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Summary 
In co-design of an embedded system, hardware/software 

partitioning has always been a crucial step. Efficient partitioning 

improves the overall performance of a system significantly. As 

allocating tasks to either hardware or software components has 

its own advantages and disadvantages, it typically becomes 

necessary to tradeoff among the main design metrics such as 

performance and area. This paper proposes a new approach in 

partitioning the tasks in a given Control Data Flow Graph 

(CDFG) to enhance the performance while meeting the area 

constraint. In order to effectively perform partitioning phase of 

the co-design, the combination of two main paths are considered: 

hot path and critical path. These two paths dominate the total 

execution time of a system. The target co-design architecture 

consists of two CPUs and two ASICs with different execution 

time for each task. This paper partitions the hot path and the 

critical path, and tries to assign as many tasks as possible to the 

ASICs by giving higher priority to the tasks in the hot paths 

which directly have significant effect on the critical path. 

Consequently, the total execution time of a given application is 

reduced. This, in turn, improves the overall performance without 

degrading other implementation metrics such as power and 

reliability.   

The experimental results collected in this research indicate that 

the proposed path-based partitioning method on the co-design 

architecture improves the performance significantly. 

Key words: 
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1. Introduction 

Hardware/software partitioning is a crucial step in co-

design which is considered as part of the modeling in the 

main co-design steps. Partitioning allocates each task 

(often referred to as basic blocks) in a program to either 

hardware or software components. Partitioning is an NP 

problem, therefore, efficient and more flexible heuristic 

algorithms are used to overcome this problem. Although 

these heuristic algorithms give approximate optimal 

results, they reduce the partitioning time significantly. The 

purpose of this research is to explore and present a 

partitioning method on a given CDFG to assign the basic 

blocks to either hardware or software units. The target co-

design architecture is considered as two ASICs and two 

CPUs as hardware and software units, respectively. This 

method improves the performance while the given area 

constraint is met. Our hypothesis is that, instead of 

targeting all the basic blocks in a given CDFG, path-based 

partitioning which targets the important paths can enhance 

the performance significantly. To implement this 

hypothesis, in this work, the combination of hot path(s) 

and critical path are considered as the main target. These 

two paths have significant effect on the performance of a 

given application since they dominate the total execution 

time of an application. The hot path(s) is part of a control 

path that includes the tasks executed more frequently in a 

given Control Flow Graph (CFG) such as loops. On the 

other hand, the critical path is the longest path that 

determines the shortest time possible to execute the tasks 

in an embedded application. Since the tasks in a hot path 

are executed many times at runtime, it has an enormous 

effect on partitioning the whole application as well as the 

critical path.   

To identify hot paths in a given program, there are 

advanced profiling techniques-edge weight profiling [1] 

[2] and Ball-Larus path profiling [3] to name a few.  In 

this work, Ball-Larus path profiling is used which uses the 

execution frequency assigned to each edge and also saves 

how often each path in a CFG is executed.  

This paper is organized as follows. Section 2 discusses the 

related work on general and path-based partitioning 

algorithms and approaches. Section 3 describes the main 

concepts of our method. Section 4 presents the target 

architecture used in this work. Section 5 describes the 

operation of the proposed algorithm and illustrates its 

operation by an example. Section 6 provides the 

experimental results collected by comparing our approach 

with two other methods and at the end, section 7 

concludes our work. 

2. Related Work 

There are many notable research efforts on heuristic and 

non-heuristic hardware/software partitioning algorithms 

design in the literatures such as greedy based algorithms, 

simulated annealing algorithm [4], dynamic programming 

algorithm [5], genetic algorithm [6] [7], Tabu search [8] 

[9] [10], Ant Colony Search algorithm [11] [12], Particle 
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Swarm Optimization [13] [14], as well as their improved 

approaches. Our method uses the hot paths in a graph as 

one of the important paths in effecting the execution time 

of a system. There are several path profiling techniques 

which identify the important paths in a graph.  For 

instance, R. Cohn and G. Lowney [15] use the Hot-Cold 

Optimization (HCO) technique to partition each program 

into frequently executed (hot) and infrequently executed 

(cold) parts. D. Ung and C. Cifuentes [16] propose an 

algorithm for finding hot paths using edge weight profiles. 

Yasue et al. [17] present an efficient online path profiling 

technique, called structural path profiling (SPP) suitable 

for Just-In-Time compilers. Vaswani et al. [18] introduce a 

hardware path profiling scheme which is able to detect 

several types of paths including the profile of hot paths.  

Our method is a path-based partitioning method which 

combines two major paths, namely, critical paths and hot 

paths. There are some algorithms presented in which they 

pay attention to critical path for partitioning the tasks. H. 

Wang and H. Zhang [19]  introduce a guiding function in 

order to improve the efficiency of the greedy algorithm in 

solving the partitioning problem. It considers the tasks on 

the critical path as one of the priorities to maximize the 

performance. G. Khan and M. Jin [20] present a new 

graph model suitable for partitioning heterogeneous 

systems. It targets the nodes on the critical path and tries 

to assign them to the hardware components in order to 

improve the performance and minimize the hardware area.  

In hardware/software partitioning part, Lo et al. [21] 

introduce a solution to calculate a total system execution 

time which covers hardware and software execution times 

and the data transfer time between nodes on the critical 

path. On the other side, some papers present their work by 

giving the priority to the tasks on hot paths. Jiang et al. 

[22] propose an efficient heuristic algorithm for 

hardware/software partitioning on the selected nodes in a 

hot path. It considers all types of the communications 

between neighboring blocks using 0-1 knapsack problem 

[23] with the main objective of minimizing the execution 

time with a given area constraint. W. Jigang and S. 

Thambipallai [24] introduce a branch and bound algorithm 

to partition the hot path selected by path profiling 

techniques. The proposed method is applied on a Data 

Flow Graph (DFG) divided in to basic blocks.  

Zhang et al. [26] propose a new swarm intelligence 

optimization algorithm after analyzing disadvantages of 

conventional firework algorithm in order to improve the 

optimization accuracy and decrease the time consumed. 

They use a new selection strategy to accelerate the 

convergence speed of the algorithm. Hassine et al. [27] 

present another algorithm based on HW/SW partitioning 

to investigate the best tradeoff between power and latency 

of a given system considering the dark silicon problem. 

Their algorithm favorable results compared to well-known 

simulated annealing and genetic algorithms. Yin et al. [28] 

propose a partitioning algorithm for resource-constraint 

embedded security systems. They formulate the 

partitioning problem as a 0-1 Knapsack problem using a 

modified simulated annealing approach. Iguider et al. [29] 

focus on non-functional requirements of modern 

embedded systems while making sure the design meets the 

functional specifications considering area and execution 

time constraints. Their approach is based on minimax 

algorithm and provides more optimal solutions compared 

to genetic algorithm.  

Azari and Koc [30] presents an approach to partition the 

tasks in a given Control Data Flow Graph (CDFG) 

representing an application. They consider the 

combination of two main paths (hot path and critical path) 

in the system during the partitioning phase of the co-

design as these two paths dominate the total execution 

time. This paper extends the approach presented in [30]. 

Hou et al. [31] provide a survey of three important aspects 

of hardware/software partitioning, namely, partitioning 

models, partitioning algorithms, and parallel algorithms 

for hardware/software co-design along with possible 

research directions. In the existing literatures, most path-

based partitioning algorithms use either of the hot path or 

critical path. Since both of these paths significantly affect 

the total execution time of a system, we use and combine 

these paths in our method in order to partition the tasks 

more efficiently. This in turn provides significant 

improvement in performance. 

3. Details of Our Approach 

Our approach is based on the combination of two main 

paths in a CDFG: hot path and critical path. These two 

paths and the various combinations between them in a 

CDFG are discussed in the following sections. 

3.1 CDFG 

Our proposed approach is presented on a CDFG. CDFG is 

a directed graph that presents the data dependencies in 

addition to the control dependencies. In general, directed 

edges in a CDFG determine the execution order of the 

nodes. Specifically, the control edges represent the 

transfer of a value or control from one node to another and 

the data edges specify the data dependency between two 

individual nodes. An edge can be conditional, representing 

a condition while implementing an if/case statements or 

loop constructs.  In CDFGs, there are two types of nodes: 

data flow nodes (also known as basic blocks) and decision 

nodes. Data flow nodes are pieces of code with no 

condition, one entry, and one exit point; and, decision 

nodes are pieces of code with at least one condition.  
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Figure 1 illustrates a CDFG that is generated from a given 

specification in C language. The nodes in rectangular form 

represent the data flow nodes and the nodes in diamond 

represent the decision nodes. The reason for using this 

type of graph in our approach is that we need all the paths 

traversed in a program along with the data flow nodes. 

These specifications are found in CDFG. The process of 

translation starts by first deriving a CDFG from the source 

code of a given specification. 

    

        

 

 

 

 

 

 

 

 

Fig.1. A CDFG generated using the high level code on the left. 

3.2 Scheduling CDFG 

Scheduling CDFG is different from scheduling DFG that 

considers only the data dependencies, since all the paths 

including the loops must be considered. Therefore, for 

scheduling a CDFG, the first step is to remove all the back 

edges which indicate the loops. To do so, a loop 

duplication technique [25] is used in the proposed 

approach. As the name suggests, it duplicates the tasks in 

the loops with respect to the order of the tasks and the 

number of the iterations. The scheduling steps are shown 

in an example. Therefore, for scheduling a CDFG, the first 

step is to remove all the back edges which indicate the 

loops. To do so, a loop duplication technique [25] is used 

in the proposed approach. As the name suggests, it 

duplicates the tasks in the loops with respect to the order 

of the tasks and the number of the iterations. The 

scheduling steps are shown in an example. 

Figure 2 depicts a CDFG with 9 tasks along with their 

execution time. The execution time of the start and exit 

nodes are assumed to be zero. In this graph, there are four 

separate paths, namely, ACG, AD, BEHI, and BF from the 

start node to the exit node. For simplicity, in this graph we 

eliminated the decision nodes. Each node is a data flow 

node and each edge represents the control dependencies. 

The back edges in this graph indicate loops with the 

number of iterations, e.g. in path ACG, nodes C and G 

will be iterated three times before the path finishes its 

execution time. In our examples there are no data 

dependencies between each path, so we schedule each 

path separately.  First, we use the loop duplication 

technique explained above to remove all the back edges. 

Figure 3 illustrates the CDFG after the loop duplication, 

e.g. in the path BEHI, since the number of iterations for 

the loop EHI is 2, nodes E, H, and I are duplicated once 

and added right after the first EHI nodes with respect to 

their order. All the four paths in Figure 3 are converted to 

ACGCGCG, ADDDD, BEHIEHI, and BF respectively. 

Now, there are 4 separate paths with no back edges and 

dependencies, so we can schedule each of them separately.  

In order to find the latency of the graph, the execution 

time of all the nodes in each path after duplication will be 

added together, and the longest execution time among all 

the paths will be the latency of the graph. In Figure 4, each 

path is separated and the edges are annotated with the 

execution time of the nodes. After calculation, we can see 

that path AD has the total execution time of 18 clock 

cycles that is higher than the paths ACG, BEHI, and BF 

with the execution times of 17, 14, and 3 clock cycles, as a 

result, the longest path is AD and the latency of the graph 

is 18 clock cycles. 

 

 

 

 

 

 

 

 

Fig.2. A CDFG with 9 tasks along with their execution times. 

 

 

 

 

 

 

 

 

 

 

 

Fig.3. loop duplication on the CDFG      Fig.4. Scheduled CDFG 

Path AD has higher execution time in comparison to the 

paths ACG and BEHI, although it has fewer tasks. This 

indicates that the latency of a CDFG does not depend on 
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the number of the nodes in each path; it depends on the 

execution times of the tasks and the number loop iterations. 

3.3 Hot Path 

A hot path is part of a control path that includes the tasks 

(sequence of instructions) executed more frequently in a 

given CFG, such as body of a loop since it is iterated 

many times, as shown in Figure 5. Consequently, the other 

tasks which are not part pf the hot path are considered as 

cold path. Hot paths dominate the total execution time of 

an application and are used for quick access to frequently 

visited tasks. The hot paths have an enormous effect on 

partitioning of the whole application; therefore, the whole 

execution time of an application can be improved by 

optimizing the hot path. As a result, this improves the 

overall performance of an application significantly. The 

importance of hot path is that the nodes on this path are 

highly executed, which has a direct effect on the total 

execution time. Within a program, there may be numerous 

hot paths. The program might switch to different hot paths 

or cycle between them. Therefore, for a specific run-time 

of a program, each hot path can capture the most frequent 

execution pattern.  If a program’s behavior changes, 

typically, new hot paths will be created. Since most of the 

programs spend most of their execution time in small 

portions of the code, identifying the hot path will often 

result in boosting the execution speed. In addition, 

collecting hot paths is important for optimizing the target 

program effectively. 

In order to identify a hot path in a program, there are 

advanced profiling techniques. In the proposed method, 

Ball-Larus path profiling technique is used which uses the 

execution frequency assigned to each edge and also save 

how often each path in a CFG is executed. This profiling 

technique transforms a given CFG containing loops into 

an acyclic graph with a limited number of paths. 

 

 

 

 

 

 

 

 

 

 

 

 

 

   Fig.5. Hot path                      Fig.6. Path ABDG as the critical path 

3.4 Critical Path 

Critical path is the longest path that determines the 

shortest time possible to execute the tasks in an embedded 

application. In other words, the critical path is a sequence 

of connected tasks from the start to the exit node that will 

take the longest to complete.  As shown in figure 6, path 

ABDG has longest execution time in comparison to the 

path ACEFG, thus, path ABDG is the critical path in this 

CDFG. The importance of this path is that the nodes on 

this path delay the execution runtime; as a result, this path 

dominates the execution latency as well as the hot path. 

All tasks in a program are assigned an execution time, an 

estimate of how long they will take to complete and the 

connections between the tasks (dependencies) are 

established. To identify the critical path in a CDFG, we 

need to find the longest execution latency among all the 

paths. This can be done by scheduling the paths in a 

CDFG explained in the preceding sections, and adding the 

execution time of each   individual node together. To put it 

another way, by following a path among all the paths in a 

CDFG that has the longest duration of connected tasks and 

adding these durations together, the critical path is 

identified. 

3.5 Different Combination of Hot Path and      

Critical Path 

There are three types of combinations between hot paths 

and critical path in a CDFG which are as follows: 1) The 

critical path is the same as the hot path (i.e., those nodes in 

the critical path are exactly the same nodes which are part 

of the hot path). For example, there can be a critical path 

that has one loop with a large number of iterations. 2) The 

critical path is completely separate from the hot path. In 

this case, they do not have any. 3) The hot path is part of a 

critical path. In this case, not only the critical path contains 

all the nodes in the hot path but it has more nodes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.7. Differenct combinations of the hot path and the critical path  
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Figure 7 illustrates the three combinations in graph a, b, 

and c, respectively. For simplicity, each graph is part of a 

whole graph highlighted with the critical path and the hot 

path. The first two combinations occur very rarely in real 

applications. Though our approach is applicable on all the 

discussed combinations, we use only the third option since 

it is more common. 

4. Target Co-Design Architecture 

The architecture used in this paper is illustrated in Figure 8. 

It is composed of two CPUs as software components and 

two ASICs as hardware components. All these 

components have different execution time for each task in 

the graph. Each CPU communicates with both of the 

ASICs as shown in figure 8. Besides, all these software 

and hardware components communicate through a shared 

bus with a software-managed memory. Each task in the 

CDFG can have different implementation options on each 

available component but with different metrics. Given this 

architecture along with a technology library, a CDFG of 

an application and an area constraint, our method 

partitions the graph and assigns the tasks to either one of 

the CPUs or one of the ASICs. In this work the 

communication time between the CPUs and the ASICs are 

considered to be zero. 

 

 

 

 

 

 

 

 

Fig.8. The target co-design architecture composed of two CPUs and two 

ASICs. 

5. The Proposed Algorithm 

The goal of the proposed algorithm is to maximize the 

performance of the given system while meeting the given 

area constraints for the ASICs. As shown in Algorithm 1, 

the inputs are a given CDFG, software execution time for 

the two given CPUs (CPU1ET and CPU2ET) and hardware 

execution time for the two given ASICs (ASIC1ET and 

ASIC2ET) for each node, area of each node on each ASICs 

(ASIC1area and ASIC2area), and the total area available on 

the chip (AT) which is the summation of the ASIC1area and  

 

Algorithm 1 

 

1.  Input: CDFG, CPU1ET, CPU2ET, ASIC1ET, ASIC2ET, 

ASIC1area, ASIC2area, AT. 

2.    Output: Partitioned CDFG, L. 

3.    CPU1set = {ni}, CPU2set = {nj} where Sigma i+j = total 

number of the nodes in the CDFG 

        ASIC1set = { };  ASIC2set ={ }; 

4.    Pc = critical path of the CDFG according to the CPU1 

and CPU2 sets; 

5.    PUpdatedC = Pc; 

6.    Find all the hot paths in the CDFG; 

7.    Initialize L; 

8.    AU = 0; 

9.    Calculate the profit ratio for each node*; 

10.  Set Pset for each path; 

11.  while AU < AT do 

12.          Pc = PUpdatedC; 

13.          while (Pc = PUpdatedC) && ((Pset in Pc) != {})     do 

14.             Select the first node (nf) from the Pset in Pc with 

the highest profit ratio; 

15.          if (AU + ASICarea nf) < AT  then* 

16.                  ASICset = ASICset + {nf}; 

17.                  CPUset = CPUset – {nf}; 

18.                  AU = (AU + ); 

19.                  Update L; 

20.                  PUpdatedC = Updated critical path; 

21.             end if 

22.               Update Pset;  

23.          end while  

24.  end while   

 
* profit-ratio: each node has 4 profit ratio in this architecture, (CPU1ET-

ASIC1ET)/ASIC1area, (CPU1ET-ASIC2ET)/ASIC2area, (CPU2ET-

ASIC1ET)/ASIC1area, (CPU2ET-ASIC2ET)/ASIC2area.   

* ASICset and CPUset in this step are chosen based on the initial 

partitioning phase. 

 

ASIC2area. The outputs are the partitioned CDFG in which 

each node is assigned to either hardware or software 

component, and the execution latency (L) of the 

partitioned graph. In the beginning of the algorithm, the 

software sets (CPU1set and CPU2set) contain all the nodes 

in the CDFG, i.e., based on the given execution time of the 

CPUs for each node, the node executed faster in a CPU is 

dedicated to that CPU set. On the other hand, both the 

hardware sets (ASIC1set and ASIC2set) are null since all the 

nodes are assigned to the software components in the 

beginning. According to the preceding sections, the 

critical path is found and assigned to Pc. PUpdatedC 

represents the updated critical path and it is initialized with 

the value in Pc. The next step is to find all the hot paths in 

the graph, and initialize L and the area used (AU) with 

longest execution time and 0, respectively. Line 9 

calculates (CPUET-ASICET)/ASICarea for each node, which 
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is called as profit ratio in knapsack problem. This value is 

one of the priorities given to each node. Line 10 indicates 

a set for each path excluding the hot paths in the CDFG 

(Pset) that contains all the nodes in the decreasing order 

according to their profit value but the highest priority is 

given to the nodes that are in the hot paths. In other words, 

for each path, first the nodes in the hot paths are set in 

decreasing order then other nodes are added. If two nodes 

in a Pset have the same priority in terms of profit value and 

being in a hot path, the one that has less ASICarea has 

higher priority and is set earlier in Pset. In line 11 through 

23, after assigning PUpdatedC to Pc, first node from the Pset 

of the critical path is selected and assigned to either of the 

ASIC1set or ASIC2set (based on the calculated profit ratio), 

if AU is less than AT. Each time one node is assigned to 

an ASICset, it is removed from its CPUset. In the last step, 

the selected node will be removed from all the Pset(s) 

regardless of its assignment to ASICset. If one selected 

node does not meet the area condition; the other nodes that 

meet the area condition will be chosen. This iterates as 

long as the total area used for all the nodes assigned to 

ASICsets is less than AT. 

5.1 Illustrated Example 

This section describes the operation of the proposed 

approach in an example. In the CDFG illustrated in figure 

3, there are 26 basic blocks which represent the tasks in 

the program and several edges, which indicates the control 

dependency between the nodes. There are 4 back edges 

which represent the loops, and the number shown on each 

of them denotes the number of iteration for the specified 

loop. Based on Ball-Larus path profiling technique, there 

are totally 6 individual paths in this graph, considering the 

fact that paths can also start and end on loop back edges.  

Based on the edge value assignment step in the Ball-Larus 

path profiling, Table 2 indicates the unique IDs for all the 

paths in the CDFG given in Figure 3. Table 1 presents 

random generated values for the inputs of the algorithm. 

The random values assigned to the execution times of 

CPUs (CPU1ET and CPU2ET) and ASICs (ASIC1ET and 

ASIC2ET) ranges from 10 to 40 and 1 to 5 respectively. 

The arbitrary values assigned to the ASICs area 

(ASIC1Area and ASIC2Area) ranges from 5 to 35. The first 

step is to calculate the profit ratio value for each basic 

block. Let us assume that AT is 100. According to the 

given inputs, we find the critical paths, all the hot paths 

and the execution latency. The followings are the initial 

results: 

ASIC1set = {} and ASIC2set = {} 

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,R,S,T,V,W,X,Y} 

CPU2set= {B,C,H,N,P,Q,U,Z} 

Pc = Path 3 

Hot paths: {Path 10, Path 11, Path 12, Path 13} 

L = 349 cycles 

As explained in section 3.5, all the paths excluding hot 

paths, should be set in decreasing order giving the highest 

priority to the nodes in path 10, path 11, path 12, and path 

13. Accordingly, all the Psets are ordered as follows: 

Pset9 (ADJ) = {J,D,A}   D,J (higher priority) 

Pset8 (AEKV) = {V,E,K,A} 

Pset7 (AELT) =  {E,L,T,A}     

Pset6 (AELUW) = {W,U,E,L,A} W,U (higher 

priority) 

Pset5 (AEMX) = {M,X,E,A} 

Pset4 (AFN) = {N,F,A}  N,F (higher priority) 

Pset1 (BGO) = {G,B,O} 

Pset3 (BHPRYZ) = {Y,R,P,Z,H,B} Y,R,P,Z(high prio) 

Pset2 (BHQ) = {H,B,Q} 

Pset0 (CIS) = {C,I,S} 

In the first iteration, node Y is selected from Pset3 since it is 

the initial value of Pc. Based on the profit ratio calculation, 

node Y has higher ratio when it is assigned to ASIC1. 

Since the area condition is met (ASIC1area =12 is less than 

AT =100), node Y will be assigned to ASIC1set and 

removed from CPU1set. Then all the hardware and 

software sets will be updated as follows: 

ASIC1set = {Y} and ASIC2set = {} 

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,R,S,T,V,W,X} 

CPU2set= {B,C,H,N,P,Q,U,Z} 

The updated critical path will remain the same as before, 

i.e., Pset3. L will decrease to 261 cycles and AU will be 12. 

The selected node in addition to the collected results in the 

next iterations are as follows: 

Second iteration: node R 

ASIC1set = {Y,R} and ASIC2set = {} 

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,S,T,V,W,X} 

CPU2set= {B,C,H,N,P,Q,U,Z} 

Pc: Path 3 

L = 169 cycles and AU = 25 

Third iteration: node P 

ASIC1set = {Y,R} and ASIC2set = {P} 

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,S,T,V,W,X} 

CPU2set= {B,C,H,N,Q,U,Z} 

Pc: Path 3 

L = 141 cycles and AU = 44 

Fourth iteration: node Z  

ASIC1set = {Y,R,Z} and ASIC2set = {P} 

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,S,T,V,W,X} 

CPU2set= {B,C,H,N,Q,U} 

Pc: Path 6 

L = 126 cycles and AU = 72 

Fifth iteration: node W  

ASIC1set = {Y,R,Z} and ASIC2set = {P,W} 

CPU1set = {A,D,E,F,G,I,J,K,L,M,O,S,T,V,X} 

CPU2set= {B,C,H,N,Q,U} 

Pc: Path 9 

L = 104 cycles and AU = 99 
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            Table 1. Random values given to the inputs of the algorithm along with their calculated profit value. 

 sixth iteration: node J  

ASIC1set = {Y,R,Z} and ASIC2set = {P,W,J} 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.9. Given CDFG with individual  tasks and 4 loops. 

CPU1set = {A,D,E,F,G,I,K,L,M,O,S,T,V,X} 

CPU2set= {B,C,H,N,Q,U} 

Pc: Path 4 

L = 122 cycles and AU = 104 

The sixth iteration is actually the last iteration based on the 

given total area. There is only 1 unit of area left and the 

area of the remaining nodes is more than that value, 

therefore the algorithm terminates and the final result will 

be the results in the sixth iteration. 

Evidently, as we increase the presumed area, the execution 

time decreases. If profit ratio is the same for a CPU, then 

the ASIC that has less ET is chosen. Like task ‘I’ in this 

graph.  

6. Experimental Evaluation 

This section presents the experimental results of the 

proposed approach. Table3 contains the first set of results. 

There are 10 randomly generated CDFGs in which the 

number of nodes varies from 9 to 44. Each CDFG is 

randomly generated using Task Graphs For Free (TGFF). 

This tool is designed to generate pseudo-random task-

graphs for use in different area of research related to 

scheduling and binding. TGFF does not generate back 

edges are randomly added to the generated graph. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The number of iteration for each back edge ranges from 2 

to 5. For each graph, one random number is generated as 

an area constraint for the whole hardware components. 

Our approach is compared with two other approaches. The 

first one is 0-1 knapsack problem (KP), in which nodes are 

selected only according to their profit-weight ratio and it 

does not matter if the nodes are part of the hot path or 

critical path. Unlike the first approach, the second method 

is a path-based method called as Critical Path (CP) 

approach which is similar to our approach without 

considering the hot paths as a priority. In this approach, 

the nodes are selected only if they are in the critical path. 

In the second column of table 3, the execution time of 

each of the three approaches is calculated and in the third 

column, the improvement in execution time is calculated 

by comparing our approach with the other two. The 

improvement on average for the two comparisons is 

45.4% and 15.3%, respectively, which shows the 

effectiveness of our approach. In graph 1 and 10, our 

approach does not show any improvement in comparison 

to the CP approach. In graph 1, those nodes selected in our 

approach, and the ones selected in CP approach are the 

same but with different order. The reason is that, the 

critical path does not change after each iteration, and 

according to the presumed total area, both approaches 

repeat until all the nodes in the critical path are assigned to 

B.B A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 

CPU1ET 11 35 29 10 12 13 27 35 12 27 23 11 18 19 11 32 35 27 17 13 35 18 25 28 23 24 

CPU2ET 17 30 17 32 34 13 28 31 28 38 23 28 18 18 32 11 13 29 23 17 21 23 34 35 27 11 

ASIC1ET 5 1 5 5 4 1 1 2 3 3 5 1 1 4 3 2 1 4 5 3 5 4 4 4 1 1 

ASIC2ET 2 5 2 5 1 1 2 5 5 4 4 1 1 1 3 4 1 3 5 2 5 4 3 2 1 2 

ASIC1Area 34 35 27 30 26 25 24 30 9 27 35 24 20 27 30 34 26 13 18 24 24 7 22 18 12 28 

ASIC2Area 35 23 5 10 11 30 30 18 7 21 23 11 5 21 13 19 21 26 22 18 5 19 6 11 33 30 

Path ID Path Name 

0 CIS 

1 BGO 

2 BHQ 

3 BHPRYZ 

4 AFN 

5 AEMX 

6 AELUW 

7 AELT 

8 AEKV 

9 ADJ 

10 PRYZ 

11 FN 

12 UW 

13 DJ 

Table 2. Calculated Path IDs based on Ball-Larus prfiling technique 
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hardware components. Therefore, it does not show any 

improvement. In graph 10, the given values make the 

selected nodes in both approaches to be the same but in 

different order, though the critical path changes after a few 

iterations. The second  

 

set of results is shown in Table 4. This table presents the 

execution time of the generated graphs shown in table1 

with 20% and 40% area increase, respectively. In 20% 

area increase, our approach has 46.3% execution time 

improvement on average in comparison to KP, and 14.0% 

in comparison to CP. In 40% area increase, there is 48.2% 

improvement in comparison to KP and 7.1% in 

comparison to CP. In graph 8, 20% and 40% area increase 

make our approach and the CP approach to reduce the 

execution time with the same amount. The reason is that 

all the nodes in the hot paths were already assigned to the 

hardware components before area increase; therefore, the 

node selected in both the approaches is on the critical path 

but not the hot path. That is the reason we do not see any 

improvement in this case. 

The 20% area increase in graph 4 shows a big 

improvement in CP approach in comparison to our 

approach, considering the fact that the execution time of 

our approach is still lesser. The reason is that the selected  

 

 

node in CP approach is on the hot path that was already 

chosen by our approach. In graph 1, 40% area increase 

does not affect the execution time of any of the approaches, 

since there is not enough unit of area left for assigning the 

nodes to the hardware components.  

As mentioned before, KP approach is not path-based and 

does not choose the nodes according to their direct effects 

on the execution time of the whole system. This is the 

reason in all the cases, there is a big difference in 

execution time between KP and our approach.  Besides, 

KP assigns the nodes with small area to hardware 

components first. As we increase the area, the area of the 

remaining nodes is high, that is the reason KP does not 

give good results most of the times. 

CDFG 

Execution Time (CC) without area 

increase  

Execution Time (CC) with 20% area 

increase  

Execution Time (CC) with 40% area 

increase  

KP CP HP+CP KP CP HP+CP KP CP HP+CP 

1 88 52 52 76 52 52 76 52 52 

2 297 121 86 261 93 65 165 73 65 

3 210 133 120 198 133 98 182 124 86 

4 113 87 53 87 67 53 87 50 50 

5 107 65 48 77 48 46 77 43 43 

6 62 62 56 62 62 44 62 44 44 

7 299 123 106 278 108 86 278 85 73 

8 77 64 53 77 46 46 77 44 44 

9 143 118 104 143 104 101 143 90 82 

10 221 101 101 221 95 89 221 89 83 

 

 

Improvement on average (%) 
Our approach  vs KP 

Our 

approach 

vs CP 

Our 

approach  

vs KP 

Our 

approach vs 

CP 

46.3 14.0 48.2 7.1 

CDFG 
Number of 

Nodes 

Number of 

Paths 

Area 

Constraint 

(Gates) 

Execution Time (clock cycles) Improvement (%) 

KP CP 
Proposed 

approach 

Our approach  

vs KP 

 

Our approach 

vs CP 

 

1 10 3 50 88 52 52 40 0 

2 14 4 83 297 121 86 71 28 

3 19 6 61 210 133 120 42 10 

4 13 5 80 113 87 53 53 39 

5 16 6 71 107 65 48 60 26 

6 9 4 60 62 62 56 9 9 

7 16 5 78 299 123 106 64 13 

8 10 4 55 77 64 53 31 17 

9 26 10 100 143 118 104 27 11 

10 44 20 71 221 101 101 57 0 

Improvement on Average (%) 45.4 15.3 

Table 3. The experiment evaluation comparing the proposed approach with two other approach. KP: Knapsack approach; CP: Critical Path. 

Table 4. The second set of experimental evaluation assuming 20% and 40% area increase is allowed. 
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7. Conclusions 

In this research, we propose an approach to efficiently 

partition a given CDFG to hardware and software tasks. 

The target co-design architecture contains two CPUs as 

software units and two ASICs as hardware units.  The goal 

of this approach is to improve the performance by 

efficiently partitioning those nodes that are part of the 

critical path and the hot path while an area constraint is 

given. The hot paths in a given CDFG is found using the 

path profiling techniques, and the critical path is identified 

by finding the longest paths in terms of the execution time. 

Since these two paths dominate the total execution time of 

a system, they have a significant effect on the overall 

performance of a system without degrading other factors 

such as power consumption and reliability. The main idea 

in this research is to give higher priority to the tasks in the 

critical path, which are part of the hot paths as well. 

Among those tasks, the highest priority is given to the 

ones that directly have considerable effect on the critical 

path, e.g. the nodes which are part of a loop. When these 

frequently executed tasks are assigned to the ASICs, due 

to higher speed in comparison to CPUs, the execution time 

of the whole system decreases significantly, this leads to 

boosting the performance. We compared our approach 

with two other existing methods and the collected results 

show the effectiveness of our approach.  
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