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Summary 
Parkinson’s disease (PD) is considered to be a growing 

neurodegenerative disease characterized by many motors and 

non-motor specifications. During the early stages of this disease, 

vocal impairments are usually the disorders that can appear for 

patients with PD. Thus, diagnosis systems based on vocal 

perturbations have become at the head of recent studies for the 

detection of PD. In our study, a PD detection system based on 

vocal features was proposed using Full-Connected Deep Neural 

Network (FC-DNN) as a classifier, and Jitter and shimmer 

variants plus mean fundamental frequency (meanF0), harmonic 

to-noise ratio (HNR) and duration as vocal features. The 

experimental tests were performed on Spanish dataset and the 

results have shown the superiority of FC-DNN in terms of the 

evaluated performances (Accuracy=100%, precision=99%, 

Recall=99, F-measure=99.1, and Matthew Correlation 

(MCC=0.95) with comparison to other tested classifiers of 

machine learning and to classic approaches. 
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1. Introduction  

Parkinson’s disease (PD) remains a coherent line of 

research in the world due to the fact that the outgoing 

diagnoses still inaccurate in terms of time, cost and biology. 

Also, thoughts of doctors are responsible for the confusion 

of PD syndromes with those of other Parkinsonian diseases 

[1] by considering that particular diseases have precise 

diagnoses based on biochemical responses of patients, 

whereas other recurrent diseases are difficult to be detected 

using biochemical data and composition [2]. In general, the 

diagnoses of widespread diseases like PD do not rely on 

firm biochemical data to judge whether the individual is 

affected by a neurodegenerative disease or not. However, 

medical professionals rely solely on physical tests by 

focusing on diminished hand-eye and impaired movement 

coordination for early detection. Although, SPECT and 

DatSCANs are such analyzes that can be used to determine 

whether a patient has PD or not, whereas they were 

considered relatively inaccurate and not very profitable [3]. 

In addition, indirect diagnosis of PD can be performed 

using PET, CT and IMR scans which can be mainly 

applied for the elimination of other possible confounding 

diseases [3]. Doctors actually use a probability process to 

determine whether a patient has PD or not by first 

eliminating the possibility that he is affected by another 

disease. With the presence of PD, the results of these 

examinations have shown very weak correlations because 

the same symptoms are common to many other diseases. 

As instance, impaired movement and dizziness may be 

symptoms engendered by hypoglycemia and anemia. Some 

unexpected outcomes of these coping medications include 

mood swings, confusion, delusions, psychological changes 

and hallucination [4]. Thus, an early detection system for 

Parkinson's disease is necessary to allow doctors to start 

rehabilitation treatment early so that the patient does not 

have to consume medication for an extended period of time. 

Additionally, machine learning was explored in previous 

studies as a mean to develop an effective diagnosis for the 

identification of cancer [5] and heart failure [6] among 

other diseases. The analysis of human brain images [7] was 

also carried out by machine learning technology via the 

identification of brain tumors and the detection of retinal 

diseases in the laboratory [8]. In some other organizations, 

machine learning was used for the diagnostic of disease 

and there were warnings that inaccurate results were 

delivered due to the fact that these contain some inherent 

pitfalls [9]. At the same level, machine learning techniques 

fail in general to provide clinically validated diagnostic 

approaches when determining the possibility of existence 

of a disease. Both stochastic back propagation and 

classification are such machine learning techniques that 

suffer from over-fitting. Thus, a justified diagnosis of 

disease cannot be provided [2]. On the other hand, the 

integration of new approaches in machine learning 

techniques has a good impact on the verification of certain 

unexpected phenomena in contemporary medicine, such as 

the relationship between the prevalence of disease and 

demography [10]. Exploring a modern machine learning 

diagnosis for the treatment of diseases will not be only 

limited to reduce the medical pecuniary losses, but it will 

also proffer cost-effective and rapid solutions with a wide 

range of applications in the society. 

Eventually, the clinician constructs his overall decision 

from the interpretation of the precedent results. Moreover, 

machine learning algorithms are such techniques that can 

be helped to make such a decision. Indeed, they are based 
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on the combination of many input variables reflecting 

different characteristics and therefore they produce a single 

value that can assist the clinician. Also, these methods are 

researched on the basis of both statistical differences and 

statistical learning between PD and Control (NC) groups 

[11] [12] [13] [14] [15] [16]. Furthermore, we can find 

other approaches like logistic lasso [17], Naïve-Bayes [18], 

plus the general trends based on the most commonly used 

method which is the Support Vector Machine (SVM) with 

radial or linear basic function kernel. ANN-based methods 

have gained popularity in the last years in virtue of the fast 

increasing innovations that engender the construction of 

new architectures and the development of effective training 

algorithms. Thus, a wide range of applications [19] was 

performed using such algorithms like deep neural networks 

and multi-layer neural networks. Among the applications of 

these algorithms, we can cite those of speech recognition 

[20], genomics [21] and drug discovery [22]. In the field of 

image classification and computer vision, deep learning has 

recorded its presence via the particularly use of 

conventional neural networks (CNNs) which have made a 

real revolution of the-state-of-the-art [19]. In object 

recognition, these architectures have practically led to 

reach the human-level performance, and even they have 

surpassed it [23]. In fact, the more the networks are deeper 

the higher is the number of abstraction levels. This allows 

the computation of more complex features, but with the 

resulting of a more much complexity for training. 

Therefore, the performances can be degraded due to some 

limitations existing in both training algorithms and 

architectures, which can engender their over-fitting [24]. 

The success achieved in PD classification is strongly 

related to the choice of suitable feature extraction and 

artificial learning models. Many studies were performed in 

the literature using the same publicly available dataset [25] 

composed of 95 sound recordings with 31 instances each 

one (8 healthy individuals and 23 PD patients). In [26], 

another PD database was proposed and it was composed of 

40 instances from multiple speech recordings (20 healthy 

individuals and 20 PD patients). Indeed, common features 

were extracted from both databases, such as the measure of 

amplitude and fundamental-frequency variations, vocal 

fundamental frequency etc. In PD detection studies, the 

features explored to carry out the experiments were 

extracted from these databases and they were referred to as 

baseline features. Also, there were other features based on 

signal processing techniques, which were explored for PD 

detection. Furthermore, the extraction of the relevant 

features in PD classification can be performed via 

important tools, such as Mel-frequency cepstral 

coefficients (MFCCs), Tunable Q-Factor Wavelet 

Transform (TQWT) and signal-to-noise ratio (SNR) [27]. 

In fact, to perform the classification task, most studies were 

relied on the combination of individual feature types rather 

than exploring those ones separately from a training model. 

In these studies, feature selection methods were applied in 

order to reduce the extended feature space [28]. Despite of 

the existing of a lot of symptoms (e.g. posture and balance 

dependencies and slowed movement) identifying a subject 

as a PD patient, however dysphonia which can be denoted 

as the changes in articulation and speech, is considered as 

the most meaningful forerunner of PD. For this reason, 

many studies were relied on speech for PD classification 

task.  

There are many symptoms characterizing PD patients and 

some of them are manifested in the existing of vocal 

deflections (like vocal loudness, frequency and instability 

abnormality), while the other impairments make appearing 

impaired vocal quality and vocal breaks to PD patients. 

Speech processing techniques were considered as the most 

commonly used tools for the detection of speaking 

anomalies and they were preferred for automatically 

extracting the PD-related vocal features. In fact, there were 

several studies performed during the last decade using 

machine learning algorithms for the task of vocal features-

based PD detection. In [27], authors have presented a novel 

approach for PD detection using vocal features and many 

feature selection techniques at the aim to feed the inputs of 

such model by the top 10 features which have the high 

relevant scores in the selection. Indeed, Relief and Local 

Learning-base Features Selection (LLBFS), Least Absolute 

Shrinkage and Selection Operation (LASSO), and 

Minimum Redundancy Maximum Relevance (mRmR) 

were used as feature selection methods, whereas SVM and 

Random Forest (RF) were explored as classifiers to 

evaluate the performances on the selected features. The 

precision rate was reached up to 98.6% using these 

classifiers combined with different features consisting of 

HNR, vocal fold excitation and shimmer. For the lowest 

classification error in that study, it was obtained using 

Relief selection. In [29], the proposed model for PD 

detection was based on voice signals and its inputs was 

composed of HNR, Pitch, jitter, fundamental frequency, 

shimmer, plus other statistical measures based on these 

parameters. For the selection of the informative features 

from the whole feature set, many feature selection 

techniques were utilized, such as ROC curves, t-test, 

correlation rates, Fisher’s Discriminant Ratio. Concerning 

the determination of the optimal number of features, it was 

performed using a wrapper approach employing SVM as 

classifier in order to construct a feature-performance curve. 

After the specification of the optimal features, the training 

of KNN, SVM and Discrimination-Function-Based 

classifiers was effectuated. In that study, the best 

performance was achieved using KNN classifier by 

reaching an accuracy value of 93.82%. In [30], authors 

have used Praat Software to extract different features from 

voice signals in order to distinguish between healthy 

individuals and those ones holding PD. Comparing MFCC, 

shimmer, pitch, jitter to the individual’s glottal pulse, it was 
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mentioned that this latter and MFCC coefficients were 

different in their characteristics and therefore they had 

higher fluctuations when comparing healthy individuals to 

PD patients. As regards to the examinations performed 

using shimmer and jitter features, it was concluded that 

healthy individuals had lower values of features with 

comparison to PD patients. In [31], a model relied on a 

novel hybrid Artificial Intelligence-based classifier was 

suggested for early examination of PD. In this study, the 

data was explored from the University of California-Irvine 

(UCI) Machine Learning repository and it was composed 

of 68 instances with clinical scores and dysphonic 

measures. A training of Multi-Layer Perceptron (MLP) 

with custom cost function was firstly carried out in order to 

assign the essential scores of features. After that, the 20 

features with high essential scores were inputted to the 

Lagrangian Support Vector Machine (LSVM) for 

classification. The overall performance of the hybrid MLP-

LSVM classifier has shown an excellent value of accuracy 

rate (100%) with comparison to the available similar 

studies. A tunable Q-factor wavelet transform (TQWT) was 

recently applied for the diagnoses of PD using vocal 

signals from different individuals [32]. In that study, 

experiments were carried out using different types of 

feature sets constituting of multiple voice instances from 

252 individuals. In fact, the extracted features were 

inputted to numerous classifiers that were also combined to 

the majority voting classifier. As summary of that study, 

TQWT features have succeeded to achieve better 

performance and even have surpassed the state-of-the-art 

voice features that are frequently employed in PD 

classification. Moreover, it was concluded that the 

combination of MFCC with TQWT has led to boost up the 

classification performance when mRmR selection was used.  

It is worth to mention from the above-mentioned works 

that the related PD studies were generally performed on the 

basis of voice-based features combined with machine-

based learning algorithms. In fact, there were some other 

studies which have used different data sources like 

wearable sensors [33], Electroencephalogram (EEG) [34] 

and smart pens [35] to extract features, and they were not 

only limited to vocal-based features to perform the PD 

classification.   

In PD studies, deep learning which is a subdivision of 

machine learning was also successfully implemented 

besides common machine learning algorithms. For example 

in [35], a smart pen was well-designed to capture hand-

written dynamics from both PD patients and healthy 

individuals. The CNN was used in that work as a classifier 

and its inputs were fed by a time series data which has the 

role of modeling the handwritten dynamics. Indeed, the 

proposed CNNs were constructed on prior-trained deep-

learning architectures, such as ImageNet, LetNet and 

Cifar10. Over all experiments, CNN has shown better 

results than Open Path Forest (OPF) classifier in terms of 

the evaluated performances. This comes back to its 

proficiency in learning important features to discriminate 

between healthy individuals from PD patients. In a study in 

[36], Deep Neural Network (DNN) consisting of a stack 

auto-encoder (SAE) and a softmax layer as a classifier was 

proposed. Indeed, the extraction of the intrinsic information 

from speech features was carried out via SAE, while the 

softmax layer was explored to interpret the encoded 

features for the classification of patients. The experimental 

tests were performed on two databases and the results of 

the evaluated performances have shown that DNN was a 

convenient classifier for the diagnoses of PD in comparison 

to the state-of-art machine learning models. In [37], another 

study for PD diagnoses was suggested on the basis of the 

effectiveness of DNN. The data explored in that study was 

composed of speech records and digital bio-markers 

collected from PD and non-PD individuals using mobile 

application. In fact, two types of feature sets were extracted 

from the preprocessed speech signals using the open-source 

tool (OpenSmile). For the AVEC-first feature set that has a 

dimension up to 2200, Minimum Redundancy Maximum 

Relevance (mRMR) was applied as a feature selection 

approach to these features. Concerning the second feature 

set, it was composed of 60 features with MFCC. Both 

feature sets were inputted to many artificial learning 

classifiers comprising 3-layered DNN. The classification 

results have shown that DNN has achieved better result in 

term of accuracy (85%) in comparison to all tested models, 

and even it has surpassed the average clinical diagnosis 

accuracy of non-experts (73.8%). In [34], a study was built 

on the hypothesis that there is a direct relationship between 

PD and the brain abnormality EEG signals. These latter 

represent the principal indicators in early diagnosis of PD. 

Indeed, the EEG signals were explored from 20 healthy 

individuals and 20 PD patients and then inputted into 13-

layer CNN architecture for further detection of PD. In this 

study, CNN model has reached acceptable results in terms 

of the measured performances from which it has achieved 

the values of 71%, 91.77% and 88.25% for sensitivity, 

accuracy and specificity, respectively. The resulted 

development in wearable sensors offers the possibility to 

capture with minimum cost the disorders of the 

impairments of motor functions for individuals, which 

themselves a main reason for arising the PD. At this regard, 

a study in [33] was performed for the purpose of 

classification the bradykenesia which has the characteristic 

of an impaired ability when the body is moved. The data 

used in this study was collected from 10 patients with 

idiopathic PD. For the preprocessed and labeled feature 

vectors, they were used as inputs to deep learning and 

machine learning pipelines. The experimental results have 

shown the superiority of CNN-based classifier with 

comparison to the traditional machine learning models in 

terms of accuracy rates. In [38], the CNN model was 

utilized as a classifier and it has combined in its inputs 
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different types of vocal features at feature- and model-level 

(first framework) at the aim to differentiate healthy 

individuals from PD patients. Also, 9-layered CNN was 

used in this study to perform another feature-level-based 

combination (second framework). Indeed, the combination 

of TQWT+MFCC has reached the best accuracy rate 

(84.5%) with comparison to all binary combinations. In 

fact, there were no improvements in terms of accuracy 

using the first framework. However, there were an increase 

in both MCC and accuracy rates for all feature 

combinations using the second framework. Moreover, the 

highest overall classification success was achieved using 

the model-level CNN combination approach with 

comparison to that one based on SVM. Also, the proposed 

CNN was a power alternative to the study suggested in [28] 

by reaching good values of accuracy, F-Measure and MCC 

(86.9%, 91.7% and 63.2%, respectively).  

In regards to RNN models, they are considered to be 

naturally adapted to temporal sequences data and there 

were many other variants which were developed for 

sequenced features. Long-short-term memory is such 

variant (LSTM) of RNN, which first was proposed by 

Hochreiter and Schmidhuber. In fact, it has achieved 

impressive performances in numerous sequence-based 

tasks, such as language translation [39], acoustic modeling 

of speech [40], handwriting recognition [41], and language 

modeling [42]. In [43], authors have suggested the gated 

recurrent unit (GRU) model which is structurally similar to 

and simpler than LSTM, and has showed comparable, and 

even better, performance. In [44], this model was used to 

predict the initial diagnosis of heart failure (HF) by 

modeling the temporal relations among health data from 

electronic health records (EHRs) of patients. In [45], a deep 

recurrent neural network referred to as TimeNet was 

explored to firstly extract features from time series and 

then classify them. This model has shown better 

performances than the dynamic time warping and domain-

specific recurrent neural network [45]. To overcome the 

problem of forecasting for the spatiotemporal sequences, a 

conventional LSTM (ConvLSTM) model was integrated in 

[46]. It was concluded that this model has performed better 

than the fully connected LSTM since it has a good power 

in capture the spatiotemporal correlations from the 

sequential data for precipitation now casting. 

In this paper, we present the problem of PD detection as a 

features-based classification task. Indeed, the proposed 

model is composed of vocal features constituting of jitter 

and shimmer variants plus fundamental frequency (F0) and 

duration as features, and a Fully-connected Deep Neural 

Network (FC-DNN) model as a classifier for PD 

classification. In fact, the selection of DNN model comes 

back to its ability and potentiality for modeling nonlinear 

and complex relationships from data. Also, we have taken 

the courage to test this model in virtue of the satisfied 

results for PD classification task achieved in [33-35]. 

The remaining sections of this paper are presented as 

follows: In the next section, we exhibit the proposed 

method. The database and the evaluation metrics are 

presented in section 3 and 4, respectively.The data analysis 

and the interpretation of the experimental results are given 

in section 5. Conclusion and further work are presented in 

section 6. 

2. The Proposed Method 

The proposed model is composed of four stages: feature 

extraction, feature selection, data partition and 

classification. These stages are presented in the following 

subsections. 

2.1 Feature Extraction 

To assess and track the evolution of Parkinson disease (PD) 

after pharmacological and surgical treatment, speech 

features can be explored. This comes back from the fact 

that the PD can engender the affection of speech even at an 

early stage. In our study, we have used jitter and shimmer 

variants, mean F0, HNR and duration as features. Indeed, 

14 acoustic features were extracted from .wav files and 

then saved in .CSV format using Parselmouth [47] and 

Praat softwares. Each column in the CSV file represents the 

status which is set to 1 for PD and 0 for healthy control 

(HC). However, each row in this file contains only one 

instance which corresponds to one voice recording. More 

details about the extracted features are shown in Table 1.  

2.2 Feature Selection 

As a preprocessing stage for classification, the features of 

the voice samples were selected and then linearly mapped 

into the interval ranging from -1 to 1. As regards to feature 

selection stage, it was carried out using Principal 

Component Analysis (PCA). This latter is defined as a 

well-known statistical procedure which is consecrated to 

extract features and reduce their dimensions. In fact, the 

conversion of a set of observations that have correlated 

variables into a smaller set of values of linearly 

uncorrelated variables is performed using PCA via an 

orthogonal transformation. Also, PCA is relied on the 

assumption that only the features with the most variance 

contain the information about certain classes. Indeed, a 

smaller set of n dimensions which are described by n 

leading eigenvectors of a global covariance matrix is 

explored to present the p-dimensional dataset. In this paper, 

the selected features which include all the principal 

components that have more than 0.1%, 0.5%, 1%, 5%, and 

10% of the total variance were tested.   
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2.3 Data Partition 

The input data were randomly split into train and test data 

sets using data partition component. In our study, we have 

explored the Cross-Validation (CV) method since the 

number of samples in the dataset is small. Indeed, a 10-fold 

cross-validation was explored, where each fold is 

constituted of 80% of samples for training and the 

remaining 20% were employed for testing purposes. 

 After the preprocessing and data partition stages, the 

selected features are then inputted into the selected 

classifier to perform the classification task. 

Table 1: Detailed explanations of feature sets 

Attribute 

Name 
Measure Attribute description 

F0 (Hz) 
Mean and standard 

deviation 

Measure of vocal 

fundamental frequency 

 

Jitter 

variants 

Local_jitter, Local 

absolute_jitter, Jitter: 

RAP, Jitter: PPQ, Jitter: 

DDP 

Jitter: PCA 

Several measures of 

variation in 

fundamental 

frequencies in order to 

detect the cycle-to-cycle 

changes from them 

 

Shimmer 

variants 

Local_Shimmer, 

Local_Shimmer(dB),Sh

immer:APQ3,Shimmer:

APQ5, APQ11, 

Shimmer: DDA, 

Shimmer: PCA 

Several measures of 

variation in amplitudes  

in order to detect the 

cycle-to-cycle changes 

from them 

HNR 
Mean and standard 

deviation 

Second measures of 

ratio of noise to tonal 

components in the voice 

Duration 
Mean and standard 

deviation 

This feature is self-

explanatory 

Status  0  for HC and 1 for PD 

2.4 Fully-Connected Deep Neural Network (FC-

DNN) 

The basic form of the Neural Network (NN) is the 

perceptron from which weights are used to weight the input 

signals and then feed them directly to the output neurons 

without the use of any hidden layer. For this the perceptron 

has a simple architecture and a computational efficiency 

even with very large databases [48]. Despite of these 

advantages, it nevertheless has the disadvantage of being 

limited to linearly-separable functions for learning. To 

resolve this problem, a multilayer perceptron called Deep 

Neural Network (DNN) was proposed in [49] at the aim to 

reach more powerful learning mechanics. In fact, the wide 

adoption of DNNs was the important factor for the 

emergence of Deep Learning (DL) as a new field.  

Also, the NN is considered as a simple process made up of 

several hidden layers including nonlinear processing units 

which are responsible for the extraction of features by 

passing the input data from one layer to another until a 

desirable output will be produced [48]. One of the most 

used algorithms in DL is the Fully-Connected Deep Neural 

Network (FC-DNN). This designation comes back from the 

fact that the layers are fully connected (dense) via the 

neurons of a network layer. Indeed, all neurons of the 

previous layer transmit the input to each neuron of the next 

layer. For this they are called densely connected. An 

instance of the representation of the dense neural network 

(DNN) on Tensor Flow Playground is given in Fig.1. 

On the other hand, we have used a densely connected layer 

instead of that one of convolution. This is justified by the 

ability of the first one to learn features from all the 

combinations of those from the previous layer. However, 

the second one is limited with consistent features from a 

small repetitive field.  

 

 

Fig. 1  Dense Neural Network (DNN) representation on Tensor Flow 

Playground [50].  

Let’s consider 𝑥 ∈ ℝ 𝑚 the input to a fully connected layer 

and 𝑦𝑖 ∈ ℝ  is the 𝑖 − 𝑡ℎ  output from the fully-connected 

layer. The expression of 𝑦𝑖 ∈ ℝ  is given such that 

                                 𝑦𝑖

= 𝜎 (𝑤1𝑥1 + ⋯ + 𝑤𝑚𝑥𝑚)                 (1) 

Where 𝜎  denotes a nonlinear function and 𝑤𝑖  represents 

the learnable parameters in the network.  

Thus, the full output 𝑦 is given as follows: 

𝑦 = 𝜎 (𝑤1,1𝑥1 + ⋯ + 𝑤1,𝑚𝑥𝑚): 𝜎 (𝑤𝑛,1𝑥1 + ⋯

+ 𝑤𝑛,𝑚𝑥𝑚)                                                (2) 

In our work, we have used the FC-DNN composed of two 

hidden layers with 50 fully connected neurons for the first 
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layer and 25 for the second one. Indeed, the first hidden 

layer takes the vocal features as input, and then passes 

them through the subsequent layers. After that, the 

performance of the network is evaluated using a loss 

function. To improve the knowledge of the network, an 

optimizer is explored as a metric to estimate the 

performance during the learning phase by increasing the 

network weights and therefore decreasing the loss. In our 

model, we have used the mean square error (MSE) as a loss 

function and the Stochastic Gradient Descendent (SGD) as 

an optimizer. We have also explored the classical sigmoid 

function σ as an activation function. 

To avoid the over-fitting of the gradient, adding constraints 

to the network weights is the standard technique for dealing 

with this problem. Indeed, the size of the network will be 

forced by these constraints to take only small values and 

the loss function error will be therefore calculated by 

adding these values. In this model, we have also used the 

kind of regularization called “Lasso” for which the cost 

was calculated as the absolute value of the weight 

coefficients. Furthermore, the dropout technique was 

applied in order to randomly set some weights to zero. For 

the dropout rate, it was set to 0.05. 

Concerning the training of the fully connected deep neural 

network (FC-DNN), it was effectuated using Tensor Flow. 

In fact, the computation of each gradient was performed on 

a small chunk of data referred to as mini batch (typically 

50-500 data points) because it is not feasible to compute 

the gradients on a large dataset entirely at each step. So, the 

mini batches were employed in order to speed up the 

gradient descendent. For the learning rate and the number 

of iterations, they were set to 0.01 and 100000, respectively. 

As regards to the size of batch, it was set to 50. 

Indeed, the general architecture of the proposed classifier 

(FC-DNN) is shown in Fig.2. 

 

 

Fig. 2  The general architecture of FC-DNN classifier.  

To compile our model, we have explored Google Colab 

framework with a GPU and an 8GB-RAM plus a processor 

of 1.2 GHz. 

3. Database 

3.1 Spanish Corpus 

This dataset is composed of several voice recordings from 

100 people: 50 healthy people and 50 people with PD. 

Indeed, it is divided between two groups of men and 

women each one includes 25 individuals. All participants 

were Colombian Spanish native speakers. Concerning the 

age range of each group, it is varied from 33 to 73 (mean 

62.2 +_11.2) years old for men and from 44 to 75 (mean 

60.1 +_7.8) years old for women. As regards to healthy 

controls, the age of men is ranged from 31 to 86 (mean 

61.2 +_11.3) years old, while that one for women is ranged 

from 43 to 76 (mean 60.7 +_7.7) years old. It should be 

additionally mentioned that the participants in healthy 

controls do not suffer from any other neurological disease. 

Moreover, all sounds in this database are recorded under 

noise controlled-conditions using a dynamic Omni-

directional microphone at a sampling rate of 44100 Hz and 

a 16-bits resolution. Furthermore, the diagnosis of all 

patients is established by neurology experts on the basis of 

UPDRS and H&Y scales. More details about the values of 

these scales and the age of each intervenient can be found 

in [51].  

4. Evaluation Metrics 

To evaluate the predictability of different performances for 

the explored classifiers, assessment metrics are required. 

Indeed, the accuracy is considered as one of the most 

frequently used metric, but it can produce misleading 

results when using data from unbalanced class distribution. 

Also, there are other evaluation metrics, such as F-measure 

and Matthews Correlation (MC) that can be used to 

measure how well a class can discriminate among different 

classes. In fact, these metrics can be applied even in the 

case of class unbalance.  

In our experiments, we have evaluated the performance of 

the tested classifiers using recognition accuracy, specificity 

and sensitivity, which are obtained from the confusion 

matrix. This latter was explored to predict the success via 

four parameters -True Positive (tp), True Negative (tn), 

False Positive (fp) and False Negative (fn). Indeed, the 

recognition accuracy, sensitivity and sensibility are 

determined using the above-mentioned parameters and they 

are expressed respectively such that: 
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                  𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦

=
𝑡𝑝 + 𝑡𝑛

𝑓𝑛 + 𝑓𝑝 + 𝑡𝑝 + 𝑡𝑛
 ∗ 100%            (3) 

                              𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦

=
𝑡𝑛

𝑡𝑛 + 𝑓𝑝
∗ 100%                                 (4) 

                         𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦

=
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
∗ 100%                                (5) 

For F-measure, it is computed such that: 

          𝐹 − 𝑚𝑒𝑎𝑠𝑢𝑟𝑒

=
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
                                    (6) 

In order to quantify the quality of the binary classification, 

Matthews Correlation Coefficient (MCC) was also used as 

another metric. In general, this metric was considered as a 

balanced measure which can be employed even in the case 

of unbalanced class distribution. Fundamentally, MCC can 

be defined as a correlation coefficient between the 

predicted and the actual instances and it can take a value 

between +1 and -1. Indeed, a value of +1 denotes a perfect 

prediction, whereas that one of -1 indicates the 

disagreement between actual and predicted labels.  

Indeed, the expression of MCC is given such that:  
          𝑀𝐶𝐶

=
𝑡𝑝 ∗ 𝑡𝑛 − 𝑓𝑛 ∗ 𝑓𝑝

√(𝑓𝑛 + 𝑡𝑝)(𝑓𝑝 + 𝑡𝑛)(𝑓𝑝 + 𝑡𝑝)(𝑓𝑛 + 𝑡𝑛)
                       (7) 

5. Experimental Results  

5.1 Data Analysis 

The histograms of the extracted features for control and 

Parkinson speakers are shown in Fig.3 (a), (b), (c), (d) and 

(e). We can observe from these figures that the values of 

means and standard deviations (Std) of the visualized 

features are closed for both control and Parkinson people. 

Furthermore, we can see from Fig.3(c) that the local jitter 

has the best normal distribution for control and Parkinson 

people with comparison to other features. Indeed, this 

feature has achieved the best values of means and the 

minimum ones of standard deviations (Std) for both PD 

and HC (HC: means=0.024 and Std=0.009; PD: 

means=0.025, Std=0.010). For the second best normal 

distribution, it was reached by local shimmer (as shown in 

Fig.3(d)) by achieving the second best values of means and 

the second lowest ones of standard deviations (Std) for 

both PD and HC people (HC: means=1.241 and Std=0.229; 

PD: means=1.290, Std=0.262). As regards to the worst 

normal distribution for both PD and HC, it was reached 

using duration feature by achieving the highest values of 

means (HC: means=187.658, PD: means=160.788) and the 

maximum ones of standard deviations (HC: Std=42.968, 

PD: Std=30.499) as shown in Fig.3(e). 
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Fig. 3 Histograms of some extracted features for control and Parkinson 

speakers. 

For the quartiles of the extracted features, they are reported 

in Fig.4. Indeed, a two-tailed t-test shows that the averages 

of the values of the extracted features for control and 

Parkinson speakers do not differ significantly. Also, we can 

say that both duration and HNR features were the main 

acoustic indices which were sufficiently sensitive for the 

early separation of PD from HC for the task of DDK 

evaluation. However, the other acoustic indices (like Mean 

F0, Local jitter and Local shimmer) were less sensitive for 

the same task because of their weakness to capture deficits 

in syllable repetitions and the reduction in their ratios due 

to PD.  
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Fig. 4  Means and standard deviations for the extracted features for PD         

and HC people for the task of DDK evaluation (bars indicate means 

values and error bars standard deviations). HC= Healthy control, PD= 

Parkinson Disease. 

In order to report the variability of the per-frame values of 

the extracted features over the length of an utterance, the 

quartiles of the standard deviations of the per-frame values 

of these features (in dB) are given in Table 2 for all 

speakers. We can remark from this table that the standard 

deviations of the per-frame values of the extracted features 

of PD and HC speakers are situated in the same interval. 

Also, the two-tailed t-test has demonstrated that they do not 

differ significantly between both PD and HC groups. 

Table 2: Quartiles and mean of the standard deviations of the per-frame 

extracted feature values over the length of an utterance in dB for control 

and PD speakers 

Featur

e 

Catego

ry 

Min                 Quartill

e1       

Media

n           

Quartill

e3         

Ma

x 

duratio

n 

HC 107 156 190 218 304 

PD 94 140 163 179 243 

Mean 

F0 

HC 0.76 1.5 2.4 3.7 6.3 

PD 0.8 1.7 2.9 4.5 9.1 

HNR HC 
4.5 8.1 9.7 11.08 

17.0

4 

PD 3.08

5 
7.7 9.8 12.1 

19.0

7 

Jitter HC 0.00

9 
0.017 0.022 0.029 0.06 

PD 0.00

6 
0.018 0.024 0.032 

0.06

5 

Shimm

er 

HC 0.60 1.09 1.28 1.40 1.73 

PD 0.72 1.1 1.3 1.45 1.94 

5.2 Results 

For the results of different performances obtained with the 

tested classifiers and using all vocal features in the dataset, 

they are shown in Table 3. Indeed, FC-DNN classifier has 

achieved the best performances in terms of all metrics 

(accuracy=100%, precision=0.991, recall=0.99, F-

Measure=0.991 and MCC=0.95) using 10-fold cross-

validation with comparison to all tested classifiers. For the 

second best performances, they were recorded using 

XGBoost classifier (accuracy=91%, precision=0.91, recall 

=0.90, F-Measure =0.90 and MCC=0.79, respectively). As 

regards to the third best results of these performances, they 

were reached by Linear discriminator analysis (LDA) 

(accuracy=87%, precision=0.89, recall=0.88, F-

Measure=0.88 and MCC=0.75). Nevertheless, the worst 

results of these performances were obtained using Support 

Vector Clustering (SVC) (accuracy =77%, precision=0.77, 

recall=0.78, F-measure=0.77 and MCC=0.46). Also, we 

can remark that the FC-DNN classifier has shown its 

superiority as a deep learning algorithm with comparison to 

those of machine learning algorithm (for example Multi-

layer perceptron (MLP) classifier). Moreover, we can 

summarize that the results of the evaluated performances, 

especially those achieved using FC-DNN classifier for 

MCC metric (MCC=0.95) have obviously demonstrated the 

strength of this classifier for the discrimination between 

healthy people and PD patients. This record was also 

achieved in virtue of the high efficiency of the selected 

features which have proved to be so pertinent in this 

discrimination. 

To ensure about the efficiency of the proposed classifier 

(FC-DNN) for the task of DDK evaluation, we have 

compared the obtained results to those reached with other 

methods using the same dataset (as shown in Table 4). 

From Table IV, we can see clearly that the combination of 

unvoiced features with SVM classifier have contributed to 

reach the best performances for DDK evaluation using 

Spanish, German and Czech languages with comparison to 

other classic methods like GMM-UBM, 

Noise+F1F2+MFCC and prosody. Furthermore, the best 

results using this combination were reached with Spanish 

language (accuracy=99±3.2%, sensitivity=99±0.0% and 

specificity=98.6±6.3) with comparison to other tested 

languages. Comparing to the best method in [52], we can 

say that the proposed model in this work composed of 14 

vocal features and FC-DNN classifier has led to outperform 

successfully that method for the task of DDK evaluation.    

Table 3: The results of different performances obtained with different 

classifiers using 10-fold Cross-Validation 

 Accurac

y (%) 

Precisio

n 

Recal

l 

F-

measur

e 

MC

C 

Support 

Vector 

Clustering 

(SVC) 
77 0,77 0,78 0,77 0,46 

Linear 

Regression 

(LR) 
78 0,77 0,78 0,78 0,49 

K-Nearest 

Neighbors 

(KNN) 
82 0,84 0,82 0,81 0,63 

Decision 

Tree (DT) 
83 0,84 0,83 0,82 0,65 

Multi Layer 

Perceptron  

(MLP) 
85 0,86 0,85 0,85 0,69 

Linear 
87 0,89 0,88 0,88 0,75 
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Discriminat

e Analysis 

(LDA) 

XGBoost 
90 0,91 0,9 0,9 0,79 

FC-DNN 
100 0.991 0.99 0.991 0.95 

Table 4: The different performances obtained for DDK evaluation using 

different recordings in Spanish, German and Czech languages [52]  

 Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

Spanish Noise+F1F2 

+MFCC 

80.6±9.4 90.61±4.1 70.61±9.4 

Prosody 80.6±6.7 88.61±3.9 72.61±3.9 

GMM-

UBM 

82.6±9.2 96.6±8.4 68.62±1.5 

Unvoiced 99±3.2 99±0.0 98.6±6.3 

German Unvoiced 97.8±29 98.96±3.5 96.56±5.6 

Czech Unvoiced 93.66±16 99.36±2.7 87.96±31.4 

6. Conclusion and Further work 

In this paper, we have proposed a model composed of 

Fully-connected deep neural network (FC-DNN) as a 

classifier and a set of vocal features for the task of DDK 

evaluation. The suggested approach has tested on Spanish 

dataset and it has led to reach good results in terms of the 

evaluated performances (accuracy=100%, precision=0.991, 

recall=0.99, F-Measure=0.991 and MCC=0.95). Also, the 

proposed approach has succeeded to outperform the state-

of-the-art methods like that one composed of unvoiced 

features and SVM classifier.  

To ensure about the real-time performances of the proposed 

model, we suggest as a further work to implement it on 

embedded architectures, such as raspberry Pi 4 and FPGA 

boards. 
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