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Summary 
The vehicle routing problem (VRP) is a very difficult optimization 

problem. It is an important NP-hard problem that has many real-

life applications. The problem is seeking to obtain an optimal tour 

with minimum distance or cost to serve n customers by m vehicles, 

such that each vehicle starts from the depot, every customer is 

visited only once, and all vehicles end tour at the depot. There are 

many variations of the problem. In this paper, we consider 

distance-constrained VRP (DVRP) in which entire distance 

traveled by each vehicle is within a predetermined distance limit. 

Many exact, heuristic, and metaheuristic methods had been 

applied to solve the VRP and its variations. We propose to apply 

genetic algorithm (GA) to solve the problem. In GA, crossover 

operator plays an important role and hence, selection of good 

crossover operator leads to efficient GA. We compared four 

crossover operators on TSPLIB instances to determine the best 

operator. The experimental study shows that the sequential 

constructive crossover is superior to the other crossover operators 

in terms of solution quality for the problem. 

Key words: 
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1. Introduction 

Many important problems in our life are very complicated; 

thus, they represent a challenge for computer algorithms. In 

this paper, we consider one of these problems, called the 

vehicle routing problem (VRP). The VRP is an important 

NP-hard problem, which is one of the most studied 

combinatorial optimization problems. The VRP is 

concerned with determining the optimal routes for a set of 

vehicles to serve a set of customers, which was introduced 

by Dantzig and Ramser before more than 50 years [1]. Since 

then many researchers have been considered exact and 

approximate solutions for the problem as a result of its 

importance for many real-life applications such as 

transportation networks, shipments delivery, street cleaning 

etc. 

The VRP has many variants which have been discussed in 

the literature, such as VRP with time windows where each 

customer must be served during a time period. In this paper, 

we consider especially distance-constrained VRP (DVRP) 

where the total traveled distance by each vehicle in the 

solution is restricted by a maximum possible traveled 

distance. The DVRP includes determining a set of vehicles 

routes such that each customer is served only once by one 

vehicle, each vehicle starts and ends its tour at the depot, 

and the total traveling distance by every vehicle in the 

solution is less than or equal to a maximum allowed 

distance. 

Let us define DVRP as follows. Suppose N = {1, 2, . . ., n} 

be a set of cities (or nodes or customers), city 1 is the depot 

and there is a group of m identical vehicles. Also, suppose, 

D = [dij] be a distance matrix that associates every pair of 

cities. The matrix D will be symmetric if dij=dji, or 

asymmetric otherwise. This paper considers asymmetric 

DVRP. The maximum possible traveled distance (Dmax) 

for any vehicle is given. The problem is to obtain any 

optimal tour set having least distance to visit n cities using 

m vehicles, each vehicle tour is beginning from and ending 

at the depot, and every city is visited only once, and the 

entire traveled distance by every vehicle is within the 

predetermined travelled distance limit, Dmax. The VRP is 

discussed richly in the literature, but the DVRP especially 

is not a common variant [2]. 

Since VRP is one of the NP-hard problems, it is observed 

that obtaining a solution using exact methods is very 

difficult, while the heuristic and metaheuristic methods are 

better and more suitable to obtain near-optimal solutions in 

a short time. Genetic Algorithm (GA) is one of the common 

metaheuristic algorithms that is applied to solve many NP-

hard combinatorial optimization problems, specially, the 

VRP. GA could find good solutions for these problems in a 

reasonable time. 

In this paper, the aim is to develop an efficient GA for 

solving the DVRP. In GA, crossover operator plays an 

important role. So, we compare four crossover operators, 

namely, Sequential Constructive Crossover (SCX) [3], 

Cycle Crossover (CX) [4], Partially Mapped Crossover 

(PMX) [5], and Alternate Edge Crossover (AEX) [6] for 

solving the problem on some TSPLIB instances.  

This paper is organized as follows: section 2 is a literature 

review of crossover operators, section 3 describes the GA 

and provides illustrations of the four crossover operators, 

section 4 presents experimental results and discussion of the 

applied four crossover operators, and finally section 5 

presents conclusion and future works. 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020 

 

 

115 

 

2. Literature Review 

In the literature, many GAs were developed to solve 

different variants of the VRP. Each researcher aims to 

improve GA by proposing new approaches or designing 

new operators. GA operators include parents’ selection, 

crossover, mutation, and survivor selection. Since crossover 

operators have an important role in GA, many crossover 

operators were proposed for the VRP.  

Davis [7] developed ordered crossover (OX), where the 

offspring is created by randomly selecting 2 crossover 

points and copying nodes between these points from one 

parent into the offspring and complete the remaining nodes 

in the same order that they appear in the other parent. 

Goldberg and Lingle [5] developed PMX, where the 

offspring is created by randomly selecting 2 crossover 

points and copying nodes between these points from one 

parent into the offspring and complete the remaining nodes 

from the other parent in mapped process. Oliver et al. [4] 

developed CX, where offspring is created by taking values 

and positions from one of the parents, so nodes are copied 

from each parent in alternated cycles. Blanton and 

Wainwright [8] proposed two crossover operators, namely, 

merge#1 and merge#2 that use global knowledge to 

examine solution space.  

Ahmed [3] proposed SCX that produces an offspring with 

better edges from each parent. Also, it introduces new, 

better edges that are even not included in any one of the 

parents. It works by selecting sequentially the nodes with 

the least distance from both parents, the experimental 

results on traveling salesman problem (TSP) showed that it 

is superior to other compared crossover operators. Also, 

there are two edge-based crossover operators, namely, AEX 

[6] and edge recombination crossover (ERX) [9]. In AEX, 

the offspring is created by selecting edges alternatively 

from each parent, or randomly selecting a feasible edge if 

there is an infeasible edge. In ERX, the offspring inherits 

edges from the parents as much as possible and the common 

edges in parents will have a priority. 

Krunoslav et al. [10] made a comparison of 8 crossover 

operators for solving the VRP and showed through 

experimental result that AEX is best among them. Rachid 

et al. [11] studied the performance of many crossover 

operators based on experiments for solving the VRP; and 

found that PMX is better than OX and that OX is better than 

merge #2. Also, a comparative analysis of three crossover 

operators PMX, CX and OX to solve the TSP was reported 

in [12] and showed through experimental results that PMX 

is better than CX, and CX is better than OX. Based on these 

researches some of the best crossover operators are selected 

for comparison in this paper, namely, SCX, PMX, CX and 

AEX to assess their goodness for solving the DVRP. 

3. Genetic Algorithm 

Genetic Algorithm (GA) was introduced by John Holland 

in 1960 which is based on reproduction, selection, and 

evolution that happens naturally [13]. The main principle of 

GA is that only the fittest individuals can survive. GA works 

with individuals, which are encoded as chromosomes, each 

represents a possible solution to a given problem. GA 

creates an initial population of possible solutions, and 

evaluates them based on a fitness function, then selects best 

chromosomes for reproduction or creating new generations 

repeatedly. GA creates new offspring by applying genetic 

operators (crossover and mutation) on selected 

chromosomes (parents). GA repeats this process of 

generating, evaluating, and selecting individuals iteratively 

until reaching a stopping criterion that terminates the 

algorithm such as reaching a specific number of generations. 

There are several parameters that affect GA performance. 

Population size is one of these parameters, it specifies how 

many chromosomes will be created initially, a large 

population size will increase searching time, while a small 

population size will affect the search results and it may be 

not enough to obtain good results. Also, there are 

probabilities for both crossover and mutation, which 

determine the possibility of applying the operator on the 

parents. Moreover, the stopping criterion is one of the GA 

parameters. 

3.1 Genetic Encoding 

To solve any problem by GA we must look for encoding, or 

the way to represent solutions as chromosomes. We 

consider path representation with m-1 extra nodes (where m 

is the number of vehicles), these extra nodes represent 

replications of the depot to indicate the starting of new 

vehicles [14]. Thus, the chromosome length will be n+m-1 

(where n is the number of nodes). So, the distance matrix 

needs to be modified, to include the new replication of depot 

node. For this, we add (m-1) copy of the depot (city 1) row 

and column (i.e., 1st row and 1st column) to the given 

matrix. 

3.2 Fitness Function and Selection Operator 

The aim of the DVRP is to find routes with minimum 

traveling distance. Thus, the objective function is to 

minimize the total distance of routes in each chromosome 

and the fitness function is the inverse of the objective 

function. The selection operator selects, based on their 

fitness values, the chromosomes that will be used for 

crossover to create offspring in the next generation. One of 

the common selection operators is fitness proportionate 

selection, and many such selection operators are available 

in the literature. We are going to use stochastic remainder 

selection method [15] for our GAs. 
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3.3 Four Crossover Operators and their Illustrations 

Crossover is the most significant operator in GAs which is 

applied on a pair of selected parent chromosomes to 

produce one (or two) offspring chromosome(s). One can use 

one-point or multi-point crossover operator. Among various 

crossover operators found in the literature for the TSP and 

related combinatorial optimization problems, four 

crossover operators, namely, SCX, CX, PMX, and AEX, 

are proposed to implement for our problem, and then their 

results will be compared for finding best operator among 

them. For illustration of these crossover operators, we 

consider n=7 and m=2. We construct modified matrix by 

adding one copy of the depot (city 1) row and column (i.e., 

1st row and 1st column) to the original distance matrix, 

which is reported in Table 1. We use same parent 

chromosomes P1: 1 2 4 8 3 6 5 7 and P2: 1 3 8 5 2 7 4 6 for 

the illustration. The objective value of each offspring is 

calculated by adding the tour distance of each vehicle in the 

produced offspring. The total distance of 1st parent is 75 

with the maximum vehicle distance is 54 and the other 

vehicle distance is 21. The total distance of 2nd parent is 72 

with the maximum vehicle distance is 56 and the other 

vehicle distance is 16. 

3.3.1 Sequential Constructive Crossover (SCX) 

SCX [3] was developed for the TSP and then is applied 

successfully to many other combinatorial optimization 

problems [16-22]. It produces an offspring with better edges 

from each parent. Also, it introduces new better edges that 

are not included in any of the parents. Thus, the possibility 

of producing better offspring is high. It adds the first city to 

the offspring, then it looks sequentially for the following 

city in both parents and chooses the one with less distance 

value. If all the following cities are infeasible, then it 

considers all cities sequentially 1,2, …, n, and selects the 

first valid city instead of the infeasible following city. As an 

illustration, first ‘city 1’ will be added to the offspring, and 

hence the partially resulting offspring is “1 - - - - - - -”. Then, 

the successors of ‘city 1’ in both parents are ‘city 2’ and 

‘city 3’ respectively. Now, distance from ‘city 1’ to both 

‘city 2’ and ‘city 3’ are 2 and 11 respectively. Hence, the 

city with the least distance, that is, ‘city 2’ is added to the 

offspring, and the partially resulting offspring is “1 2 - - - - 

- -”. The successors of ‘city 2’ are ‘city 4’ and ’city 7’ with 

distances are 8 and 6 respectively in the parents, and thus 

‘city 7’ will be added. The partially resulting offspring 

becomes “1 2 7 - - - - -”. Then, there is no successor of ‘city 

7’ in P1, and thus P1 is searched sequentially from the 

beginning looking for a valid city and found ‘city 4’ as the 

first valid city. Successor of ‘city 7’ in P2 is ‘city 4’ with 

lower distance 10, and thus city ‘4’ is added into the 

offspring, and the partially resulting offspring is “1 2 7 4 - - 

- -”. Then, continue the same process to get a complete 

chromosome, and the final offspring is “1 2 7 4 6 3 8 5”, 

where the maximum vehicle distance is 37, the other vehicle 

distance is 19, and the total distance is 56. The offspring 

distance is better than both parents. 

3.3.2 Cycle Crossover (CX) 

CX [4] produces an offspring by copying cities from each 

parent in alternating cycles. It selects cycle from parent 1 

and another from parent 2 and it continues the same process 

until getting a complete offspring chromosome. Thus, each 

city takes its position from one of the parents. As an 

illustration, the first city from P1 ‘city 1’ is added to the 

offspring, and the partially resulting offspring is “1 - - - - - 

- -”, the corresponding city in P2 is also ‘city 1’, and thus a 

cycle occurs and parents’ role is exchanged. The second city 

is added from P2, and the partially resulting offspring is “1 

3 - - - - - -”, the corresponding city in P1 is ‘city 2’, which is 

added to the offspring at its position in P2, and thus the 

partially resulting offspring is “1 3 - - 2 - - -”. The 

corresponding city of ‘city 2’ in P1 is ‘city 3’, which is 

already visited, and thus a cycle occurs and parents’ role is 

exchanged. After that, the first valid city in P1 ‘city 4’ is 

added to the offspring and the partially resulting offspring 

is “1 3 4 - 2 - - -”. Then, continue the same process to get a 

complete chromosome, and the final resulting offspring is 

“1 3 4 8 2 7 5 6”, where the maximum vehicle distance is 

33, the other vehicle distance is 31, and the total distance is 

64. The offspring distance is better than both parents. 

3.3.3 Partially Mapped Crossover (PMX) 

PMX [5] produces an offspring by selecting 2 randomly 

crossover points, then it copies a sequence of cities between 

these points from the first parent to the offspring. After that, 

it adds the remaining cities from the second parent, and it 

uses a mapping process when the city is already added from 

the first parent. As an illustration, suppose that random 

crossover points r1 and r2 are 3 and 5. Subsequence between 

these two points in P1 “4 8 3” is copied to the offspring at 

the same position, and thus partially resulting offspring is “- 

- 4 8 3 - - -”. After that, the remaining cities are copied from 

P2, starting after point r2.  First city to add from P2 is ‘city 

7’, which is a valid city, and thus the partially resulting 

offspring is “- - 4 8 3 7 - -”. The next city is ‘city 4’, and it 

is invalid since it is already visited, and thus the mapping to 

its corresponding city in the subsequence between the 

crossover points in P1 is needed, the partially resulting 

offspring is “- - 4 8 3 7 5 -”. Then, continue the same process 

to get a complete chromosome, and the final resulting 

offspring is “1 2 4 8 3 7 5 6”, where the maximum vehicle 

distance is 37, the other vehicle distance is 21, and the total 

distance is 58. The offspring distance is better than both 

parents. 
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3.3.4 Alternate Edge Crossover (AEX) 

AEX [6] produces an offspring by choosing edges from 

each parent alternatively, and in case of infeasibility it 

chooses randomly a feasible edge. As an illustration, first 

edge “1 2” is added from P1, and the partially resulting 

offspring is “1 2 - - - - - -”. Then, the edge “2 7” from P2 is 

added and the partially resulting offspring is “1 2 7 - - - - -”. 

After that, there is no following edge for ‘city 7’ in P1, and 

thus a random valid city is added, for example, ‘city 3’ and 

the partially resulting offspring is “1 2 7 3 - - - -”. Then, 

continue the same process to get a complete chromosome, 

and the final resulting offspring is “1 2 7 3 8 4 6 5”, where 

the maximum vehicle distance is 41, the other vehicle 

distance is 25, and the total distance is 66. The offspring 

distance is better than both parents. 

For the above example, it is found that SCX is the best 

among the four crossover operators. 

3.4 Survivor Selection 

After applying the crossover operator survivor selection 

operation [3] is applied, that selects chromosomes for the 

next generation, which is also called chromosomes 

replacement. It considers parents and offspring 

chromosomes with high fitness value only which compete. 

Survivor selection includes two approaches: generational 

where all or large group of chromosomes are replaced, or 

steady-state where only one chromosome or few 

chromosomes are replaced. We use a steady-state survivor 

selection that considers fitter chromosomes from both 

parents and offspring. 

3.5 Mutation Operator 

Mutation operator ensures the diversity of the population. 

The mutation is applied with a probability, which is usually 

very low. We apply exchange mutation; where two 

positions are randomly chosen, and their values are 

exchanged. 

4. Experimental Results and Discussion 

The aim of the experiments is to compare the performance 

of four crossover operators: SCX, CX, PMX, and AEX. 

GAs using these crossover operators are encoded in C++ 

and run on a personal computer with intel core i5-1.6 

processor and 8 GB RAM under MS Windows 10. 

Computational tests are performed on fifteen asymmetric 

TSPLIB instances, with instance size ranges from 17 to 171. 

The common parameters are selected for the algorithms as 

follows: population size is 70, probability of crossover is 

1.0, probability of mutation is 0.09, and maximum of 

20,000 generations as the stopping condition. The tests were 

performed 20 times for each instance.  

We report Max, Best solution, Average solution and 

Average time of convergence (in second) of 20 runs by the 

algorithms for different number of vehicles (m) and 

different values of Dmax. In Table 2 (a & b), we used Dmax=∞ 

to find Max(1), whereas in Table 3 (a & b), we used 

Dmax=0.9*Max(1) to find Max(2) and new solution.  

In Table 2 (a & b), when m=1 (only one vehicle is used) the 

unrestricted DVRP (with Dmax=∞), could be considered as 

the usual TSP. Thus, the DVRP results could be compared 

to the optimal/best known solution of the TSP. To the best 

of our knowledge, there are no optimal known solutions for 

the DVRP, thus it is difficult to assess the efficiency of the 

proposed GAs with more than one vehicle precisely. For the 

smallest instance (br17) all crossover operators found good 

solutions which are equal to the optimal/best known 

solution.  When m=1, SCX found solutions near to the 

optimal solutions in most of the cases.  Also, compared to 

other crossover operators, SCX found the best solutions in 

73.33% of the test cases, noting that the best solutions that 

are equal to the results of other crossover operators are not 

included in this percentage. Moreover, SCX found the best 

maximum distance for a single vehicle in the solution for 

44.44 % of the test cases. AEX found the best solutions for 

three cases and it found a solution equals to SCX solution 

in one case only. For other cases, when m>1, SCX obtains 

better solutions compared to other three operators. In 

general, SCX obtains better results than other crossover 

operators, especially for large-sized instances. However, 

the average computational time to find solutions is better 

with CX then AEX. 

In Table 3 (a & b), the results for the restricted DVRP (with 

Dmax=0.9*Max(1)) are shown for m=2 and 3. In some cases, 

there was no result found with this maximum distance, thus 

another close value for maximum distance was applied. In 

the comparison of the four crossover operators, SCX 

outperforms other compared crossover operators, especially 

for large-sized instances and could be considered as the best 

one. For this test also, the average computational time is 

better with CX in most of cases. It is to be noted that SCX 

showed very good results and was superior to other 

crossover operators for solving the TSP [7]. Moreover, SCX 

showed very good results on the DVRP in this experiment 

but for some of the instances still best solution is not 

achieved. 

5. Conclusion and Future Works 

This paper presented a comparison of four GA crossover 

operators, SCX, PMX, CX, and AEX for solving the DVRP. 

Two sets of experimental tests were performed on some 

TSPLIB instances. The first test was unrestricted, and the 

maximum distance allowed for each vehicle was set to a 

very large value, and in the second test maximum distance 

was restricted by multiplying 0.9 to the maximum distance 

found in the first test or restricted to another appropriate 
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value. Among the four crossover operators, SCX finds the 

best quality solutions in both unrestricted and restricted 

cases DVRP. However, for some instances still best 

solution is not achieved by SCX. So, one can improve the 

simple GA to obtain better solutions by hybridization with 

some local search methods.  
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Table 1: The modified distance matrix. 

City 1 2 3 4 5 6 7 8 

1 99999 2 11 10 8 7 6 99999 

2 6 99999 1 8 8 4 6 6 

3 5 12 99999 11 8 12 3 5 

4 11 9 10 99999 1 9 8 11 

5 11 11 9 4 99999 2 10 11 

6 12 8 5 2 11 99999 11 12 

7 10 11 12 10 9 12 99999 10 

8 99999 2 11 10 8 7 6 99999 

 

 

Table 2 (a): Unrestricted DVRP test results (SCX and CX results). 

 SCX CX 

Inst. n m Max(1) Best sol Avg. sol Avg. time Max(1) Best sol Avg. sol Avg. time 

br17 17 1 39 39 39.00 2.91 39 39 41.05 1.51 

    2 39 39 39.00 4.64 39 39 41.00 2.81 

    3 31 42 42.00 5.06 31 42 43.90 1.62 

ftv33 34 1 1329 1329 1352.95 11.56 1475 1475 1649.00 2.80 

    2 1316 1342 1374.00 11.13 822 1470 1605.95 3.04 

    3 1195 1328 1380.95 12.49 1188 1420 1582.50 3.13 

ftv35 36 1 1490 1490 1499.65 13.57 1689 1689 1820.55 3.03 

    2 1463 1489 1510.65 12.80 1641 1667 1829.10 3.17 

    3 1393 1511 1521.65 14.67 933 1584 1789.70 3.25 

ftv38 39 1 1549 1549 1582.20 14.35 1652 1652 1875.95 3.25 

    2 1533 1559 1598.50 7.90 1309 1666 1900.85 3.56 

    3 886 1574 1592.70 8.25 1576 1771 1914.75 3.52 

p43 43 1 5639 5639 5646.40 9.63 5641 5641 5655.75 3.83 

    2 5617 5637 5642.50 19.69 5624 5644 5664.45 3.87 

    3 5631 5703 5712.30 20.39 5642 5714 5739.60 4.12 

ftv44 45 1 1663 1663 1726.05 9.38 1828 1828 2063.20 3.91 

    2 1609 1635 1698.80 17.44 1376 1935 2126.85 3.93 

    3 1547 1665 1739.00 20.70 1714 1987 2141.10 4.07 

ftv47 48 1 1815 1815 1852.40 20.99 2134 2134 2353.60 4.05 

    2 981 1879 1945.80 21.67 1400 2011 2394.15 4.04 

    3 1672 2000 2065.10 20.67 1155 2252 2404.70 4.25 

ry48p 48 1 15309 15309 15532.10 19.63 16270 16270 17847.20 4.06 

    2 15339 15790 16041.40 10.42 15640 16091 18628.80 4.27 

    3 15074 16016 16336.90 21.77 14434 16975 18718.00 4.36 

ft53 53 1 7468 7468 7916.90 24.59 8189 8189 9807.35 7.21 

    2 7396 7679 8115.45 26.45 4515 8989 9986.10 8.56 

    3 7447 7900 8297.25 12.73 8457 9008 9860.85 4.68 

ftv55 56 1 1635 1635 1727.70 28.00 1960 1960 2307.70 9.88 

    2 1051 1732 1817.30 18.67 1089 2057 2317.25 9.75 

    3 1117 1795 1868.40 28.25 1000 2223 2411.90 9.26 

ftv64 65 1 1996 1996 2100.40 35.00 2394 2394 2691.60 10.60 

    2 1986 2012 2090.20 36.44 2368 2481 2696.95 10.70 

    3 1879 1999 2113.05 37.66 1172 2577 2751.20 9.00 

ft70 70 1 40548 40548 41082.60 18.76 42243 42243 43599.30 11.40 
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 SCX CX 

Inst. n m Max(1) Best sol Avg. sol Avg. time Max(1) Best sol Avg. sol Avg. time 

    2 39980 40964 41551.80 36.36 41963 42947 44567.10 10.90 

    3 22295 41947 42351.20 42.87 28358 44032 45231.80 6.06 

ftv70 71 1 2087 2087 2232.95 38.88 2769 2769 2957.30 11.80 

    2 2138 2164 2182.55 37.38 1900 2640 2892.60 11.80 

    3 1988 2108 2205.25 40.85 2420 2704 3010.50 11.50 

kro124p 100 1 42067 42067 42820.20 65.63 57000 57000 60546.30 16.80 

    2 35422 42421 43380.90 34.46 43881 58543 60945.80 15.50 

    3 35612 43471 44203.80 74.58 48262 57209 62683.30 16.70 

ftv170 171 1 3440 3440 3539.20 184.70 13071 13071 13327.30 30.50 

    2 3400 3430 3561.25 88.20 10927 12638 13473.70 28.60 

    3 2397 3401 3577.05 87.95 11092 13398 13632.40 27.80 

 

Table 2 (b): Unrestricted DVRP test results (PMX and AEX results). 

 PMX AEX 

Inst. n m Max(1) Best sol Avg. sol Avg. time Max(1) Best sol Avg. sol Avg. time 

br17 17 1 39 39 40.85 23.100 39 39 39.00 2.89 

    2 39 39 40.25 24.98 39 39 39.25 3.08 

    3  31 42 44.90 29.04 31 42 42.00 2.73 

ftv33 34 1 1447 1447 1609.30 15.36 1286 1286 1346.90 3.24 

    2 1212 1379 1563.90 31.09 1195 1302 1336.85 6.37 

    3 1347 1498 1626.50 15.60 1195 1328 1359.90 6.82 

ftv35 36 1 1667 1667 1807.00 21.41 1479 1479 1522.90 6.31 

    2 1621 1647 1828.75 15.70 1382 1489 1508.80 3.36 

    3 1086 1657 1861.85 15.75 1393 1511 1535.90 3.45 

ftv38 39 1 1718 1718 1858.95 15.72 1536 1536 1604.65 3.46 

    2 1226 1757 1914.10 16.43 1480 1587 1643.15 3.77 

    3 874 1789 1931.70 16.24 1543 1629 1679.05 3.88 

p43 43 1 5635 5635 5654.85 33.98 5736 5736 5755.65 5.18 

    2 5619 5639 5669.25 31.95 5715 5735 5770.45 4.64 

    3 5621 5693 5723.25 30.23 5634 5809 5848.70 4.92 

ftv44 45 1 1863 1863 2055.75 16.55 1932 1932 2061.55 4.26 

    2 1097 1798 2131.25 16.56 1652 1870 2055.30 4.35 

    3 1356 1936 2110.15 16.54 1850 1968 2116.35 4.47 

ftv47 48 1 2080 2080 2349.45 16.54 2209 2209 2353.00 4.49 

    2 2069 2142 2375.45 16.58 1134 2257 2400.25 4.50 

    3 1712 2271 2463.50 16.78 1230 2521 2728.60 4.95 

ry48p 48 1 16424 16424 18359.80 32.50 18144 18144 18648.00 4.59 

    2 9699 15895 18059.20 32.82 16942 17845 18733.10 9.06 

    3 14612 16204 18215.00 16.98 13969 20247 20695.20 9.55 

ft53 53 1 8389 8389 9629.40 16.77 8524 8524 8975.10 7.80 

    2 8324 8507 9816.20 16.76 6149 8519 9014.40 5.16 

    3 9049 9049 9993.10 16.99 8561 9082 9677.75 9.28 

ftv55 56 1 1975 1975 2300.00 17.33 2731 2731 2819.00 5.45 

    2 1995 2068 2301.30 17.33 1487 2695 2919.65 5.56 

    3 1154 2134 2375.15 17.26 2013 2801 2969.65 5.75 

ftv64 65 1 2363 2363 2644.90 17.82 3805 3805 4024.60 6.62 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020 

 

 

121 

 

 PMX AEX 

Inst. n m Max(1) Best sol Avg. sol Avg. time Max(1) Best sol Avg. sol Avg. time 

    2 1813 2379 2669.75 17.89 2886 3875 4040.05 6.74 

    3 1566 2376 2680.10 18.00 2696 3973 4143.55 6.90 

ft70 70 1 42801 42801 43609.30 18.06 44560 44560 45280.40 12.488 

    2 42118 43102 44723.80 18.70 44662 45646 46027.10 7.35 

    3 35448 43704 44913.10 18.86 28536 46791 47301.90 7.51 

ftv70 71 1 2647 2647 2909.15 18.22 4002 4002 4305.00 7.26 

    2 1416 2725 2919.85 18.22 2238 4098 4332.20 7.35 

    3 1812 2658 2933.85 18.36 2506 4161 4424.45 7.53 

kro124p 100 1 66025 66025 68620.40 42.41 104210 104210 106554.00 11.17 

  100  2 57104 65880 70121.40 33.16 86423 103786 107459.00 11.32 

    3 38118 69026 71622.90 35.06 90865 105161 109035.00 11.60 

ftv170 171 1 15059 15059 15400.50 25.55 10752 10752 11180.50 23.96 

    2 10596 15247 15477.40 25.70 7931 10940 11280.00 24.19 

    3 7622 15385 15667.10 49.79 8830 11038 11381.00 24.39 

 

 

Table 3 (a): Restricted DVRP test results (SCX and CX results). 

 SCX CX 

Inst. n m Max(2) Best sol Avg. sol Avg. time Max(2) Best sol Avg. sol Avg. time 

br17 17 2 31 42 42.00 2.61 31 42 43.95 2.18 

    3 31 42 41.45 4.30 31 42 43.90 1.66 

ftv33 34 2 749 1387 1442.45 12.66 1129 1490 1617.85 3.06 

    3 957 1382 1395.05 13.91 683 1509 1652.30 5.82 

ftv35 36 2 1036 1508 1579.80 13.84 970 1665 1806.60 3.17 

    3 886 1517 1538.10 14.33 1019 1668 1842.75 3.21 

ftv38 39 2 827 1617 1703.95 15.46 974 1744 1908.35 3.50 

    3 708 1727 1795.25 16.82 1055 1854 1964.90 3.51 

p43 43 2 5449 5703 5720.80 21.66 5445 5701 5727.05 3.93 

    3 5445 5721 5727.00 10.36 5445 5748 5795.50 4.24 

ftv44 45 2 1017 1752 1844.30 19.35 1047 1967 2128.15 7.04 

    3 1112 1706 1800.30 9.69 1051 1922 2114.75 5.55 

ftv47 48 2 1771 1886 1987.05 22.15 1184 2111 2366.15 8.29 

    3 990 1945 2067.90 19.95 914 2175 2468.95 7.01 

ry48p 48 2 9456 16295 16987.30 10.40 13117 16589 18739.80 6.91 

    3 8963 16572 16868.00 22.34 11443 16979 19221.30 8.84 

ft53 53 2 5047 7832 8392.75 25.31 5328 8484 9744.40 4.53 

    3 5663 7955 8405.15 26.71 6237 8881 9700.65 8.10 

ftv55 56 2 928 1741 1830.80 27.90 1253 2142 2319.55 10.10 

    3 707 1839 1904.20 13.53 742 2117 2420.60 4.88 
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 SCX CX 

Inst. n m Max(2) Best sol Avg. sol Avg. time Max(2) Best sol Avg. sol Avg. time 

ftv64 65 2 1692 2122 2197.50 16.98 1614 2470 2651.60 11.80 

    3 1005 2006 2093.45 17.43 1289 2436 2667.40 5.64 

ft70 70 2 34865 42217 42722.70 26.17 24524 42794 44393.80 12.80 

    3 17623 43206 43962.70 19.70 22076 43930 45230.50 11.00 

ftv70 71 2 1475 2257 2284.10 19.57 1495 2580 2846.80 11.70 

    3 1522 2129 2238.45 19.97 1089 2707 2966.80 12.20 

kro124p 100 2 25671 43357 44548.10 68.56 33017 59348 67955.60 9.17 

    3 29048 42866 44965.60 34.49 33994 60338 63765.30 18.10 

ftv170 171 2 2182 3516 3788.25 86.99 7494 13001 13501.50 30.60 

    3 1682 3382 3585.45 87.54 6070 12917 13526.10 31.40 

 

Table 3 (b): Restricted DVRP test results (PMX and AEX results). 

 PMX AEX 

Inst. n m Max(2) Best sol Avg. sol Avg. time Max(2) Best sol Avg. sol Avg. time 

br17 17 2 31 42 44.20 29.19 31 42 42.00 2.60 

    3 31 42 45.45 14.47 31 42 42.20 3.53 

ftv33 34 2 971 1470 1667.55 15.62 877 1336 1373.55 7.09 

    3 1012 1525 1648.95 15.77 877 1362 1397.00 6.58 

ftv35 36 2 1018 1616 1850.75 16.19 886 1491 1527.70 6.86 

    3 807 1758 1895.05 16.11 886 1517 1558.55 6.93 

ftv38 39 2 963 1746 1952.15 16.05 1068 1626 1701.45 7.55 

    3 869 1822 1968.50 16.19 1013 1665 1706.65 6.33 

p43 43 2 5553 5689 5714.40 33.66 5488 5800 5827.50 9.05 

    3 5445 5738 5910.05 34.83 5444 5876 5927.35 10.26 

ftv44 45 2 947 1875 2155.05 33.45 1258 2154 2501.05 9.55 

    3 942 1993 2206.35 35.20 1192 1922 2132.35 9.04 

ftv47 48 2 1305 2169 2363.15 34.38 1368 2546 2951.30 4.93 

    3 1216 2263 2463.25 36.12 1222 3216 3534.50 5.24 

ry48p 48 2 10619 16387 18364.80 28.71 10919 18242 19412.80 9.75 

    3 9977 16870 18671.90 16.77 9479 19974 21665.80 10.38 

ft53 53 2 5460 8906 9887.90 16.91 5139 9601 10124.50 11.45 

    3 4058 8284 9702.10 17.12 5118 9479 9831.05 11.20 

ftv55 56 2 1189 1981 2258.55 33.15 1764 3108 3502.00 5.99 

    3 819 2111 2464.20 35.45 1202 3008 3256.70 12.20 

ftv64 65 2 1525 2358 2580.70 36.78 2334 4497 4708.20 14.03 

    3 1004 2422 2678.25 37.47 2118 3963 4476.00 8.77 
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 PMX AEX 

Inst. n m Max(2) Best sol Avg. sol Avg. time Max(2) Best sol Avg. sol Avg. time 

ft70 70 2 33731 43555 44646.10 18.34 31218 45940 46648.70 15.79 

    3 29222 43617 45225.30 18.40 23840 47136 48618.30 13.07 

ftv70 71 2 1725 2590 2897.50 34.86 2419 4614 4856.70 16.34 

    3 1294 2625 2870.35 18.46 1971 4601 4911.95 16.28 

kro124p 100 2 33642 67106 71329.00 21.12 56528 104953 109467.00 23.62 

    3 26561 69515 73574.10 41.71 73624 104368 109649.00 24.94 

ftv170 171 2 7736 15277 15775.50 26.50 6386 11775 12296.90 53.54 

    3 5985 15463 16093.30 25.89 7624 11523 11913.10 51.87 

 


