intruder(aenc(pk(x),sign(skS[],k))).

Moreover, a new key k is created each time the protocol is

run. Hence, if two different keys pk(x) are received by S,

the generated keys k are certainly different: k depends on

pk(x). The clause becomes: intruder(pk(x)) = ⇒

intruder(aenc(pk(x),sign(k[pk(x)],skA[]))). When C

receives a message, he decrypts it with his secret key skC,

so C expects a message of the form aenc(pk(skB[]),x′).

Next, C tests whether S has signed x′, that is, C evaluates

chksign(pkS,x′), and this succeeds only when x′ =

sign(skS[],y). If so, he assumes that the key y is only

known by S, and sends a secret s (a constant that the

intruder does not have a priori) encrypted under y. We

assume that the intruder relays the message coming from

S, and intercepts the message sent by C. Hence the clause:

intruder(aenc(pk(skC[]),sign(skS[],y))) = ⇒

intruder(senc(y,s)).

D. Protocol Primitives

A protocol can be represented by three sets of
Horn clauses, as detailed below in the context of
handshake protocol.

• Clauses representing the computation abilities of the

intruder: constructors, destructors, and name

generation (Section V-A).

• Facts corresponding to the initial knowledge of the

intruder. In general, there are facts giving the public

keys of the participants and/or their names to the

intruder (Section V-B).

• Clauses representing the messages of the protocol

itself. There is one set of clauses for each message in

the protocol. In the set corresponding to the i-th

message, sent by principal X, the clauses are of the

form intruder(Mj1 ∧ ...∧intruder(Mjn) =⇒

intruder(Mi) where Mj1,...,Mjn are the patterns of the

messages received by X before sending the i-th

message, and Mi is the pattern of the i-th message

(Section V-C).

This Horn clause-based representation of protocols is

approximate. Specifically, the number of repetitions of

each action (i.e. a message exchange/action) is ignored,

since Horn clauses can be applied any number of times.

So a step of the protocol (i.e. a message transmission) can

be completed several times (instead of once as in the

protocol model), as long as the previous steps have been

completed at least once between the same principals. This

is called over-estimation of intruder (or environment)

capability.

However, the important point is that the approximations

are sound: if an attack exists in a more precise model,

such as the applied π-calculus, then it also exists in this

representation. Performing approximations allows a much

more efficient verifier, which will be able to handle larger

and more complex protocols. Another advantage is that

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

17

the verifier does not have to limit the number of runs of

the protocol - unbounded number of sessions.

7. Conclusion

On the hostile communication environment like Internet,

this paper presents a technique based on strong theoretical

foundation to deal with the decidability of security

protocols. Due to the undecidability theorem, there are

some approaches to overcome the limitation by dealing

with fundamental point in the theorem. This paper

attempts to make definite verification result with regards

to any given security protocol via semi-decision procedure

(sometimes the results are not certain, i.e. false attacks).

The procedure is based on the applied π-calculus

modeling and Horn clauses-based deduction. By accepting

sound abstraction, the technique can handle unbounded

protocol sessions, which means to analyze infinite-state

space. On the other hand, the method ignores repetitions

of computation from the intruder’s viewpoint. This is the

cause for the method’s incompleteness. The model and

property verification in the proposed method are well

defined and supported by ProVerif. A simplified

handshake protocol is taken as an illustrated example of

the method.

Acknowledgement

We would like to thank CS'20.15 topic: " Research

collaborative filtering models to suggest users to apply the

emotional scoring method", Institute of Information

Technology, Vietnam Academy of Science and

Technology that has provided funding for the study.

References
[1] B. Blanchet, “Security protocol verification: Symbolic and

computational models,” in Principles of Security and Trust

- First International Conference, POST 2012, Volume 7215

of Lecture Notes in Computer Science. Springer, 2012, pp.

3–29.

[2] B. Blanchet, B. Smyth, and V. Cheval, ProVerif 1.91:

Automatic Cryptographic Protocol Verifier, User Manual

and Tutorial, 2015.

[3] M. D. Ryan and B. Smyth, “Applied pi calculus,” 2011.

[4] D. L. Mitchell, N. A. Durgin, P. D. Lincoln, J. C. Mitchell,

and A. Scedrov, “Undecidability of bounded security

protocols,” 1999.

[5] R. M. Amadio, R. M. Amadio, D. Lugiez, and D. Lugiez,

“On the reachability problem in cryptographic protocols.”

Springer-Verlag, 2000, pp. 380– 394.

[6] H. Comon, V. Cortier, and J. Mitchell, Tree Automata with

One Memory, Set Constraints, and Ping-Pong Protocols.

Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp.

682–693.

[7] L. C. Paulson, “The inductive approach to verifying

cryptographic protocols,” Journal of Computer Security,

1998.

[8] H. Comon and V. Shmatikov, “Is it possible to decide

whether a cryptographic protocol is secure or not?” 2001.

[9] B. Blanchet, “Using Horn clauses for analyzing security

protocols,” in Formal Models and Techniques for

Analyzing Security Protocols, ser. Cryptology and

Information Security Series, V. Cortier and S. Kremer, Eds.

IOS Press, 2011, vol. 5, pp. 86–111.

Truong- Thang Nguyen received a Ph.D.

in 2005 at the Japan Advanced Institute of

Science and Technology (JAIST), Japan.

Currently working at the Institute of

Information Technology, Vietnam

Academy of Science and Technology.

Research fields: software quality

assurance, software verification, program

analysis.

Thanh- Son Khuat received the B.S.

degrees in Information Technology from

University of Engeneering and

Technology, Vietnam National University

in 2016, respectively. During 2016-2017,

he stayed in Samsung Vietnam Mobile

R&D Centre, Samsung Electronic

Vietnam, to study mobile and application

for samsung mobile. Currently working at

the Institute of Information and Technology, VietNam Academy

of Science and Technology. Research fields: software quality

assurance, software verification, program analysis.

