
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

171

Manuscript received May 5, 2020

Manuscript revised May 20, 2020

Performance Improvement through Path-Based Partitioning in

Hardware/Software Co-Design

Elham Azari1 and Hakduran Koc2†

Elham.Azari@asu.edu KocHakduran@uhcl.edu
Arizona State University, Tempe, AZ, USA , University of Houston-Clear Lake, Houston, TX, USA,

Summary
In co-design of an embedded system, hardware/software

partitioning has always been a crucial step. Efficient partitioning

improves the overall performance of a system significantly. As

allocating tasks to either hardware or software components has

its own advantages and disadvantages, it typically becomes

necessary to tradeoff among the main design metrics such as

performance and area. This paper proposes a new approach in

partitioning the tasks in a given Control Data Flow Graph

(CDFG) to enhance the performance while meeting the area

constraint. In order to effectively perform partitioning phase of

the co-design, the combination of two main paths are considered:

hot path and critical path. These two paths dominate the total

execution time of a system. The target co-design architecture

consists of two CPUs and two ASICs with different execution

time for each task. This paper partitions the hot path and the

critical path, and tries to assign as many tasks as possible to the

ASICs by giving higher priority to the tasks in the hot paths

which directly have significant effect on the critical path.

Consequently, the total execution time of a given application is

reduced. This, in turn, improves the overall performance without

degrading other implementation metrics such as power and

reliability.

The experimental results collected in this research indicate that

the proposed path-based partitioning method on the co-design

architecture improves the performance significantly.

Key words:
Co-design architecture, hardware/software partitioning, CDFG,

hot path, critical path.

1. Introduction

Hardware/software partitioning is a crucial step in co-

design which is considered as part of the modeling in the

main co-design steps. Partitioning allocates each task

(often referred to as basic blocks) in a program to either

hardware or software components. Partitioning is an NP

problem, therefore, efficient and more flexible heuristic

algorithms are used to overcome this problem. Although

these heuristic algorithms give approximate optimal

results, they reduce the partitioning time significantly. The

purpose of this research is to explore and present a

partitioning method on a given CDFG to assign the basic

blocks to either hardware or software units. The target co-

design architecture is considered as two ASICs and two

CPUs as hardware and software units, respectively. This

method improves the performance while the given area

constraint is met. Our hypothesis is that, instead of

targeting all the basic blocks in a given CDFG, path-based

partitioning which targets the important paths can enhance

the performance significantly. To implement this

hypothesis, in this work, the combination of hot path(s)

and critical path are considered as the main target. These

two paths have significant effect on the performance of a

given application since they dominate the total execution

time of an application. The hot path(s) is part of a control

path that includes the tasks executed more frequently in a

given Control Flow Graph (CFG) such as loops. On the

other hand, the critical path is the longest path that

determines the shortest time possible to execute the tasks

in an embedded application. Since the tasks in a hot path

are executed many times at runtime, it has an enormous

effect on partitioning the whole application as well as the

critical path.

To identify hot paths in a given program, there are

advanced profiling techniques-edge weight profiling [1]

[2] and Ball-Larus path profiling [3] to name a few. In

this work, Ball-Larus path profiling is used which uses the

execution frequency assigned to each edge and also saves

how often each path in a CFG is executed.

This paper is organized as follows. Section 2 discusses the

related work on general and path-based partitioning

algorithms and approaches. Section 3 describes the main

concepts of our method. Section 4 presents the target

architecture used in this work. Section 5 describes the

operation of the proposed algorithm and illustrates its

operation by an example. Section 6 provides the

experimental results collected by comparing our approach

with two other methods and at the end, section 7

concludes our work.

2. Related Work

There are many notable research efforts on heuristic and

non-heuristic hardware/software partitioning algorithms

design in the literatures such as greedy based algorithms,

simulated annealing algorithm [4], dynamic programming

algorithm [5], genetic algorithm [6] [7], Tabu search [8]

[9] [10], Ant Colony Search algorithm [11] [12], Particle

mailto:Elham.Azari@asu.edu
mailto:KocHakduran@uhcl.edu

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

172

Swarm Optimization [13] [14], as well as their improved

approaches. Our method uses the hot paths in a graph as

one of the important paths in effecting the execution time

of a system. There are several path profiling techniques

which identify the important paths in a graph. For

instance, R. Cohn and G. Lowney [15] use the Hot-Cold

Optimization (HCO) technique to partition each program

into frequently executed (hot) and infrequently executed

(cold) parts. D. Ung and C. Cifuentes [16] propose an

algorithm for finding hot paths using edge weight profiles.

Yasue et al. [17] present an efficient online path profiling

technique, called structural path profiling (SPP) suitable

for Just-In-Time compilers. Vaswani et al. [18] introduce a

hardware path profiling scheme which is able to detect

several types of paths including the profile of hot paths.

Our method is a path-based partitioning method which

combines two major paths, namely, critical paths and hot

paths. There are some algorithms presented in which they

pay attention to critical path for partitioning the tasks. H.

Wang and H. Zhang [19] introduce a guiding function in

order to improve the efficiency of the greedy algorithm in

solving the partitioning problem. It considers the tasks on

the critical path as one of the priorities to maximize the

performance. G. Khan and M. Jin [20] present a new

graph model suitable for partitioning heterogeneous

systems. It targets the nodes on the critical path and tries

to assign them to the hardware components in order to

improve the performance and minimize the hardware area.

In hardware/software partitioning part, Lo et al. [21]

introduce a solution to calculate a total system execution

time which covers hardware and software execution times

and the data transfer time between nodes on the critical

path. On the other side, some papers present their work by

giving the priority to the tasks on hot paths. Jiang et al.

[22] propose an efficient heuristic algorithm for

hardware/software partitioning on the selected nodes in a

hot path. It considers all types of the communications

between neighboring blocks using 0-1 knapsack problem

[23] with the main objective of minimizing the execution

time with a given area constraint. W. Jigang and S.

Thambipallai [24] introduce a branch and bound algorithm

to partition the hot path selected by path profiling

techniques. The proposed method is applied on a Data

Flow Graph (DFG) divided in to basic blocks.

Zhang et al. [26] propose a new swarm intelligence

optimization algorithm after analyzing disadvantages of

conventional firework algorithm in order to improve the

optimization accuracy and decrease the time consumed.

They use a new selection strategy to accelerate the

convergence speed of the algorithm. Hassine et al. [27]

present another algorithm based on HW/SW partitioning

to investigate the best tradeoff between power and latency

of a given system considering the dark silicon problem.

Their algorithm favorable results compared to well-known

simulated annealing and genetic algorithms. Yin et al. [28]

propose a partitioning algorithm for resource-constraint

embedded security systems. They formulate the

partitioning problem as a 0-1 Knapsack problem using a

modified simulated annealing approach. Iguider et al. [29]

focus on non-functional requirements of modern

embedded systems while making sure the design meets the

functional specifications considering area and execution

time constraints. Their approach is based on minimax

algorithm and provides more optimal solutions compared

to genetic algorithm.

Azari and Koc [30] presents an approach to partition the

tasks in a given Control Data Flow Graph (CDFG)

representing an application. They consider the

combination of two main paths (hot path and critical path)

in the system during the partitioning phase of the co-

design as these two paths dominate the total execution

time. This paper extends the approach presented in [30].

Hou et al. [31] provide a survey of three important aspects

of hardware/software partitioning, namely, partitioning

models, partitioning algorithms, and parallel algorithms

for hardware/software co-design along with possible

research directions. In the existing literatures, most path-

based partitioning algorithms use either of the hot path or

critical path. Since both of these paths significantly affect

the total execution time of a system, we use and combine

these paths in our method in order to partition the tasks

more efficiently. This in turn provides significant

improvement in performance.

3. Details of Our Approach

Our approach is based on the combination of two main

paths in a CDFG: hot path and critical path. These two

paths and the various combinations between them in a

CDFG are discussed in the following sections.

3.1 CDFG

Our proposed approach is presented on a CDFG. CDFG is

a directed graph that presents the data dependencies in

addition to the control dependencies. In general, directed

edges in a CDFG determine the execution order of the

nodes. Specifically, the control edges represent the

transfer of a value or control from one node to another and

the data edges specify the data dependency between two

individual nodes. An edge can be conditional, representing

a condition while implementing an if/case statements or

loop constructs. In CDFGs, there are two types of nodes:

data flow nodes (also known as basic blocks) and decision

nodes. Data flow nodes are pieces of code with no

condition, one entry, and one exit point; and, decision

nodes are pieces of code with at least one condition.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

173

Figure 1 illustrates a CDFG that is generated from a given

specification in C language. The nodes in rectangular form

represent the data flow nodes and the nodes in diamond

represent the decision nodes. The reason for using this

type of graph in our approach is that we need all the paths

traversed in a program along with the data flow nodes.

These specifications are found in CDFG. The process of

translation starts by first deriving a CDFG from the source

code of a given specification.

Fig.1. A CDFG generated using the high level code on the left.

3.2 Scheduling CDFG

Scheduling CDFG is different from scheduling DFG that

considers only the data dependencies, since all the paths

including the loops must be considered. Therefore, for

scheduling a CDFG, the first step is to remove all the back

edges which indicate the loops. To do so, a loop

duplication technique [25] is used in the proposed

approach. As the name suggests, it duplicates the tasks in

the loops with respect to the order of the tasks and the

number of the iterations. The scheduling steps are shown

in an example. Therefore, for scheduling a CDFG, the first

step is to remove all the back edges which indicate the

loops. To do so, a loop duplication technique [25] is used

in the proposed approach. As the name suggests, it

duplicates the tasks in the loops with respect to the order

of the tasks and the number of the iterations. The

scheduling steps are shown in an example.

Figure 2 depicts a CDFG with 9 tasks along with their

execution time. The execution time of the start and exit

nodes are assumed to be zero. In this graph, there are four

separate paths, namely, ACG, AD, BEHI, and BF from the

start node to the exit node. For simplicity, in this graph we

eliminated the decision nodes. Each node is a data flow

node and each edge represents the control dependencies.

The back edges in this graph indicate loops with the

number of iterations, e.g. in path ACG, nodes C and G

will be iterated three times before the path finishes its

execution time. In our examples there are no data

dependencies between each path, so we schedule each

path separately. First, we use the loop duplication

technique explained above to remove all the back edges.

Figure 3 illustrates the CDFG after the loop duplication,

e.g. in the path BEHI, since the number of iterations for

the loop EHI is 2, nodes E, H, and I are duplicated once

and added right after the first EHI nodes with respect to

their order. All the four paths in Figure 3 are converted to

ACGCGCG, ADDDD, BEHIEHI, and BF respectively.

Now, there are 4 separate paths with no back edges and

dependencies, so we can schedule each of them separately.

In order to find the latency of the graph, the execution

time of all the nodes in each path after duplication will be

added together, and the longest execution time among all

the paths will be the latency of the graph. In Figure 4, each

path is separated and the edges are annotated with the

execution time of the nodes. After calculation, we can see

that path AD has the total execution time of 18 clock

cycles that is higher than the paths ACG, BEHI, and BF

with the execution times of 17, 14, and 3 clock cycles, as a

result, the longest path is AD and the latency of the graph

is 18 clock cycles.

Fig.2. A CDFG with 9 tasks along with their execution times.

Fig.3. loop duplication on the CDFG Fig.4. Scheduled CDFG

Path AD has higher execution time in comparison to the

paths ACG and BEHI, although it has fewer tasks. This

indicates that the latency of a CDFG does not depend on

Node ET (CC)

A 2

B 2

C 3

D 4

E 2

F 1

G 2

H 1

I 3

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

174

the number of the nodes in each path; it depends on the

execution times of the tasks and the number loop iterations.

3.3 Hot Path

A hot path is part of a control path that includes the tasks

(sequence of instructions) executed more frequently in a

given CFG, such as body of a loop since it is iterated

many times, as shown in Figure 5. Consequently, the other

tasks which are not part pf the hot path are considered as

cold path. Hot paths dominate the total execution time of

an application and are used for quick access to frequently

visited tasks. The hot paths have an enormous effect on

partitioning of the whole application; therefore, the whole

execution time of an application can be improved by

optimizing the hot path. As a result, this improves the

overall performance of an application significantly. The

importance of hot path is that the nodes on this path are

highly executed, which has a direct effect on the total

execution time. Within a program, there may be numerous

hot paths. The program might switch to different hot paths

or cycle between them. Therefore, for a specific run-time

of a program, each hot path can capture the most frequent

execution pattern. If a program’s behavior changes,

typically, new hot paths will be created. Since most of the

programs spend most of their execution time in small

portions of the code, identifying the hot path will often

result in boosting the execution speed. In addition,

collecting hot paths is important for optimizing the target

program effectively.

In order to identify a hot path in a program, there are

advanced profiling techniques. In the proposed method,

Ball-Larus path profiling technique is used which uses the

execution frequency assigned to each edge and also save

how often each path in a CFG is executed. This profiling

technique transforms a given CFG containing loops into

an acyclic graph with a limited number of paths.

 Fig.5. Hot path Fig.6. Path ABDG as the critical path

3.4 Critical Path

Critical path is the longest path that determines the

shortest time possible to execute the tasks in an embedded

application. In other words, the critical path is a sequence

of connected tasks from the start to the exit node that will

take the longest to complete. As shown in figure 6, path

ABDG has longest execution time in comparison to the

path ACEFG, thus, path ABDG is the critical path in this

CDFG. The importance of this path is that the nodes on

this path delay the execution runtime; as a result, this path

dominates the execution latency as well as the hot path.

All tasks in a program are assigned an execution time, an

estimate of how long they will take to complete and the

connections between the tasks (dependencies) are

established. To identify the critical path in a CDFG, we

need to find the longest execution latency among all the

paths. This can be done by scheduling the paths in a

CDFG explained in the preceding sections, and adding the

execution time of each individual node together. To put it

another way, by following a path among all the paths in a

CDFG that has the longest duration of connected tasks and

adding these durations together, the critical path is

identified.

3.5 Different Combination of Hot Path and

Critical Path

There are three types of combinations between hot paths

and critical path in a CDFG which are as follows: 1) The

critical path is the same as the hot path (i.e., those nodes in

the critical path are exactly the same nodes which are part

of the hot path). For example, there can be a critical path

that has one loop with a large number of iterations. 2) The

critical path is completely separate from the hot path. In

this case, they do not have any. 3) The hot path is part of a

critical path. In this case, not only the critical path contains

all the nodes in the hot path but it has more nodes.

Fig.7. Differenct combinations of the hot path and the critical path

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

175

Figure 7 illustrates the three combinations in graph a, b,

and c, respectively. For simplicity, each graph is part of a

whole graph highlighted with the critical path and the hot

path. The first two combinations occur very rarely in real

applications. Though our approach is applicable on all the

discussed combinations, we use only the third option since

it is more common.

4. Target Co-Design Architecture

The architecture used in this paper is illustrated in Figure 8.

It is composed of two CPUs as software components and

two ASICs as hardware components. All these

components have different execution time for each task in

the graph. Each CPU communicates with both of the

ASICs as shown in figure 8. Besides, all these software

and hardware components communicate through a shared

bus with a software-managed memory. Each task in the

CDFG can have different implementation options on each

available component but with different metrics. Given this

architecture along with a technology library, a CDFG of

an application and an area constraint, our method

partitions the graph and assigns the tasks to either one of

the CPUs or one of the ASICs. In this work the

communication time between the CPUs and the ASICs are

considered to be zero.

Fig.8. The target co-design architecture composed of two CPUs and two

ASICs.

5. The Proposed Algorithm

The goal of the proposed algorithm is to maximize the

performance of the given system while meeting the given

area constraints for the ASICs. As shown in Algorithm 1,

the inputs are a given CDFG, software execution time for

the two given CPUs (CPU1ET and CPU2ET) and hardware

execution time for the two given ASICs (ASIC1ET and

ASIC2ET) for each node, area of each node on each ASICs

(ASIC1area and ASIC2area), and the total area available on

the chip (AT) which is the summation of the ASIC1area and

Algorithm 1

1. Input: CDFG, CPU1ET, CPU2ET, ASIC1ET, ASIC2ET,

ASIC1area, ASIC2area, AT.

2. Output: Partitioned CDFG, L.

3. CPU1set = {ni}, CPU2set = {nj} where Sigma i+j = total

number of the nodes in the CDFG

 ASIC1set = { }; ASIC2set ={ };

4. Pc = critical path of the CDFG according to the CPU1

and CPU2 sets;

5. PUpdatedC = Pc;

6. Find all the hot paths in the CDFG;

7. Initialize L;

8. AU = 0;

9. Calculate the profit ratio for each node*;

10. Set Pset for each path;

11. while AU < AT do

12. Pc = PUpdatedC;

13. while (Pc = PUpdatedC) && ((Pset in Pc) != {}) do

14. Select the first node (nf) from the Pset in Pc with

the highest profit ratio;

15. if (AU + ASICarea nf) < AT then*

16. ASICset = ASICset + {nf};

17. CPUset = CPUset – {nf};

18. AU = (AU +);

19. Update L;

20. PUpdatedC = Updated critical path;

21. end if

22. Update Pset;

23. end while

24. end while

* profit-ratio: each node has 4 profit ratio in this architecture, (CPU1ET-

ASIC1ET)/ASIC1area, (CPU1ET-ASIC2ET)/ASIC2area, (CPU2ET-

ASIC1ET)/ASIC1area, (CPU2ET-ASIC2ET)/ASIC2area.

* ASICset and CPUset in this step are chosen based on the initial

partitioning phase.

ASIC2area. The outputs are the partitioned CDFG in which

each node is assigned to either hardware or software

component, and the execution latency (L) of the

partitioned graph. In the beginning of the algorithm, the

software sets (CPU1set and CPU2set) contain all the nodes

in the CDFG, i.e., based on the given execution time of the

CPUs for each node, the node executed faster in a CPU is

dedicated to that CPU set. On the other hand, both the

hardware sets (ASIC1set and ASIC2set) are null since all the

nodes are assigned to the software components in the

beginning. According to the preceding sections, the

critical path is found and assigned to Pc. PUpdatedC

represents the updated critical path and it is initialized with

the value in Pc. The next step is to find all the hot paths in

the graph, and initialize L and the area used (AU) with

longest execution time and 0, respectively. Line 9

calculates (CPUET-ASICET)/ASICarea for each node, which

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

176

is called as profit ratio in knapsack problem. This value is

one of the priorities given to each node. Line 10 indicates

a set for each path excluding the hot paths in the CDFG

(Pset) that contains all the nodes in the decreasing order

according to their profit value but the highest priority is

given to the nodes that are in the hot paths. In other words,

for each path, first the nodes in the hot paths are set in

decreasing order then other nodes are added. If two nodes

in a Pset have the same priority in terms of profit value and

being in a hot path, the one that has less ASICarea has

higher priority and is set earlier in Pset. In line 11 through

23, after assigning PUpdatedC to Pc, first node from the Pset

of the critical path is selected and assigned to either of the

ASIC1set or ASIC2set (based on the calculated profit ratio),

if AU is less than AT. Each time one node is assigned to

an ASICset, it is removed from its CPUset. In the last step,

the selected node will be removed from all the Pset(s)

regardless of its assignment to ASICset. If one selected

node does not meet the area condition; the other nodes that

meet the area condition will be chosen. This iterates as

long as the total area used for all the nodes assigned to

ASICsets is less than AT.

5.1 Illustrated Example

This section describes the operation of the proposed

approach in an example. In the CDFG illustrated in figure

3, there are 26 basic blocks which represent the tasks in

the program and several edges, which indicates the control

dependency between the nodes. There are 4 back edges

which represent the loops, and the number shown on each

of them denotes the number of iteration for the specified

loop. Based on Ball-Larus path profiling technique, there

are totally 6 individual paths in this graph, considering the

fact that paths can also start and end on loop back edges.

Based on the edge value assignment step in the Ball-Larus

path profiling, Table 2 indicates the unique IDs for all the

paths in the CDFG given in Figure 3. Table 1 presents

random generated values for the inputs of the algorithm.

The random values assigned to the execution times of

CPUs (CPU1ET and CPU2ET) and ASICs (ASIC1ET and

ASIC2ET) ranges from 10 to 40 and 1 to 5 respectively.

The arbitrary values assigned to the ASICs area

(ASIC1Area and ASIC2Area) ranges from 5 to 35. The first

step is to calculate the profit ratio value for each basic

block. Let us assume that AT is 100. According to the

given inputs, we find the critical paths, all the hot paths

and the execution latency. The followings are the initial

results:

ASIC1set = {} and ASIC2set = {}

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,R,S,T,V,W,X,Y}

CPU2set= {B,C,H,N,P,Q,U,Z}

Pc = Path 3

Hot paths: {Path 10, Path 11, Path 12, Path 13}

L = 349 cycles

As explained in section 3.5, all the paths excluding hot

paths, should be set in decreasing order giving the highest

priority to the nodes in path 10, path 11, path 12, and path

13. Accordingly, all the Psets are ordered as follows:

Pset9 (ADJ) = {J,D,A} D,J (higher priority)

Pset8 (AEKV) = {V,E,K,A}

Pset7 (AELT) = {E,L,T,A}

Pset6 (AELUW) = {W,U,E,L,A} W,U (higher

priority)

Pset5 (AEMX) = {M,X,E,A}

Pset4 (AFN) = {N,F,A} N,F (higher priority)

Pset1 (BGO) = {G,B,O}

Pset3 (BHPRYZ) = {Y,R,P,Z,H,B} Y,R,P,Z(high prio)

Pset2 (BHQ) = {H,B,Q}

Pset0 (CIS) = {C,I,S}

In the first iteration, node Y is selected from Pset3 since it is

the initial value of Pc. Based on the profit ratio calculation,

node Y has higher ratio when it is assigned to ASIC1.

Since the area condition is met (ASIC1area =12 is less than

AT =100), node Y will be assigned to ASIC1set and

removed from CPU1set. Then all the hardware and

software sets will be updated as follows:

ASIC1set = {Y} and ASIC2set = {}

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,R,S,T,V,W,X}

CPU2set= {B,C,H,N,P,Q,U,Z}

The updated critical path will remain the same as before,

i.e., Pset3. L will decrease to 261 cycles and AU will be 12.

The selected node in addition to the collected results in the

next iterations are as follows:

Second iteration: node R

ASIC1set = {Y,R} and ASIC2set = {}

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,S,T,V,W,X}

CPU2set= {B,C,H,N,P,Q,U,Z}

Pc: Path 3

L = 169 cycles and AU = 25

Third iteration: node P

ASIC1set = {Y,R} and ASIC2set = {P}

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,S,T,V,W,X}

CPU2set= {B,C,H,N,Q,U,Z}

Pc: Path 3

L = 141 cycles and AU = 44

Fourth iteration: node Z

ASIC1set = {Y,R,Z} and ASIC2set = {P}

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,S,T,V,W,X}

CPU2set= {B,C,H,N,Q,U}

Pc: Path 6

L = 126 cycles and AU = 72

Fifth iteration: node W

ASIC1set = {Y,R,Z} and ASIC2set = {P,W}

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,S,T,V,X}

CPU2set= {B,C,H,N,Q,U}

Pc: Path 9

L = 104 cycles and AU = 99

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

177

 Table 1. Random values given to the inputs of the algorithm along with their calculated profit value.

 sixth iteration: node J

ASIC1set = {Y,R,Z} and ASIC2set = {P,W,J}

Fig.9. Given CDFG with individual tasks and 4 loops.

CPU1set = {A,D,E,F,G,I,K,L,M,O,S,T,V,X}

CPU2set= {B,C,H,N,Q,U}

Pc: Path 4

L = 122 cycles and AU = 104

The sixth iteration is actually the last iteration based on the

given total area. There is only 1 unit of area left and the

area of the remaining nodes is more than that value,

therefore the algorithm terminates and the final result will

be the results in the sixth iteration.

Evidently, as we increase the presumed area, the execution

time decreases. If profit ratio is the same for a CPU, then

the ASIC that has less ET is chosen. Like task ‘I’ in this

graph.

6. Experimental Evaluation

This section presents the experimental results of the

proposed approach. Table3 contains the first set of results.

There are 10 randomly generated CDFGs in which the

number of nodes varies from 9 to 44. Each CDFG is

randomly generated using Task Graphs For Free (TGFF).

This tool is designed to generate pseudo-random task-

graphs for use in different area of research related to

scheduling and binding. TGFF does not generate back

edges are randomly added to the generated graph.

The number of iteration for each back edge ranges from 2

to 5. For each graph, one random number is generated as

an area constraint for the whole hardware components.

Our approach is compared with two other approaches. The

first one is 0-1 knapsack problem (KP), in which nodes are

selected only according to their profit-weight ratio and it

does not matter if the nodes are part of the hot path or

critical path. Unlike the first approach, the second method

is a path-based method called as Critical Path (CP)

approach which is similar to our approach without

considering the hot paths as a priority. In this approach,

the nodes are selected only if they are in the critical path.

In the second column of table 3, the execution time of

each of the three approaches is calculated and in the third

column, the improvement in execution time is calculated

by comparing our approach with the other two. The

improvement on average for the two comparisons is

45.4% and 15.3%, respectively, which shows the

effectiveness of our approach. In graph 1 and 10, our

approach does not show any improvement in comparison

to the CP approach. In graph 1, those nodes selected in our

approach, and the ones selected in CP approach are the

same but with different order. The reason is that, the

critical path does not change after each iteration, and

according to the presumed total area, both approaches

repeat until all the nodes in the critical path are assigned to

B.B A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

CPU1ET 11 35 29 10 12 13 27 35 12 27 23 11 18 19 11 32 35 27 17 13 35 18 25 28 23 24

CPU2ET 17 30 17 32 34 13 28 31 28 38 23 28 18 18 32 11 13 29 23 17 21 23 34 35 27 11

ASIC1ET 5 1 5 5 4 1 1 2 3 3 5 1 1 4 3 2 1 4 5 3 5 4 4 4 1 1

ASIC2ET 2 5 2 5 1 1 2 5 5 4 4 1 1 1 3 4 1 3 5 2 5 4 3 2 1 2

ASIC1Area 34 35 27 30 26 25 24 30 9 27 35 24 20 27 30 34 26 13 18 24 24 7 22 18 12 28

ASIC2Area 35 23 5 10 11 30 30 18 7 21 23 11 5 21 13 19 21 26 22 18 5 19 6 11 33 30

Path ID Path Name

0 CIS

1 BGO

2 BHQ

3 BHPRYZ

4 AFN

5 AEMX

6 AELUW

7 AELT

8 AEKV

9 ADJ

10 PRYZ

11 FN

12 UW

13 DJ

Table 2. Calculated Path IDs based on Ball-Larus prfiling technique

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

178

hardware components. Therefore, it does not show any

improvement. In graph 10, the given values make the

selected nodes in both approaches to be the same but in

different order, though the critical path changes after a few

iterations. The second

set of results is shown in Table 4. This table presents the

execution time of the generated graphs shown in table1

with 20% and 40% area increase, respectively. In 20%

area increase, our approach has 46.3% execution time

improvement on average in comparison to KP, and 14.0%

in comparison to CP. In 40% area increase, there is 48.2%

improvement in comparison to KP and 7.1% in

comparison to CP. In graph 8, 20% and 40% area increase

make our approach and the CP approach to reduce the

execution time with the same amount. The reason is that

all the nodes in the hot paths were already assigned to the

hardware components before area increase; therefore, the

node selected in both the approaches is on the critical path

but not the hot path. That is the reason we do not see any

improvement in this case.

The 20% area increase in graph 4 shows a big

improvement in CP approach in comparison to our

approach, considering the fact that the execution time of

our approach is still lesser. The reason is that the selected

node in CP approach is on the hot path that was already

chosen by our approach. In graph 1, 40% area increase

does not affect the execution time of any of the approaches,

since there is not enough unit of area left for assigning the

nodes to the hardware components.

As mentioned before, KP approach is not path-based and

does not choose the nodes according to their direct effects

on the execution time of the whole system. This is the

reason in all the cases, there is a big difference in

execution time between KP and our approach. Besides,

KP assigns the nodes with small area to hardware

components first. As we increase the area, the area of the

remaining nodes is high, that is the reason KP does not

give good results most of the times.

CDFG

Execution Time (CC) without area

increase

Execution Time (CC) with 20% area

increase

Execution Time (CC) with 40% area

increase

KP CP HP+CP KP CP HP+CP KP CP HP+CP

1 88 52 52 76 52 52 76 52 52

2 297 121 86 261 93 65 165 73 65

3 210 133 120 198 133 98 182 124 86

4 113 87 53 87 67 53 87 50 50

5 107 65 48 77 48 46 77 43 43

6 62 62 56 62 62 44 62 44 44

7 299 123 106 278 108 86 278 85 73

8 77 64 53 77 46 46 77 44 44

9 143 118 104 143 104 101 143 90 82

10 221 101 101 221 95 89 221 89 83

Improvement on average (%)
Our approach vs KP

Our

approach

vs CP

Our

approach

vs KP

Our

approach vs

CP

46.3 14.0 48.2 7.1

CDFG
Number of

Nodes

Number of

Paths

Area

Constraint

(Gates)

Execution Time (clock cycles) Improvement (%)

KP CP
Proposed

approach

Our approach

vs KP

Our approach

vs CP

1 10 3 50 88 52 52 40 0

2 14 4 83 297 121 86 71 28

3 19 6 61 210 133 120 42 10

4 13 5 80 113 87 53 53 39

5 16 6 71 107 65 48 60 26

6 9 4 60 62 62 56 9 9

7 16 5 78 299 123 106 64 13

8 10 4 55 77 64 53 31 17

9 26 10 100 143 118 104 27 11

10 44 20 71 221 101 101 57 0

Improvement on Average (%) 45.4 15.3

Table 3. The experiment evaluation comparing the proposed approach with two other approach. KP: Knapsack approach; CP: Critical Path.

Table 4. The second set of experimental evaluation assuming 20% and 40% area increase is allowed.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

179

7. Conclusions

In this research, we propose an approach to efficiently

partition a given CDFG to hardware and software tasks.

The target co-design architecture contains two CPUs as

software units and two ASICs as hardware units. The goal

of this approach is to improve the performance by

efficiently partitioning those nodes that are part of the

critical path and the hot path while an area constraint is

given. The hot paths in a given CDFG is found using the

path profiling techniques, and the critical path is identified

by finding the longest paths in terms of the execution time.

Since these two paths dominate the total execution time of

a system, they have a significant effect on the overall

performance of a system without degrading other factors

such as power consumption and reliability. The main idea

in this research is to give higher priority to the tasks in the

critical path, which are part of the hot paths as well.

Among those tasks, the highest priority is given to the

ones that directly have considerable effect on the critical

path, e.g. the nodes which are part of a loop. When these

frequently executed tasks are assigned to the ASICs, due

to higher speed in comparison to CPUs, the execution time

of the whole system decreases significantly, this leads to

boosting the performance. We compared our approach

with two other existing methods and the collected results

show the effectiveness of our approach.

References
[1] D. E. Stevenson and F. R. Knuth, "Optimal measurement

points for program frequency counts," BIT Numerical

Mathematics, pp. 313-322, 1973.

[2] K. Ebcioglu, R. D. Groves, K. Kim, G. M. Silberman and I.

Ziv, "VLIW compilation techniques in a superscalar

environment," in Programming language design and

implementation, 1994.

[3] T. Ball and J. R. Larus, "Efficient path profiling," in

Microarchitecture, Paris, 1996.

[4] S. Kirkpatrick, C. D. Gelatt and M. P. Vecchi,

"Optimization by Simulated Annealing," Science, pp. 671-

680, 1983.

[5] J. Madsen, J. Grode and P. V. Knudsen,

"Hardware/Software Partitioning Using the Lycos System,"

Springer US, 1997, pp. 283-305.

[6] V. Srinivasan, S. Radhakrishnan and R. Vemuri, "Hardware

software partitioning with integrated hardware design space

exploration," in Design, Automation, and Test in Europe,

Paris, 1998.

[7] L. Luo, H. He, Q. Dou and W. Xu, "Hardware/ Software

Partitioning for Heterogeneous Multicore SoC Using

Genetic Algorithm," in Intelligent System Design

andEngineering Application (ISDEA), Sanya, Hainan, 2012.

[8] J. Wu, P. Wang, S. Lam and T. Srikanthan, "Efficient

heuristic and tabu search for hardwar/software partitioning,"

The Journal of Supercomputing, pp. 118-134, 2013.

[9] U. Hao and J. Benlica, "an effective multilevel tabu search

approach for balanced graph partitioning," Computers and

Operations Research, pp. 1066-1075, 2011.

[10] J. Wu, T. Srikanthan and T. Lei, "Efficient heuristic

algorithms for path-based hardware/software partitioning,"

Mathematical and Computer Modelling, pp. 974-984, 2010.

[11] Y. Zhang, L. Wu, G. Wei, H. Wu and Y. Guo,

"Hardware/software partition using adaptive ant colony

algorithm," in Control and Decision, Nanjing, 2009.

[12] T. He and Y. Guo, "Power Consumption Optimization and

Delay Based on Ant Colony Algorithm in Networks-on-

Chip," Engineering Review, pp. 219-225, 2013.

[13] J. Wu, T. Srikanthan and G. Chen, "Algorithmic Aspects of

Hardware/Software Partitioning: 1D Search Algorithms,"

IEEE Transactions on Computers, pp. 532-544, 2009.

[14] S. Li, C. Wong, C. Yu and C. Hsu, "Hardware/Software co-

design for particle swarm optimization algorithm," in

Systems Man and Cybernetics (SMC), Istanbul, 2010.

[15] R. Lowney and P. G. Cohn, "Hot cold optimization of large

Windows/NT applications," in Microarchitecture, Paris,

1996.

[16] D. Cifuentes and C. Ung, "Optimising hot paths in a

dynamic binary translator," in Binary Translation, 2000.

[17] T. Yasue, T. Suganuma, H. Komatsu and T. Nakatani, "An

efficient online path profiling framework for Java just-in-

time compilers," in Parallel Architectures and Compilation

Techniques, 2003.

[18] K. Vaswani, Thazhuthaveetil, J. Matthew and Y. N. Srikant,

"A programmable hardware path profiler," in Code

Generation and Optimization, 2005.

[19] H. Zhang and W. H., "Improved HW/SW partitioning

algorithm on efficient use of hardware resource," in

Computer and Automation Engineering (ICCAE),

Singapore, 2010.

[20] G. N. Jin and K. M., "A new graph structure for hardware-

software partitioning of heterogeneous systems," in

Electrical and Computer Engineering, 2004.

[21] C. Lo, J. Luo and M. Shieh, "Hardware/Software Codesign

of Resource Constrained Real-Time Systems," in

Information Assurance and Security, 2009.

[22] W. Jigang, T. Polytech, T. Lei and T. Srikanthan, "Efficient

Approximate Algorithm for Hardware/Software

Partitioning," in Computer and Information Science,

Shanghai, 2009.

[23] A. Ray, W. Jigang and S. Thambipillai, "Knapsack Model

and Algorithm for HW/SW Partitioning Problem," in

Computational Science - ICCS 2004, Springer Berlin

Heidelberg, 2004, pp. 200-205.

[24] W. Thambipillai and S. Jigang, "A branch-and-bound

algorithm for hardware/software partitioning," in Signal

Processing and Information Technology, 2004.

[25] B. Kaminska, "Scheduling of a control and data flow

graph," in Circuits and Systems, 1993.

[26] T. Zhang, Q. Yue, X. Zhao, and G. Liu, “An improved

firework algorithm for hardware/software partitioning,” in

Applied Intelligence. 49, 950–962, 2019.

[27] S. Hassine, M. Jemai, and B. Ouni, Bouraoui, “Power and

Execution Time Optimization through Hardware Software

Partitioning Algorithm for Core Based Embedded System,”

in Journal of Optimization, 2017.

[28] S. Yin, C. Xu, Y. Qin, “A HW/SW partitioning algorithm

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.5, May 2020

180

for embedded security systems,” in Journal of

Computational Information Systems. 11. 237-246, 2015.

[29] A. Iguider, K. Bousselam, O. El Issati, M. Chami, and A.

En-Nouaary, “Embedded Systems Hardware Software

Partitioning Approach Based on Game Theory”, Edition 3,

Innovations in Smart Cities Applications, Springer, 2020.

[30] E. Azari and H. Koc, "Improving performance through path-

based hardware/software partitioning," 2015 Fifth

International Conference on Digital Information Processing

and Communications (ICDIPC), Sierre, 2015, pp. 54-59.

[31] N. Hou, X. Yan, and F. He, “A survey on partitioning

models, solution algorithms and algorithm parallelization

for hardware/software co-design,” In Design Automation

for Embedded Systems. 23(3), 2019.

Elham Azari received her B.S. degree in Computer

Engineering at Ferdowsi University of Mashhad, Iran in 2011;

and her M.S. degree from Computer Engineering at University of

Houston-Clear Lake in 2015. She is currently a Ph.D. candidate

at Arizona State University. Her research interests include digital

design, embedded systems and deep learning.

Hakduran Koc received his B.S. degree in Electronics

Engineering from Ankara University in 1997. After working in

the industry for two years, he joined Syracuse University, NY

where he received his M.S. and Ph.D. degrees in Computer

Engineering in 2001 and 2008, respectively. During his graduate

study, he was at the Pennsylvania State University as visiting

scholar. He is currently chair and an associate professor of

Computer Engineering at University of Houston-Clear Lake. His

research is in the areas of digital design, embedded systems, and

computer architecture. He is

