Multidimensional Analysis of Coronavirus CoVID-19 Spreading: **Study in Arabic Countries Context**

Kais Khrouf

Jouf University, College of Computer and Information Sciences, Al Jouf, Saudi Arabia

Summary

Since December 2019, unexplained cases of pneumonia have occurred in Wuhan. The health authorities of China identified a new type of Coronavirus, named COVID-19 by the World Health Organization (WHO) [8]. Using data analysis technologies on large volumes of Coronavirus CoVID-19 data constitutes a challenge for extracting new information and knowledge. In this context, we propose to apply the multidimensional analysis techniques on data about Coronavirus CoVID-19 evolution and spreading in Arabic Countries, according to several perspectives.

Key words:

Multidimensional Analysis, Star Schema, Coronavirus CoVID-19, Arabic Countries.

1. Introduction

The epidemics and pandemics constitute one of the most dangerous problems of the humanity (Spanish flu in 1917 and H1N1 in 2009). The World Health Organization (WHO) has announced the apparition of the novel Coronavirus CoVID-19 [8]. This virus, not identified in humans formerly, causes ailment ranging as the normal cold or also Respiratory Syndrome Severe. On 11 March 2020, WHO consider that Coronavirus CoVID-19 can be characterized as a pandemic [8]. In order to understand the evolution and spreading of this new virus, several studies (statistical and clinical) were proposed in the last months.

The Multidimensional Analysis Techniques provides a flexible representation and visualization of data from various viewpoints, in order to detect trends or exceptions in the data. It is a process of data analysis that contains two concepts: Fact (Analysis subject) and Dimensions (Axes of analysis). In this paper, we propose a multidimensional model in order to analyze the evolution and spreading of Coronavirus CoVID-19 in Arabic Countries.

The remainder of this paper is organized as follows. Section 2 presents the literature review about the multidimensional analysis techniques and data analysis of Coronavirus CoVID-19. Then, we present the new multidimensional model for spreading of this new virus in Arabic Countries. In Section 4, we present the implementation and discussions through multidimensional tables we generate.

2. Literature Review

Multidimensional analysis techniques have been used to visualize data from several perspectives, in order to help decision-makers exploring data according to several granularities and so make appropriate decisions [4]. In the literature, these techniques have been used on several types of data: Factual data (Such as: Databases, Excel Sheets), Semi-Structured Data (Example: XML Documents) and Social Networks (Specially, Tweets).

For factual data, the authors of [2] propose a multidimensional data model for analyzing health service data. The aim of the proposed model is to enhance understanding decision-makers the information extracted from several data sources. This multidimensional model constitutes a guide to discover trends in historical information of patients (medical records, health resources, etc.).

Fig. 2 Multidimensional Model of Health Service Data

For semi-structured data, the authors of [5] propose a new multidimensional model of XML documents that contains several dimensions (Content, Metadata, Structure, etc.). For improving the visualization of multidimensional tables, the authors use the concept of Tag Cloud; it is composed of a set of terms which the size of a term is proportional of its frequency in the collection of XML documents.

Manuscript received June 6, 2020 Manuscript revised June 20, 2020

Fig. 2 Multidimensional Model of XML Documents.

For data extracted from social networks, the authors [3] propose a multidimensional model for analyzing the metadata (structural specificity) and the content (semantic data) of Tweets. They use the constellation schema by adding extensions according to specificities of Tweets. They also propose algebraic multidimensional operators with formalization and pseudo code algorithms.

Fig. 3 Multidimensional Model of Tweets

With the appearance of the Coronavirus CoVID-19, several studies were focused on data analysis of this new virus. In this part, we present some works.

The authors of [1] present a data analysis of Covid-19 and an interactive visualization using the concept of Tableau [6]. They consider that data analysis can be very fast with Tableau and Visualizations (dashboards and worksheets). A Tableau dashboard is used to show the most important and personalized data (multiple visualizations in a single view). The data can be extracted from several sources.

The author of [7] presents a data analysis of CoVID-19 in cities of China, by using the "Novel Corona Virus Dataset", published on Kaggle. For Data preparation, he use a Correlation matrix in order to summarize data for more advanced analyzes. For data Visualization, he uses Matplotlib and Seaborn (Python libraries). Matplotlib is the visualization library and Seaborn builds more complex visualizations, such as: Heatmaps.

In this work, we propose to apply multidimensional analysis techniques on data about Coronavirus CoVID-19 spreading in the Arabic Countries.

3. Multidimensional Model

Data warehouses provide consolidated data through the Online Analytical Processing (OLAP) tools. These tools allow an interactive and consistent analysis of data in a multidimensional way [4]. Multidimensional modeling describes a subject (Fact) according to multiple perspectives (Dimensions). The star schema consists of one *Fact* table surrounded by any number of *Dimension* tables.

Star $C = (F; D_i)$	
F is the fact (Subject of analysis).	
D_i is a set of dimensions.	

Fact table generally represents metrics or measures (numeric values) for a specific event. It is composed of a large number of records in order to describe the analyzed subject. A fact table contains a set of indicators, called measures.

Fact $F = (NameF; M_i)$	
<i>NameF</i> is the name of the fact <i>F</i> .	
M_i is a set of measures.	

A Dimension table (descriptive information) represents the axis of analysis; it generally contains a small number of records, but having a large number of characteristics (attributes). An attribute can be a parameter (level of granularity into hierarch) or a weak attribute (descriptive attribute of a parameter).

Dimension $D_i = (NameD_i; A_j; H_k)$
$NameD_i$ is the name of the dimension,
A_j is the set of attributes. An attribute can be a
parameter or a weak attribute.
H_k is the set of hierarchies (from the finest
granularity to the most general granularity).

Roll-up constitutes a data aggregation, by passing from the parameter to another having a higher level in the hierarchy. Example: For location hierarchy, we can aggregate data by ascending from the parameter *City* to the parameter *Country*.

Fig. 4 Roll-Up Operator

Drill-down Operator (opposite of Roll-Up) fragments data into smaller parts. It can be done by descending from a parameter to another in the hierarchy. Example: For location hierarchy, we can visualize data by passing from the parameter *Country* to the parameter *State*.

 Tableres = Drill-Down (Tablei, Dimensioni, Parameterp)

 Tableres is the result of the Drill-Down operator,

 Tablei is the initial table.

Dimension_j is the concerned dimension by the Drill-Down.

 $Parameter_p$ is the new parameter to apply the Drill-Down.

Fig. 5 Drill-Down Operator

In the context of Coronavirus CoVID-19, we propose a Star Shema with Four dimensions:

- D_Country composed by the hierarchy (Code, Zone, Continent) and the weak attribute Country.
- D_Date composed by the hierarchy (Date, Month, Year) and the weak attribute Day.
- D_Population composed by the parameter Id and the weak attribute Interval.
- D_Sex composed by the parameter Code and the weak attribute Sex.

The Tables 1, 2 and 3 describe the content of the four proposed dimensions.

Country							
Continent Zone Code D_Country							
Parameter 3:	Parameter 2:	Week Attribute:	Parameter 1:				
Continent	Zone	Country	Code				
Asia	Gulf countries	Saudi Arabia	SAU				
		Yemen	YEM				
		Oman	OMN				
		United Arab	ARE				
		Emirates					
		Qatar	QAT				
		Bahrain	BHR				
		Kuwait	KWT				
	Fertile	Palestine	PSE				
	Crescent	Lebanon	LBN				
		Jordan	JOR				
		Syria	SYR				
		Iraq	IRQ				
Africa	Greater	Mauritania	MRT				
	Maghreb	Morocco	MAR				
		Algeria	DZA				
		Tunisia	TUN				
		Libya	LBY				
	Nile Valley	Egypt	EGY				
		Sudan	SDN				
	Africa Horn	Djibouti	DJI				
		Somalia	SOM				
	Other	Comoros	COM				

Table 1: Dimension 1 – D_Country

Table 2: Dimension 2 – D_Date

Parameter 3:	Parameter 2:	Week Attribute:	Parameter 1:
Year	Month	Day	Id
2020	January	Tuesday	01/01/2020
		Friday	31/01/2020
	February	Saturday	01/02/2020
		Saturday	29/02/2020
	Marsh	Sunday	01/03/2020
		Tuesday	31/03/2020
	April	Wednesday	01/04/2020
		Thursday	30/04/2020
	May	Friday	01/05/2020
		Sunday	31/05/2020
	June	Monday	01/06/2020
		Monday	15/06/2020

Dimension 3: D_P	opulation	Dimension 4: D_Sex		
Interval		Sex		
	↓ D_Population	Code	↓ D_Sex	
Week Attribute:	Parameter 1:	Week	Parameter 1:	
• / •		A	C 1	
Interval	Id	Attribute:	Code	
Interval Unit: Million	ld	Attribute: Sex	Code	
Interval Unit: Million [0, 4]	1d	Attribute: Sex Male	M	
Interval Unit: Million [0, 4] [4, 9]	1 2	Attribute: Sex Male Female	M F	
Interval Unit: Million [0, 4] [4, 9] [9, 20]	1d 1 2 3	Attribute: Sex Male Female	M F	
Interval Unit: Million [0, 4] [4, 9] [9, 20] [20, 50]	1d 1 2 3 4	Attribute: Sex Male Female	M F	

Table 3: Dimensions 3 &4 – D_Population and D-Sex

The Figure 1 presents the proposed multidimensional model of Coronavirus CoVID-19 spreading. The fact is composed of 2 Measures (Cases and Deaths) and it is surrounded by four dimensions (D_Date, D_Country, D_Population and D_Sex).

Fig. 5 Multidimensional Model of CoVID-19 Spreading

3. Implementation and Discussions

The data used for analysis in this paper was extracted from [9]. The analysis period is between 01/01/2020 and 15/06/2020.

In the following analyses, we focus on the number of cases. The first example concerns the number of cases (Measure of the fact) by Month (Dimension 1) and by Country (Dimension 2).

Table 4: Number of cases by Month and Country

	Month						
Country	January	February	March	April	May	June	Total
Bahrain	0	38	477	2406	7872	7434	18227
Comoros					106	70	176
Djibouti			26	1051	2117	1271	4465
Egypt	0	1	608	4659	18181	21149	44598
Iraq	0	7	623	1373	4176	14030	20209
Jordan			268	183	283	227	961
Kuwait	0	45	221	3474	22452	9728	35920
Lebanon	0	3	443	275	470	255	1446
Libya			8	53	69	288	418
Mauritania			5	2	476	1300	1783
Morocco			556	3765	3459	954	8734
Oman	0	6	173	2095	8149	13058	23481
Palestine			115	392	119	47	673
Qatar	0	0	693	11871	42698	24340	79602
Saudi_Arabia			1453	19949	61982	44157	127541
Somalia			3	579	1334	687	2603
Sudan			6	369	4425	2420	7220
Syria			10	33	79	55	177
Tunisia			312	668	96	20	1096
United_Arab_E	4	15	592	11318	21967	8398	42294
Yemen				6	304	418	728
Total	4	116	7175	67785	206233	151958	433271

In the second example, we apply a Roll-Up operation on dimension 2. The example becomes the number of cases by Month (Dimension 1) and Zone (Dimension 2).

Table 5: Number of cases by Month and Zone

	Month						
Zone	January	February	March	April	May	June	Total
Africa Horn			29	1630	3451	1958	7068
Fertile Crescent	0	10	1459	2256	5127	14614	23466
Greater Maghreb	0	1	1464	7752	9519	4214	22950
Gulf countries	4	104	3609	51119	165424	107533	327793
Nile Valley	0	1	614	5028	22606	23569	51818
Other					106	70	176
Total	4	116	7175	67785	206233	151958	433271

In the following example, we apply again a Roll-Up operation on Dimension 2. This example analyses the number of cases by Month (Dimension 1) and Continent (Dimension 2).

Table 6: Number of cases by Month and Continent

	Month						
Continent	January	February	March	April	May	June	Total
Africa	0	2	2107	14410	35682	29811	82012
Asia	4	114	5068	53375	170551	122147	351259
Total	4	116	7175	67785	206233	151958	433271

In Table 4, we note that the first cases of CoVID-19 were detected in United Arab Emirates (February month) and the important number of cases was recorded in Saudi Arabia, Qatar and United Arab Emirates (Gulf Countries, confirmed by Table 6 and Asian countries, confirmed by Table 7).

By comparing the number of cases by months (March, April and May), we note also that only Palestine and Tunisia where the number of cases has decreased.

In this part, we focus on the number of deaths. The following example concerns the number of deaths (Measure of the fact) by Month (Dimension 1) and by Country (Dimension 2).

 Table 7: Number of deaths by Month and Country

	Month						
Country	January	February	March	April	May	June	Total
Algeria	0	0	35	409	202	121	767
Bahrain	0	0	4	4	9	26	43
Comoros					2	0	2
Djibouti			0	2	20	21	43
Egypt	0	0	40	340	533	662	1575
Iraq	0	0	46	46	103	412	607
Jordan			5	3	1	0	9
Kuwait	0	0	0	24	181	91	296
Lebanon	0	0	11	13	2	6	32
Libya			0	2	3	3	8
Mauritania			0	1	20	66	87
Morocco			33	135	36	8	212
Oman	0	0	0	10	32	62	104
Palestine			1	1	3	0	5
Qatar	0	0	1	9	26	37	73
Saudi_Arabia			8	149	323	492	972
Somalia			0	28	45	15	88
Sudan			2	26	234	197	459
Syria			2	1	1	2	6
Tunisia			8	32	8	1	49
United_Arab_E	0	0	5	93	164	27	289
Yemen				0	77	87	164
Total	0	0	201	1328	2025	2336	5890

From the Table 7, we apply a Roll-Up operation on dimension 2. The example becomes the number of deaths by Month (Dimension 1) and Zone (Dimension 2).

Table 8: 1	Number o	of deaths	by Mor	nth and	l Zone
Month					

	Month						
Zone	January	February	March	April	May	June	Total
Africa Horn			0	30	65	36	131
Fertile Crescent	0	0	65	64	110	420	659
Greater Maghreb	0	0	76	579	269	199	1123
Gulf countries	0	0	18	289	812	822	1941
Nile Valley	0	0	42	366	767	859	2034
Other					2	0	2
Total	0	0	201	1328	2025	2336	5890

In the following example, we apply again a Roll-Up operation on Dimension 2. This example analyses the number of cases by Month (Dimension 1) and Continent (Dimension 2).

Table 9: Number of deaths by Month and Continent

	Month						
Continent	January	February	March	April	May	June	Total
Africa	0	0	118	975	1103	1094	3290
Asia	0	0	83	353	922	1242	2600
Total	0	0	201	1328	2025	2336	5890

Unlike Table 4, we note in Table 7 the highest number of deaths was recorded in Egypt as Country, Nile Valley as Zone and Africa as Continent.

The next example concerns the percentage of deaths compared to the sum of cases and deaths by Interval of population (Dimension 1) and the Month (Dimension 2). Table 10 shows that the percentage of deaths increases with the number of population ([0, 4[: 0.19% and [50, 100[: 3.11%).

Table 10: Percentage of deaths by Interval and Month

	Interval					
Month	[0, 4[[4, 9[[9, 20[[20, 50[[50, 100[Average
January	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
February	0,00%	0,00%	0,00%	0,00%	0,00%	0,00%
March	0,42%	1,23%	1,66%	3,71%	6,17%	2,64%
April	0,10%	0,80%	1,21%	2,59%	6,80%	2,30%
May	0,11%	0,75%	0,91%	1,21%	2,85%	1,17%
June	0,50%	0,92%	0,48%	2,03%	2,84%	1,35%
Average	0,19%	0,62%	0,71%	1,59%	3,11%	1,24%

From Table 10, we replace Month by Zone for Dimension 2, we obtain the following table. We note that the highest percentage of deaths was recorded at Nile Valleys.

Table 11: Percentage of deaths by Interval and Zone

	Interval					
Zone	[0, 4[[4, 9[[9, 20[[20, 50[[50, 100[Average
Africa Horn	0,95%	0,00%	3,27%	0,00%	0,00%	0,84%
Fertile Crescent	0,00%	1,72%	1,30%	2,92%	0,00%	1,19%
Greater Maghreb	0,00%	4,14%	4,28%	4,75%	0,00%	2,63%
Gulf countries	0,12%	0,67%	0,68%	0,88%	0,00%	0,47%
Nile Valley	5,32%	0,00%	0,00%	5,98%	3,34%	2,93%
Other	1,12%	0,00%	0,00%	0,00%	0,00%	0,22%
Average	1,25%	1,09%	1,59%	2,42%	0,56%	1,38%

The last example presents the number of cases by Interval of population (Dimension 1) and Country (Dimension 2).

Table 12: Number of Cases by Interval and Country

	Interval					
Country	[0, 4[[4, 9[[9, 20[[20, 50[[50, 100[Total
Algeria				10919		10919
Bahrain	18227					18227
Comoros	176					176
Djibouti	4465					4465
Egypt	1618				42980	44598
Iraq				20209		20209
Jordan			961			961
Kuwait		35920				35920
Lebanon		1446				1446
Libya		418				418
Mauritania		1783				1783
Morocco				8734		8734
Oman		23481				23481
Palestine		673				673
Qatar	79602					79602
Saudi_Arabia				127541		127541
Somalia			2603			2603
Sudan				7220		7220
Syria			177			177
Tunisia			1096			1096
United_Arab_			42294			42294
Yemen				728		728
Total	104088	63721	47131	175351	42980	433271

In the Annex, we present the number of cases by Code of country and Date for the May Month (Annex 1) and the number of deaths by Code of country and Date for May Month (Annex 2).

5. Conclusion

In this paper, we propose a multidimensional model based on four dimensions (D_Date, D_Country, D_Population and D_Sex) in order to deduce knowledge from the spreading of Coronavirus CoVID-19 in Arabic countries.

Several perspectives are possible. We intend to add colors to highlight the most important values in the tables, according to the criteria chosen by the user. In addition, we plan to integrate other dimensions to our multidimensional model, such as: Gross Domestic Product, Average Wages. Finally, we propose to extend this study to all countries of Africa and Asia.

References

- N. Akhtar, N. Tabassum, A Perwej, Y. Perwej, "Data analytics and visualization using Tableau utilitarian for COVID-19", Global Journal of Engineering and Technology Advances, Vol. 3, No. 2, p. 28–50.
- [2] B. Appah, D. Amos, "Multidimensional Data Model for Health Service Decision Making Data", International Journal of Computer Science Engineering Techniques, Vol. 3, No. 3, P. 1-6, 2018.
- [3] M. Ben Kraiem, M. Alqarni, J. Feki, F. Ravat, "OLAP operators for social network analysis", Cluster Computing, 2019.
- [4] T. Berber Sardinha, M. Veirano Pinto, Multi-Dimensional Analysis Research Methods and Current Issues, Bloomsbury Academic, 2019
- [5] K. Khrouf, T. Lefi, "Multidimensional Analysis of XML Documents: Modeling and Implementation", International Journal of Emerging Trends in Engineering Research, Vol. 7, No. 11, 2019.
- [6] V. Manohar, G. Arpan, B. Björn, "Tableau: A High-Throughput and Predictable VM Scheduler for High-Density Workloads", EuroSys Conference, ACM, New York, USA, 2018.
- [7] S. Shashank Raj, "Exploratory Data Analysis on outbreak of Coronavirus", International Research Journal of Engineering and Technology, Vol. 7, No. 2, 2020.
- [8] https://www.who.int/health-topics/coronavirus
- [9] https://www.ecdc.europa.eu/en/publications-data/downloadtodays-data-geographic-distribution-covid-19-casesworldwide

Dr. Kais Khrouf has completed his PhD. in Computer Sciences from University of Toulouse 3 (France). He has 12 years of teaching and administrative experience at University of Sfax (Tunisia) and 3 years at Jouf University (Saudi Arabia). He has supervised several Masters and Ph.D. thesis. He published more than 40 papers in international journals and conferences and he

is a permanent reviewer in International Journal of Information and Decision Sciences (Inderscience Publishers). His research interests include Decision Support Systems, Data Warehouses, Multidimensional Analysis, Semi-Structured Data and Social Networks.

Annex

1. Number of cases by Code of country and Date (May Month)

	Code																						
Date	ARE	BHR	СОМ	DJI	DZA	EGY	IRQ	JOR	кwт	LBN	LBY	MAR	MRT	OMN	PSE	QAT	SAU	SDN	SOM	SYR	TUN	YEM	Total
01/05/2020	552	119		12	158	269	82	2	284	4	0	102	1	74	0	845	1351	67	19	0	14	0	3955
02/05/2020	557	130	1	8	148	358	68	6	353	4	2	146	0	99	10	687	1344	0	0	1	4	1	3927
03/05/2020	561	114	0	15	141	298	66	1	242	4	0	160	0	36	0	776	1362	150	70	0	11	3	4010
04/05/2020	564	99	2	0	179	272	77	1	364	4	0	174	0	85	5	679	1552	86	51	0	4	0	4198
05/05/2020	567	150	1	4	174	348	50	4	295	3	0	140	0	69	2	640	1645	0	34	0	5	2	4133
06/05/2020	462	187	0	4	190	388	85	6	526	1	0	176	0	98	14	951	1595	100	79	0	4	9	4875
07/05/2020	546	214	4	0	159	387	49	2	485	9	1	189	0	168	8	830	1687	74	38	1	3	4	4858
08/05/2020	502	265	0	13	185	393	63	21	278	34	0	140	0	55	1	918	1793	78	55	0	1	1	4796
09/05/2020	553	245	0	2	187	495	60	14	641	12	0	163	0	154	0	1311	1701	181	0	2	4	8	5733
10/05/2020	624	330	3	54	189	488	76	14	415	13	0	199	0	112	0	1130	1704	53	69	0	2	0	5475
11/05/2020	781	167	0	21	165	436	88	18	1065	36	0	153	0	175	0	1189	1912	199	57	0	0	17	6479
12/05/2020	680	295	0	17	168	346	51	22	598	14	0	218	0	175	0	1103	1966	163	35	0	0	5	5856
13/05/2020	783	295	0	29	176	347	95	14	991	11	0	137	0	147	0	1526	1911	135	81	0	0	11	6689
14/05/2020	725	285	0	12	186	338	119	6	751	8	0	94	1	298	1	1390	1905	157	49	1	0	3	6329
15/05/2020	698	382	0	16	189	398	111	4	947	8	0	95	7	322	0	1733	2039	146	65	0	0	17	7177
16/05/2020	747	385	0	25	187	399	50	10	885	5	0	45	13	284	6	1153	2307	0	0	2	3	19	6525
17/05/2020	796	164	0	22	192	491	67	11	942	11	1	89	0	404	0	1547	2840	0	73	1	0	18	7669
18/05/2020	731	209	0	70	198	510	144	6	1048	9	0	129	33	157	6	1632	2736	325	64	7	2	4	8020
19/05/2020	832	228	0	117	182	535	150	16	841	20	0	82	19	193	7	1365	2593	302	34	0	6	2	7524
20/05/2020	873	348	23	0	176	720	57	20	1073	23	3	71	0	292	3	1637	2509	0	47	0	1	37	7913
21/05/2020	941	356	0	310	165	745	113	23	804	7	1	110	50	372	7	1491	2691	137	71	0	1	13	8408
22/05/2020	894	286	0	219	186	774	153	12	1041	63	2	78	42	327	25	1554	2532	410	21	0	1	13	8633
23/05/2020	994	240	44	223	190	783	87	16	955	62	1	121	0	424	0	1830	2642	240	0	1	2	12	8867
24/05/2020	812	388	0	0	195	827	308	4	900	11	3	74	54	463	0	1732	2442	250	0	11	0	7	8481
25/05/2020	781	336	9	0	193	652	197	4	838	17	0	27	10	513	0	1501	2399	6	0	16	3	10	7512
26/05/2020	822	33	0	198	197	702	163	3	665	5	0	99	0	0	0	1751	2235	192	95	20	0	15	7195
27/05/2020	779	195	0	0	194	789	216	7	608	21	2	45	25	348	3	1742	1931	150	22	15	0	12	7104
28/05/2020	883	267	0	229	160	910	287	2	692	21	22	24	30	255	8	1740	1815	170	20	0	0	6	7541
29/05/2020	563	419	0	217	140	1127	322	8	845	7	6	42	0	636	12	1967	1644	200	97	0	17	23	8292
30/05/2020	638	397	0	0	137	1289	416	2	1072	4	13	71	131	811	0	1993	1581	175	0	1	3	9	8743
31/05/2020	726	344	19	280	133	1367	306	4	1008	19	12	66	60	603	1	2355	1618	279	88	0	5	23	9316
Total	21967	7872	106	2117	5419	18181	4176	283	22452	470	69	3459	476	8149	119	42698	61982	4425	1334	79	96	304	206233

2. Number of deaths by Code of country and Date (May Month)

	Code																						
Date	ARE	BHR	сом	DìI	DZA	EGY	IRQ	JOR	KWT	LBN	LBY	MAR	MRT	OMN	PSE	QAT	SAU	SDN	SOM	SYR	TUN	YEM	Total
01/05/2020	7	0		0	6	12	1	0	2	0	1	2	0	1	2	0	5	3	C	0 0	0	2	44
02/05/2020	6	0	0	0	3	14	1	0	4	0	0	1	0	0	0	2	7	0	C	0 0	1	0	39
03/05/2020	8	0	0	0	6	9	1	1	3	1	0	2	0	1	0	0	7	10	3	C	1	0	53
04/05/2020	7	0	0	0	4	14	2	0	5	0	0	1	0	0	0	0	8	0	1	. C	0	0	42
05/05/2020	11	0	1	0	2	7	1	0	2	0	0	5	0	0	0	0	7	0	m	i C	1	0	40
06/05/2020	9	0	0	0	5	16	4	0	0	0	0	2	0	0	0	0	9	4	m	i C	0	1	53
07/05/2020	11	0	0	1	6	17	0	0	2	0	0	2	0	1	0	0	9	4	1	. 0	0	2	56
08/05/2020	8	0	0	0	7	13	0	0	2	0	0	0	0	1	0	0	10	3	5	i C	1	1	51
09/05/2020	9	0	0	0	5	21	2	0	3	1	0	3	0	1	0	0	10	7	C	0 0	1	1	64
10/05/2020	11	0	0	0	6	11	3	0	2	0	0	0	0	2	0	1	10	5	4	C	0	0	55
11/05/2020	13	0	0	0	8	11	2	0	9	0	0	2	0	0	0	1	7	6	m	i C	0	1	63
12/05/2020	3	0	0	0	5	8	1	0	7	0	0	0	0	0	0	0	9	4	1	. 0	0	1	39
13/05/2020	2	1	0	0	8	11	2	0	10	0	0	0	0	0	0	0	9	6	C	0 0	0	2	51
14/05/2020	3	1	0	0	7	12	3	0	7	0	0	0	1	0	0	0	9	10	C	0 0	0	1	54
15/05/2020	2	0	0	0	7	15	0	0	6	0	0	2	0	2	0	0	10	1	1	. 0	0	1	47
16/05/2020	2	2	0	1	7	21	2	0	8	0	0	0	1	0	0	0	9	0	C	0 0	0	2	55
17/05/2020	4	0	0	0	6	20	4	0	11	0	0	2	0	2	0	1	10	0	2	2 C	0	4	66
18/05/2020	6	0	0	0	6	18	2	0	5	0	0	0	1	1	0	0	10	6	1	. 0	0	1	57
19/05/2020	4	0	0	3	7	15	4	0	6	0	0	0	0	4	0	0	8	8	1	. 0	1	0	61
20/05/2020	3	0	0	0	6	14	4	0	3	0	0	1	0	1	0	0	9	0	2	. C	1	8	52
21/05/2020	6	0	0	2	7	21	3	0	3	0	0	1	0	3	0	1	10	6	2	. C	0	1	66
22/05/2020	4	0	0	1	7	16	6	0	5	0	0	2	1	1	0	1	12	10	C	0 0	0	4	70
23/05/2020	4	0	0	0	7	11	7	0	9	0	0	1	0	1	0	2	13	16	C) 1	0	0	72
24/05/2020	3	1	0	0	10	28	5	0	10	0	0	1	1	4	1	2	15	9	C	0 0	1	6	97
25/05/2020	1	1	0	0	8	29	8	0	8	0	0	1	0	1	0	2	11	0	C	0 0	0	3	73
26/05/2020	3	0	0	4	9	19	3	0	9	0	0	1	0	0	0	3	9	19	5	i C	0	3	87
27/05/2020	5	0	0	0	8	14	6	0	7	0	0	2	3	0	0	2	12	5	1	. 0	0	4	69
28/05/2020	2	1	1	4	6	19	6	0	3	0	1	0	7	1	0	2	14	14	C	0 0	0	4	85
29/05/2020	3	0	0	2	7	29	4	0	10	0	1	0	0	2	0	3	16	11	5	i C	0	4	97
30/05/2020	2	0	0	0	8	34	6	0	9	0	0	0	4	0	0	3	17	38	C	0 0	0	9	130
31/05/2020	2	2	0	2	8	34	10	0	11	0	0	2	1	2	0	0	22	29	1	. 0	0	11	137
Total	164	9	2	20	202	533	103	1	181	2	3	36	20	32	3	26	323	234	45	1	8	77	2025