
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

120

Manuscript received May 5, 2020

Manuscript revised May 20, 2020

Compilation Time-Based Analysis using Optimized Iterative

Techniques

Ume Farwa1, Khurshid Asghar2†, Mubbashar Saddique2

umefarwa37@gmail.com, khasghar@uo.edu.pk , mubashar.chaudary@uo.edu.pk
1Department of Computer Science, Information Technology University Lahore 54000, Pakistan

2Department of Computer Science, University of Okara 56300, Pakistan

Abstract
Compilation time has always been an important factor for

performance analysis of any system. This paper discusses the

various optimized iterative techniques to analyze the performance

of programs like loop unrolling, loop level parallelism or loop-

carried dependence, and loop ordering. In first technique, loop is

unrolled up to scale 5 and then compared with rolled one to find

out performance differences. In the second technique, it finds that

the loop carried dependence and inter-change the statements order

and exposes the par-allelism. In the third one, the loop order is

changed to reduce the jump calls during code execution. The

execution time of all three methods are compared, that is the proof

of high performance after implementing the optimized iterative

techniques. The execution time may differ on different machines.

The results are calculated on a core i5 machine with 2.7Ghz

processor under Linux kernel.

Key words:
Compilation time; performance analysis; iterative techniques;

program optimization.

1. Introduction

Optimization techniques are the helping hand of any system

developed to perform well. Different optimization

techniques are developed to reduce the execution time/

memory usage by processor. Some of these are

implemented on ma-chine level, while others are the source

level implementation. This paper discusses the source level

optimization of iterative methods to reduce the execution

time of a program. The first technique discusses the loop

unrolling against loop rolling. If a large number of loop

iterations exist in the kernel pipeline, the loop iterations

could potentially be the critical path of the kernel pipeline.

UL can increase the pipeline throughput by allocating more

hardware resources to the loop [1]. It causes the reduction

of compilation time that indirectly adds up to performance.

The loop-carried dependence is the iterative dependency

that exists in loops that causes a barrier to implement

parallelism. To implement the loop-level parallel-ism, we

need to recognize the structure of loops, arrays and any

variable involved. If the findings show that the statements

inside the loop are not circular dependent, then we can make

alterations in statements to execute parallel and improve the

execution time. The results of this technique also count for

higher performance and reduction in compilation technique

[2]. The third technique involves changing the loop order.

The impact of loop order is an important count in execution

time. Basically, it reduces the jump calls between

instruction execution which in return reduce the overall

execution time. It comes up with vertical and horizontal

execution order of instructions.

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑘 = 0; 𝑘 < 100; 𝑘 + +)
{

. . .

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 100; 𝑗 + +)
{

. . .

}

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 100; 𝑗 + +)
{

. . .

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑘 = 0; 𝑘 < 100; 𝑘 + +)
{

. . .

}
}

This technique also counts for the high-performance system

that needs the iterative solutions to be implemented. The

paper is further divided as follows. It discusses related work

that is already gone through the experiment. Then the

methodology is explained under all the techniques

experimented during this research. Then the results and

conclusion sum up the discussion about the experiment

under discussion.

2. Related Work

Loop unrolling is widely helpful in different types of

applications. Some of its applications exist in image

processing where the image convolution takes help of loop

unrolling while multiplying the matrix. It helps in creating

optimized algorithms. The performance after optimization

mailto:umefarwa37@gmail.com
mailto:khasghar@uo.edu.pk
about:blank

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

121

and parallelism speeds up over 2000x over baseline [3]. The

work has been done on parallel frameworks that offer the

programming patterns which express the concurrency in

applications that enables the usage of hardware in parallel

manners. This transforms the sequential instructions to

parallel after identifying the map and pipeline the parallel

patterns. [5] The kernel level optimization is also done by

finding the loop pattern for its different activities. The loop

order is an important factor that always impacts the

performance as well as compilation time [4].

3. Proposed Methodology

This approach comes up with three different methodologies

to find out the best possible optimization on source level.

All the three techniques are explained here with source code

and results. Every function provokes from the 𝑚𝑎𝑖𝑛()

function. While for comparing the results both scenarios are

discussed.

3.1 Loop unrolling

The following given code is about loop rolling and unrolling.

𝐿𝑜𝑜𝑝 𝑟𝑜𝑙𝑙𝑒𝑑:

𝑣𝑜𝑖𝑑 𝑙𝑜𝑜𝑝𝑅𝑜𝑙𝑙𝑒𝑑 ()
{

𝑖𝑛𝑡 𝑥 = 0, 𝑦 = 0;

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 100000000; 𝑖 + +)

{

𝑥 = 𝑦;

}

𝐿𝑜𝑜𝑝 𝑢𝑛𝑟𝑜𝑙𝑙𝑒𝑑:

𝑣𝑜𝑖𝑑 𝑙𝑜𝑜𝑝𝑈𝑛𝑟𝑜𝑙𝑙𝑒𝑑() {

𝑖𝑛𝑡 𝑥 = 0, 𝑦 = 0;

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 20000000; 𝑖 + +)

{

𝑥 = 𝑦;

𝑥 = 𝑦;

𝑥 = 𝑦;

𝑥 = 𝑦;

𝑥 = 𝑦;

}

}

Loop is unrolled up to scale 5. What we did is just replace

the repetitive instruction with the same 5 instructions and

lower the number of iterations five times of total.

3.2 Loop level parallelism

The following code is about eliminating the loop-carried

dependence and exposing the loop-level parallelism [2].

𝐿𝑜𝑜𝑝 − 𝑙𝑒𝑣𝑒𝑙 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑒:

𝑣𝑜𝑖𝑑 𝐿𝐿𝑃1()

{

𝑖𝑛𝑡 𝐴[100], 𝐵[100 + 1], 𝐶[100], 𝐷[100];

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 1000000; 𝑗 + +)

{

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 100; 𝑖 + +)

{

𝐴[𝑖] = 𝐴[𝑖] + 𝐵[𝑖];

𝐵[𝑖 + 1] = 𝐶[𝑖] + 𝐷[𝑖];

}

}

}

𝐿𝑜𝑜𝑝 − 𝑙𝑒𝑣𝑒𝑙 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑠𝑚
}

𝑣𝑜𝑖𝑑 𝐿𝐿𝑃2()
{

𝑖𝑛𝑡 𝐴[100], 𝐵[100 + 1], 𝐶[100], 𝐷[100];

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 1000000; 𝑗 + +)

{

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

122

𝐴[0] = 𝐴[0] + 𝐵[0];

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 99; 𝑖 + +)

{

𝐵[𝑖 + 1] = 𝐶[𝑖] + 𝐷[𝑖];

𝐴[𝑖 + 1] = 𝐴[𝑖 + 1] + 𝐵[𝑖 + 1];

}

}

𝐵[100] = 𝐶[99] + 𝐷[99];

}

The above code is just finding out the dependency between

the instructions and finding if it can be removed or not.

3.3 Loop ordering

The following code describes the loop ordering technique

that is also helpful in some scenarios to enhance the

performance.

𝐿𝑜𝑜𝑝 𝑜𝑟𝑑𝑒𝑟 1:

𝑣𝑜𝑖𝑑 𝑙𝑜𝑜𝑝1()

{

𝑖𝑛𝑡 𝑥[100][100];

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 10000; 𝑖 + +)

{

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 100; 𝑗 + +)

{

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑘 = 0; 𝑘 < 100; 𝑘 + +)

{

𝑥[𝑗][𝑘] = 𝑖;

}

}

}

}

𝐿𝑜𝑜𝑝 𝑜𝑟𝑑𝑒𝑟 2:
𝑣𝑜𝑖𝑑 𝑙𝑜𝑜𝑝2()

{

𝑖𝑛𝑡 𝑥[100][100];

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0; 𝑖 < 10000; 𝑖 + +)

{

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑘 = 0; 𝑘 < 100; 𝑘 + +)

{

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑗 = 0; 𝑗 < 100; 𝑗 + +)

{

𝑥[𝑗][𝑘] = 𝑖;

}

}

}

}

It can be observed that here the most inner loop is

interchanged with the second inner loop thus improves the

execution time.

3.4 Execution process

The execution is the process where we can compare the

results of its compilation time that indirectly is a sign of

performance evaluation of the system. To get the execution

time, we come up with the following strategies.

// Get the system time before function start

𝑎𝑢𝑡𝑜 𝑠𝑡𝑎𝑟𝑡 = ℎ𝑖𝑔ℎ_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑐𝑙𝑜𝑐𝑘: : 𝑛𝑜𝑤();

// Invoke the function,

𝑙𝑜𝑜𝑝1()

//Get the system time after function stop execution

𝑎𝑢𝑡𝑜𝑠𝑡𝑜𝑝 = ℎ𝑖𝑔ℎ_𝑟𝑒𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛_𝑐𝑙𝑜𝑐𝑘: : 𝑛𝑜𝑤();
// Get the total time duration.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

123

𝑎𝑢𝑡𝑜 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛_𝑐𝑎𝑠𝑡 < 𝑚𝑖𝑐𝑟𝑜𝑠𝑒𝑐𝑜𝑛𝑑𝑠 >
 (𝑠𝑡𝑜𝑝 – 𝑠𝑡𝑎𝑟t);

4. Results

The results are taken from two different sources after

compilation. The first source is the online compiler [6]. The

second source is the Linux OS. Table1 shows the results.

LR: Loop rolling

LUR: Loop unrolling

LLP: Loop-level parallelism

Table 1: Margin specifications
LR() LUR() LLP1() LLP2() Loop1() Loop2()

1.05 0.3001 4.3828 1.8878 1.4375 0.3556

0.2126 0.0421 3.3843 2.903 2.5339 2.3422

5. Conclusion

The techniques for optimizing the iterative methods are

useful scenario to scenario. For example, some techniques

might not be as helpful as expected. On the other hand, there

is machine to machine performance variation. So, the above

results may vary if the same code is run on some other

machine with different environments. Overall these

techniques are helpful in various real time applications as

well as for the OS itself, as stated above. Image processing

takes it into a great account to use the loops for matrix

manipulation. These techniques are still on the way to

improve time to time for achieving high performance on

different systems.

References
[1] Z. Wang, B. He, W. Zhang, and S. Jiang, "A performance

analysis framework for optimizing OpenCL applications on

FPGAs," in 2016 IEEE International Symposium on High

Performance Computer Architecture (HPCA), 2016, pp. 114-

125.

[2] J. L. Hennessy and D. A. Patterson, Computer architecture: a

quantitative approach vol. 6: Elsevier, 2019.

[3] A. Tousimojarad, W. Vanderbauwhede, and W. P. Cockshott,

"2D Image Convolution using Three Parallel Programming

Models on the Xeon Phi," arXiv preprint arXiv:1711.09791,

2017.

[4] T. M. Low, F. D. Igual, T. M. Smith, and E. S. Quintana-Orti,

"Analytical modeling is enough for high-performance BLIS,"

ACM Transactions on Mathematical Software (TOMS), vol.

43, pp. 1-18, 2016.

[5] D. del Rio Astorga, M. F. Dolz, L. M. Sánchez, J. D. García,

M. Danelutto, and M. Torquati, "Finding parallel patterns

through static analysis in C++ applications," The

International Journal of High Performance Computing

Applications, vol. 32, pp. 779-788, 2018.

[6] (2020, 15-Jan-2020). C++ Debugger. Available:

https://www.onlinegdb.com/

Ume Farwa completed BS (Information

Technology) from University of Education,

Lahore in 2017. Presently, she is MPhil

Scholar at Information Technology

University Lahore, Pakistan. Her research

interest is including HCI, machine learning,

data mining, networks and programming.

Khurshid Asghar is working as Associate

Professor at Department of Computer

Science University of Okara. He earned

PhD degree in the field of image forensics

from COMSATS University Islamabad,

Pakistan. He also worked as research

associate at Cardiff School of Computer

Science and Informatics, Cardiff

University, UK. His current research

interest includes Image Processing, Image

and Video Forensics, Machine Learning, Deep Learning, Network

Security, Biometrics, Medical Imaging Brain Signals, Geometric

Modeling and Computer programming.

Mubbashar Siddique is working as

Lecturer at Department of Computer

Sciences. He completed BSc

(Telecommunication Engineering) from

Institute of Engineering & Technology,

Lahore Campus, and Pakistan. He got merit

scholarship from COMSATS University

Islamabad (Abbottabad Campus), Pakistan

where he completed his MS computer

science in 2010. Presently, he is a PhD

Scholar at COMSATS University Islamabad, Pakistan. Mr.

Siddique also worked as a research associate at Department of

Cyber Defense Graduate School of Information Security, Korea

University, South Korea. Presently, he is working in video and

image forensic domain. Furthermore, his research interest is in the

area of image/video processing, computer vision, machine

learning, data mining and networks.

https://www.onlinegdb.com/

