
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020

152

Manuscript received June 6, 2020

Manuscript revised June 20, 2020

Domain-Driven Microservice Architecturefor Designing Modern

Applications

Fawaz Alsolami

Computer Science Department, Faculty of Computing and Information Technology, King Abdulaziz University,

Jeddah, Saudi Arabia

Summary
For the last several years, information technology (IT) industry

uses monolithic architecture in their solutions, but it has several

limitations in meeting the demands of modern businesses of the

digital world such as high coupling, difficulty in scaling of the

application, adding newer technologies to the application, etc. To

address the requirement of the modern business need of the digital

world, the IT industry is looking to an improved architecting

methodology which can be easy to scale and is reliable too.

Microservices are unique techniques for designing and

architecting software systems that have recently gained its

popularity in the software industries as it addresses modern

business demands of the digital world. The Microservice

Architecture divides a system into small and independent modules,

each responsible for performing a specific functionality. It

emphasizes scalability, independence and the cohesiveness of

each of its components. In this paper, the domain-driven design

process is put in place to keep the technical stuff at such a level

that everyone involved understands the model, including the

customer who, in many cases, does not know much about software

development. This paper intended to discuss this new trend in

software architecture, its adaptation process, striking

characteristics and how it is different from monolith architecture.

Further, a case study was conducted to explore domain-driven

microservice development and deployment by applying separation

of concern to specific boundaries within microservices as

suggested by domain-driven design.

Key words:
Microservices, Domain Driven design, Microservice Architecture,

Distributed Software Architecture, service-oriented architecture.

1. Introduction

In recent years, almost all major computer-based systems

have been distributed and are cloud-based. To develop these

distributed and complex system, the IT industry uses

different software architecture. The architecture of a

software illustrates a high view of the system in terms of

framework, components, modules and their interactions.

The architecture of the software assists software engineers

and analyst to design a high view of the system.

 For several years, the IT industry has been using monolithic

or SOA-based architecture in their solutions, but in order to

address the modern business demands of the digital world,

this approach has a huge limitation, overtime applications

have a tendency of growing and this nature make the system

complex, huge and highly coupled. To address the

requirement of the modern business need, the IT industry is

looking for an improved architecting methodology which

can be easy to scale and is reliable too.

Microservices adopts Agile development to the project

rather than the enterprise-wide reuse supported by SOA.

This architecture is flexible, and it provides developers with

the liberty to independently develop and deploy services for

delivering enterprise application [1][2] [3].

Microservice architecture is a technique of developing

software solutions as a collection of small, independent,

modular deployable services run on a unique process and

use lightweight APIs to communicate with each other to

serve the required business goal [4]. Domain Driven Design

(DDD) is a software design methodology that can help to

construct a pattern. It gives tools and building blocks

needed to discover and develop a model and turn it into a

working application. Besides, it also provides a

comprehensive and systematic approach to software design

and development. It is common in most projects, that

different stakeholders speak different languages as per

domain, for example, the technical team uses a language

and words that are more technical for describing the system

which is different from the language and words used by the

businesspeople. This language barrier between different

stakeholders results in a situation where it is very hard for

them to get a conversation about how a real system works

and how system functionalities are understood and written.

The key to this approach is to communicate the user directly

to define a ubiquitous language. A domain may have its

ubiquitous language. For example, in a hospital domain,

there may be several sub-domain, appointment and

reservation domain, inpatient and outpatient domain, health

insurance domain and so on. Further, the objective is as

technical and business team communicates the same

language when coming up with system models or code like

naming classes, data members, methods, certain events as

described in the business domain, etc. Domain Driven

Design offers a bounded context concept which is like a

solution of a system in term of its domain i.e. large software

application is broken down into multiple services based on

domain and sub-domain. Each of these multiple services

also known as Microservices focuses on individual business

goal for that particular domain. [5][6].

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020

153

The motivation for this research is focused on the lack of

software architecture tools that help designers and

implementation of domain-driven design using high-level

software models based on input specifications written in

natural language and taking into account the specific

context of the work problem. A case study is conducted to

evaluate the effectiveness of the proposed Model. The study

results showed significant improvement in the architecture

of the system when using the domain driven approach.

This paper is organized as follows: Section I describes the

introduction of the paper, sections II discusses the

Microservices and overview of Monolith and Microservices

Architecture, section III examines a case study on adapting

monolithic to Microservice architecture using the domain

driven approach. Section IV summarizes the findings and

lastly, Section V concludes.

2. Overview of Monolith and Microservices

Architecture

2.1 Monolith Architecture

Monolithic architecture as shown in Fig. 2 is the setup used

for traditional client server-side systems. The entire

system’s functionality is based on a single

application. Software applications are composed of

components that can be providing services from different

deployment systems such as web services.

Domain-specific functionality in a monolithic software

framework is usually divided into functional layers such as

presentation, business, and persistent. This type of

application development has been strongly influenced by

hardware, mainly deployment platforms, on if physical or

virtual devices.

Most of the IT projects infrastructure are static even when

virtualized and the software application written for this

infrastructure are sized and design for hardware specific,

any hardware failure could result into a tailspin of the entire

application.

For example, a typical three-tier client-server architecture,

where each tier is decomposed to minimized hardware

dependency and counter agility and interdependency as

shown in Fig. 1. A three-tier architecture for an Internet

banking system. The client is the presentation tier, the Web-

server is business and application processing tier and

Database is persistence tier. Each of which can be design

developed and deployed independently and has its own

monolith.

Fig. 1 Three-tier architecture for an Internet banking system [7]

The main issue with this architecture is inefficiency to

decomposed services separately within each independent

tier. Each tier has different services that provide services for

the tier, these services are mainly tightly coupled by the

developer of the system.

Fig. 2 Conceptual Architecture for a Monolithic based application [8]

A change made even it is minor in any services resulted in

the redistribution and redeployment of the whole tier.

Rigorous tested is required for any changes made as the risk

of service failure is very high due to the tight coupling of

services within a tier.

if we see legacy hospital management business model

which is based extensively upon monolithic applications for

almost every function involved like appointment, in-patient,

accounting to filing insurance plans, providing services to

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020

154

the patients, and providing required features to doctors and

paramedical staff. Thus, a bug/error in these systems could

stop the whole hospital system. Designing entire operation

around one piece of critical infrastructure can cost big —

but not testing that piece’s performance and failover in the

worst-case scenario will cost even more.

2.2 Microservices Architecture

Adaptation of monolith architecture approach, results in

easy to start development. But as the application starts

growing bigger and complicated over time, it becomes

highly difficult to be agile and productive.

Microservices is an approach to architecting a software

application. This is when the large software application is

broken down into multiple services. Each of these multiple

services is known as Microservices. Each of these services

focuses on single business goal and it is developed and

deployed independently. Each of the services in

Microservices is loosely coupled which means it is capable

of operating independently alone without coordinating with

other services in the application. It makes the services

development and deployment very quickly and easily with

shorter time.

Fig. 3 Conceptual Architecture for a Microservices based application [8]

 Each of the services in Microservices is small and focused

this means it just addresses the single business functionality

of the application and executes that business functionality

only as shown in Fig. 3. The main goal is to implement each

service using its own technology stacks and this makes it

easy to maintain.

Microservices are language independent which means each

service can be developed in any programming language and

use any framework, for example, certain services can be

developed quickly using a popular library rich

programming language like java or android others can be

developed using C or C++. Further, these services can be

developed purely independently without any knowledge of

other service architecture or implementation details within

an application [9][10].

Microservices with the right basic setup could prove to be

more internally robust, and might more easily allow for a

distributed and robust cloud system to be developed. It

scales out by independently deploying individual services,

creating instances of these services across servers/virtual

machines/containers as shown in Fig. 3.

Communication with microservices is a process for

exchanging services with one another, rather than limiting

them to communicating with clients and data stores and data

sources. HTTP and REST are used as Request/response

communication. When a client uses request / response

communication, a request is submitted to a service, then the

service processes the request and returns a reply. In

particular, request / response communication is well suited

for querying data from client apps.

3. Related Work

The current trend in the field of microservices shows that

Strategic Domain-driven Design (DDD) has become a

popular trend for decomposing domains into so-called

Bounded Contexts. Kapferer [11] proposed a modular and

extensible component architecture for a modeling

framework based on Domain-driven Design (DDD). The

model employs Context Mapper DSL (CML) modeling

language along with tools support to reverse engineer DDD

Context Maps and decompose them iteratively. The

proposed framework offers to build Domain-driven Design

(DDD) model and improve its productivity at the same time.

The author validated the model and further improved the

prototype iteratively. The author carried empirical research

techniques such as action research and case studies to

validate the usefulness and effectiveness of the proposed

modeling framework.

Yussupov et. al. [12] proposed a multistep technique for

automatically evaluating the portability of serverless

applications with respect to specific platform, called

SErverless Applications PORtability assessmenT

(SEAPORT). It is a canonical serverless application model

which offers ways for evaluating portability related to

components similarity calculation and classification, along

with static code analysis. The technique is compatible with

prevailing migration concepts and use it as an additional

part for serverless use cases. The authors evaluated the

proposed technique by implementing an available open

source prototype through GitHub.

Vikram [13] proposed model for the domain of Abusive

Head Trauma (AHT) using Deep Learning methods and

create an AI-driven System at scale using best Software

Engineering Practices. AHT relates to injuries inflicted to

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020

155

skull or brain as a result of violent shaking or some

deliberate impact. The model categorizes AHT in different

sub-domains such as Medical Domain Knowledge, Data

Gathering, Data Pre-processing, Image Generation and

Classification, Creating APIs, Kubernetes and Containers.

Data gathering and its pre-processing were performed under

the guidance of radiologists and trauma researchers. Tests

were executed employing Deep Learning models. It used

Deep Convolutional Generative Adversarial Network

(DCGAN) for Image Generation, and Pre-trained two-

dimensional and customized three-dimensional

convolutional neural networks (CNNs) classifiers for the

classification tasks. After training, the models were exposed

using the Flask web framework as APIs, contained using

Docker and deployed on a Kubernetes cluster. The study

results are evaluated based on the precision of the models,

the practicability of their implementation as application

program interfaces (APIs) and load testing the Kubernetes

cluster. Load Testing of the model shows that the auto-

scalability feature of the cluster to act as a high number of

requests.

Schneider et. al. [14] introduced a concept for splitting the

domain model into several diagrams based on the Unified

Modeling Language (UML) profiles. The prosed approach

is based on dividing the domain model into multiple sub-

models which allows to develop different models

simultaneously, and this way helps to reduce the complexity

of the modeling process. Under this concept, a software

modeling tool based on Object Management Group Unified

Modeling Language (OMG UM) called Enterprise

Architect (EA) is used as modeling tool which allows direct

conversion of the model into code. Besides, base classes are

employed for entities and value objects to provide suitable

functionalities for these domain concepts. The limitation of

this work is that the model must be manually converted into

code. Currently, this concept can only automatically

generate the classes, methods, and attributes.

4. Case Study - Domain Driven Design

4.1 Domain storytelling

[15]: Domain driven design is based on domain storytelling

as shown in fig. 5 which is a technique of collaborative

modelling that emphasizes how people work together. Its

primary purpose is to translate domain knowledge into

software for business. This purpose is achieved by bringing

together people with different backgrounds, and by telling

and visualizing stories, enabling them to learn from each

other. Domain Stories

are told from the perspective of an actor. For example, an

actor may be a person, a group of individuals or a software

system. In the Domain Story all actors have in common that

they play an active part. Various icons are used to represent

certain actors, Actors create, work with, and exchange

objects like documents, physical objects, and digital objects

for work.

Domain storytelling follows the numbers to read the story

as shown in fig 5. Following are the details of the processing

the seat request use case:

a) Customer request for seats.

b) Seat distributer agent looks up the UI screen plan

in the Hajj system to find available seats.

c) LC approval manager will give approval of seats.

d) Seat distributer agent get notification of the

approval and list of buses given to customer.

e) Seat distributer agent will print the trip sheets and

give it to the customer.

f) Gate pass will be issue by the system and will be

verified by the gate pass agent.

Ubiquitous language is used as a model to serve as a

universal language between developers and the domain

experts to help communicate with ease. Ubiquitous

language is a set of terms and their relations between the

specialists and technical experts. Boundaries are defined by

applying the bounded contexts of the domain. Every

bounded context includes a domain model representing a

particular subdomain of the complex application as shown

in fig 4. Domain layer is mainly used to place all business

use case and business logic of the system [16][17].

Fig. 4 Decomposing the administration use cases

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020

156

Fig. 5 Domain Story for seat distribution use case of the Hajj System

4.2 Case Study

This research presents a real-life adoption and

implementation of domain driven Microservice architecture

in a Saudi-Arabia based transport organization. The existing

framework is based on a monolithic architecture that

structures the entire project around one central piece of

infrastructure. The changes are how to address the changes

request that have arrived late during system execution.

System architecture entire operation around one piece

makes it hard to apply the changes and often in the system

crashes during peak time due to errors, further the current

system has lots of missing requirements. In order to

establish suitable context boundaries required for splitting a

monolith application into microservices, we need to analyze

the responsibilities and behavior of the current system.

Following are the sub-systems of the system. Hajj Dawra

apps, Employee Referral app, Contracts App, Assets App,

Human Recourse Apps, etc.

Details workflow of the assets process is depicted in Fig. 6.

A Dawra system is used to transport pilgrims during the

Muslim Hajj season (which is annual gathering in Makkah)

via buses. Dawra system accept LC which contain a total

number of pilgrims mainly in 10,000s need to transport four

places involved in Hajj are Mecca, Mina, Arafat, and

Muzdalifah. System automatically suggests total buses

required to transport pilgrims without any seat loss by

choosing different type of buses like 49 / 37/ 20-seater buses

etc. Receiving contract, distributing buses based on the seat

request, managing trips, monitoring buses, etc. are some of

the core requirements of the system.

The Employee Referral System as shown fig. 7. is another

sub system that focuses a job opening in the private/public

domain. The job opening system has the following exact

requirements. Users with only a valid login/password will

be allowed to post a job. The job list would be on intranet

from where referee would be able to pick the job and refer

the candidate. User will be allowed to see the job listings.

An authorized user will be allowed to edit the job details.

Job details will include title, skill, specialization area,

experience, job description and some other details. A job

description will describe required profile for the candidate.

The job will be listed on the public domain/internet/intranet

for the resume referral.

Transport Employee will get an index screen with the

options like add job, list job, view job and edit job. Each

option will lead to a new screen from where a job can be

added/listed/viewed/edited. Adding and editing of jobs

would be based upon the privileges granted to personnel.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020

157

Fig. 6. Workflow of the Assets process of Hajj system.

An employee can add a job to public/private Intranet

domain. The referee can refer the resume to public/private

internet domain. If a referred candidate succeeds to get the

job, the finance department will reward the referee. Fig. 5.

shows business functional specifications of employee

referral subsystem.

ADD JOB SCREEN: This screen would enable the user to

add a new job. This screen will allow entering the fields like

job Id, title, technology, description and ADC.

LIST JOB SCREEN: This screen would enable the user to

list all the jobs listed for the current requirement along with

the number of resumes arrived for a particular job. It

displays the active and archived jobs based on different

criteria. This screen will also allow to add a new job or

select any of the listed jobs to edit or view.

VIEW JOB SCREEN: This screen would enable the user to

view the job Id, title, technology, description and ADC in

details. This screen can be viewed from index screen and

list screen.

EDIT JOB SCREEN: This screen would enable the user to

edit any posted job, and this screen would be accessible

from index and list screen.

Fig. 7 Business functional specifications of hajj employee referral sub

subsystem.

 Microservice is a comparatively smaller and decoupled

service that relies heavily on one business functionality

activity at a time as compared to monolithic applications

offering all business functionality in a single unit for a

complete system, which results in tightly coupling in

the code base application [18]. Microservices are

continually changing; services go up and down as

development teams make changes, requirements can be

added or updated in response to the business need of the

application as shown in fig 8. Microservices architecture

needs a highly durable service discovery solution to handle

dynamic environment. We decomposed our system, based

on domain and subdomain, by nouns and business

capability.

The following is a quick description of some of those

common patterns:

HAJJ SERVICE ‐ The Hajj Service contains the current

location (server: port) of all instances of the service being

deployed. A Hajj service communicates when and if a

service is available for the use, and determines whether if a

service is alive.

HAJJ UI SERVICE ‐ Provides a user interface including

authentication mechanisms, routing, load balancing, and

incorporates clients into API gateways.

API GATEWAY ‐ A server that represents the single-entry

point into an application or integration point system. It

serves as a gateway to a software user Interface services.

HR SERVICE ‐ A HR service communicates when a service

is free and available, and decides if a service is active and

alive. The HR Service contains the current location (server:

port) of every instance of a program being deployed.

MAIN WEB UI SERVICE ‐ provides web skeletons that

build pages/screens by composing multiple user interface

and integrates clients into API gateways.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020

158

Fig. 8. Application decomposed into Microservice

5. Summary of findings

This case study examined for the duration of five to six

months after the initiative to move from the monolith

architecture to microservices. The results were analyzed to

find where they met the expectations and where they

diverged.

Fig. 9 Comparing the changes implemented week wise using Monolithic

and domain driven microservice architecture.

The study also focused on those areas which contribute to a

system's evolvability, and its rate of change. The

technicality of the system was considered based on the

services installed for the product, and the number of

deployments for each service. It was also recorded the

number of times changes were made for a product. With this

business property, the number of applications, and source

code perform subtitling. The results demonstrate the raw

data as well as the technological commands to collect the

data. Figs (9 and 10) illustrates how the number of

production deployments gets divided into multiple services,

before and after we started our work. Before moving to

microservices, the number of deployments per week is

collected over the five to six weeks duration for a monolith

application. Once moved to the Microservice architecture,

data are continued to be collected in the new system design

for the number of deployments of the monolith service (but

now with reduced functionality being filled in by extracted

Microservices).

Fig. 10. Comparing the changes implemented week wise using

Monolithic and domain driven microservice architecture.

It is recommended to move to the application to a Single-

Page Application style and separate data from data

presentation by creating a model layer that manages data

and a view layer that states from the models.

Conclusion

Microservices are considered as a new style of developing

enterprise architecture which is cloud-based and can be

built, managed separately. Microservices helps to reduce

the complexity by applying work breakdown structure, i.e.,

breaking down large project structure into smaller, more

manageable chunks which can be developed and

implemented using loosely coupled modules that can

communicate with each other through simple application

programming interfaces (APIs). The paper carried a case

study to explore the usefulness and effectiveness of service

development and deployment of Microservice. It is

concluded that Microservice is an isolated service that

allows changes in the system at a faster rate allowing the

business to bring new features and products to market

quicker.

References
[1] P. Jarman, “Microservice- A New Application Paradigm .”

[Online]. Available:

https://www.infosys.com/digital/insights/Documents/micros

ervices-application-paradigm.pdf. [Accessed: 18-June-2020].

[2] G. Mazlami, J. Cito, and P. Leitner, “Extraction of

Microservices from Monolithic Software Architectures,”

https://www.infosys.com/digital/insights/Documents/microservices-application-paradigm.pdf
https://www.infosys.com/digital/insights/Documents/microservices-application-paradigm.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.6, June 2020

159

2017 IEEE International Conference on Web Services

(ICWS), 2017.

[3] C.-Y. Fan and S.-P. Ma, “Migrating Monolithic Mobile

Application to Microservice Architecture: An Experiment

Report,” 2017 IEEE International Conference on AI &

Mobile Services (AIMS), 2017.

[4] T. Huston, “What is Microservices Architecture?,”

SmartBear. [Online]. Available:

https://smartbear.com/learn/api-design/what-are-

microservices/. [Accessed: 17-June-2020].

[5] “Microservices at Netflix: Lessons for Architectural Design,”

NGINX, 03-Aug-2017. [Online]. Available:

https://www.nginx.com/blog/microservices-at-netflix-

architectural-best-practices/. [Accessed: 18-June-2020].

[6] “Ebay Archtecture 2015 - Deep Lessons from Google and

eBay...,” Ebay Archtecture 2015 - Deep Lessons from Google

and eBay on Building Ecosystems of Micr 1 of 15. [Online].

Available: http://highscalability.com/blog/2015/12/1/deep-

lessons-from-google-and-ebay-on-building-ecosystems-

of.html. [Accessed: 11-June-2020].

[7] I. Sommerville, Software engineering. Boston:

Pearson/Addison-Wesley, 2004.

[8] Msfussell, “Introduction to microservices on Azure,”

Introduction to microservices on Azure | Microsoft Docs.

[Online]. Available: https://docs.microsoft.com/en-

us/azure/service-fabric/service-fabric-overview-

microservices#comparison-between-application-

development-approaches. [Accessed: 05-June-2020].

[9] M. Fowler, “Microservices,” martinfowler.com. [Online].

Available:

https://martinfowler.com/articles/microservices.html[Access

ed: 16-June-2020].

[10] A. I. Khan, M. M. Alam, N. Qayyum, U. A. Khan, "Empirical

Study of an Improved Component Based Software

Development Model using Expert Opinion Technique",

International Journal of Information Technology and

Computer Science (IJITCS), vol.5, no.8, pp.1-14, 2013.

[11] K. Stefan (2020) A Modeling Framework for Strategic

Domain-driven Design and Service Decomposition. Masters

thesis, HSR Hochschule für Technik Rapperswil.

[12] Yussupov, V.; Breitenbücher, U.; Kaplan, A. and Leymann,

F. (2020). SEAPORT: Assessing the Portability of Serverless

Applications.In Proceedings of the 10th International

Conference on Cloud Computing and Services Science -

Volume 1: CLOSER, ISBN 978-989-758-424-4, pages 456-

467. DOI: 10.5220/0009574104560467

[13] V. Aditya.; (2020) Designing an AI-Driven System at Scale

for Detection of Abusive Head Trauma Using Domain

Modeling ,Arizona State University, ProQuest Dissertations

Publishing, 2020. 27956820.

[14] Schneider, M., Hippchen, B., Giessler, P., Irrgang, C. and

Abeck, S., 2019. Microservice development based on tool-

supported domain modeling. In The Fifth International

Conference on Advances and Trends in Software

Engineering.be combined on Context Maps.

[15] Hofer, S.; Schwentner H. (2020), Domain Storytelling A

Collaborative Modeling Method, leanpub

[16] M.M. Alam, A.I. Khan, and A. Zafar, An Empirical Study of

the Improved SPLD Framework using Expert Opinion

Technique., (IJEACS) International Journal of Engineering

and Applied Computer Science, Volume: 02, Issue: 03,

March 2017 ISBN: 978-0-9957075-4-2

[17] M.M. Alam, A.I. Khan, and A. Zafar, An Empirical Study of

the Improved SPLD Framework using Expert Opinion

Technique., (IJEACS) International Journal of Engineering

and Applied Computer Science, Volume: 02, Issue: 03,

March 2017 ISBN: 978-0-9957075-4-2

[18] A.I. Khan., R.J. Qurashi, and U.A. Khan, A Comprehensive

Study of Commonly Practiced Heavy and Light Weight

Software Methodologies. IJCSI International Journal of

Computer Science Issues,, 2011. 8(4): p. 441-450.

https://smartbear.com/learn/api-design/what-are-microservices/
https://smartbear.com/learn/api-design/what-are-microservices/
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices
https://www.nginx.com/blog/microservices-at-netflix-architectural-best-practices
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
http://highscalability.com/blog/2015/12/1/deep-lessons-from-google-and-ebay-on-building-ecosystems-of.html
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices#comparison-between-application-development-approaches
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices#comparison-between-application-development-approaches
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices#comparison-between-application-development-approaches
https://docs.microsoft.com/en-us/azure/service-fabric/service-fabric-overview-microservices#comparison-between-application-development-approaches
https://martinfowler.com/articles/microservices.html

