
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

138

Manuscript received July 7, 2020

Manuscript revised July 20, 2020

Changes, States, and Events: The Thread from Staticity to

Dynamism in the Conceptual Modeling of Systems

Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Summary
This paper examines the concept of change in conceptual

modeling. Change is inherent in the nature of things and has

increasingly become a focus of much interest and investigation.

Change can be modeled as a transition between two states of a

finite state machine (FSM). This change represents an

exploratory starting point in this paper. Accordingly, a sample

FSM that models a car’s transmission system is re-expressed in

terms of a new modeling methodology called thinging machine

(TM) modeling. Recasting the car-transmission model involves

developing (1) an S model that captures the static aspects, (2) a

D model that identifies states, and (3) a B model that specifies

the behavior. The analysis progresses as follows.

- S represents an atemporal diagrammatic description that

embeds underlying compositions (static changes) from which the

roots of system behavior can be traced.

- S is broken down into multiple subsystems that correspond to

static states (ordered constitutive components).

- Introducing time into static states converts these states into

events, and the behavior (B) model is constructed based on the

chronology of these events.

The analysis shows that FSM states are static (atemporal)

changes that introduce temporal events as carriers of behavior.

This result enhances the semantics of the concepts of change,

states, and events in modeling and shows how to specify a

system’s behavior through its static description.

Key words:
Static changes; conceptual model; finite state machine;

requirements modeling; static states; events; behavior

specification

1. Introduction

Change is one of the most discussed topics of our time,

and scientific journals had published more than a million

articles on the topic by the beginning of the 21st century,

[1]. Quoting Whitehead, Stickland [2] asserted that change

is inherent in the nature of things. Nevertheless, research

on change lacks theoretical underpinnings and suffers

from an absence of “a process orientation and a wider

contextualism.”

The lack of these elements essentially reflects myopic and

largely unsubstantiated conceptual perspectives on change

([3] as cited in [1]). Numerous works have investigated the

concept of change, including reviews across literature

regarding change’s definition, change relative to time,

change conditions and states, the character of the change

process, and change in various entities.

The earliest conception of change can be traced to

Heraclitus (535 BC–475 BC), for whom all things were in

a continuous, ceaseless flux and nothing existed as a static

entity. He compared this endless change to a river and

remarked, “You can never step in the same river twice”

[4]. Other philosophers, such as Parmenides (late sixth or

early fifth century BC) and Zeno (495–430 BC),

maintained that change is an illusion and that there is just

one timeless “being,” in contrast to Heraclitus’s concept of

“becoming” [4]. Several kinds of change have been

recognized. For example, Aristotle articulated two kinds

of change: accidental change, such as an alteration (e.g.,

Socrates becomes pale), and substantial change (e.g., the

bronze becomes a statue). Typically, change is viewed as

a general notion that is useful in developing ideas that are

more specific about change. The concept stimulates

critical thinking, which leads to inventiveness and ideas

[5].

1.1 Change in Computer Science

Computers can be powerful vehicles for change [6].

However, the concept of change is rarely addressed in

computer science, except with regard to software

engineering and modeling with finite state machines

(FSMs). Many domain-specific (computational) ontologies

(e.g., OWL) have neglected the notion of change [7].

Change is inevitable for software. Changes in software are

implemented to better adapt the software to its

environment. In software systems, concerns about change

dominate costs at all levels of development as change is

adapted to new requirements. As Robbes [8] states,

“Systems on which continuous changes are performed

inevitably decay, making maintenance harder.” This

problem is not new: The software research community has

been tackling it for more than two decades. However,

most approaches have targeted specific maintenance

activities using an ad hoc model of software evolution.

Robbes [8] proposed “treating change as a first-class

entity” through change-based software evolution, in which

changes to programs are recorded as they happen.

https://en.wikiquote.org/wiki/535_BC
https://en.wikiquote.org/wiki/475_BC

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

139

1.2 Change in Modeling

This paper focuses on representing change and its uses in

a much more limited domain: conceptual modeling.

Conceptual modeling is a central apparatus used in

developing systems. In this context, model-based

methodologies have been adopted in which a system is

represented graphically at several levels of granularity

(e.g., UML and SysML). According to Chen et al. [9], a

challenge in conceptual modeling is anticipating and

accommodating change (e.g., in software or database

systems) because “any change of structure, processes and

interaction is made through conceptual modeling.”

Consequently, understanding the concept of change and its

related notions (e.g., state, time, and events) is the very

crux of modeling.

In pursuing this aim, an entry point into the topic is change

in FSM modeling, in which change is viewed as a

transition between two states. The most widely used

notion in modeling is that of state. FSM is considered a

behavioral model, which can be analyzed using a new

modeling methodology called thinging machine (TM)

modeling to understand change further. Beyond

understanding change, another aim of this research is to

explore the semantics and expressibility, of both FSM and

TM, with regard to related notions such as states and

events. Specifically, the focus is on examining how to

specify system behavior through its static description. We

introduce the concepts of static change and static state,

which lead to time-based construction of events.

1.3 FSMs as a Conceptual Model

FSMs have been used in software design, especially after

the introduction of the extended state machine called a

statechart, which permits substates of states. Nevertheless,

specifying complex state machines can be quite tedious

[10]. According to Wagner and Wolstenholme [11], “The

concept [of state machine], although born 50 years ago, is

still not well understood or interpreted in the software

domain, despite its wide application in hardware design.

Misunderstandings about state machines have produced

several stories and half-truths. The concept of the state

machine has been several times (unintentionally?)

reinvented for software.”

FSMs can be viewed as conceptual tools for modeling a

system’s behavior as a sequence of transitions, including

of time [12]. FSMs are also used to model complex logic

in dynamic systems such as automatic transmissions,

robotic systems, and mobile phones. Statecharts can

represent FSM modeling that allows additional capabilities

beyond traditional FSMs such as hierarchical state

parallelism [13].

FSMs can change from one state to another, which is

called a transition. The concepts of change and state seem

highly related; for example, “in change… there is at each

stage a moment when the changing item is both in a given

state, because it has just reached that state, but also not in

that state, because it is not stationary but moving through

and beyond that state” [14]. Additionally, FSMs rely on

the notions of events, behavior, and time, which are all

related to change.

1.4 Aim of the Paper

This paper studies and explores the concept of change in

the context of modeling. FSMs are based on the notion of

state, which is very close to that of change. Given that

change is missing as an independent concept from

conceptual modeling, we use states as a starting point. If

FSMs were a type of behavioral model, as is the case with

UML and SysML, then further understanding of states

would lead to more appreciation of change in modeling.

1.5 Outlines of the Approach

Accordingly, state machines are re-expressed in terms of a

new modeling methodology called TM modeling. TM

modeling is a conceptual tool that abstractly represents a

system. It involves capturing (1) static aspects of the

system in a model denoted by S, (2) a dynamic

representation (denoted as D) that identifies static

changes in S, and (3) a behavioral model, B, that

specifies the chronology of events.

We provide examples that support TM modeling as a new

methodology suitable for all three levels of specification.

We can summarize the concepts in this paper in the

following steps.

1. A FSM for a car-transmission system (Fig. 1) is

selected for analysis.

2. The S TM model for the car-transmission system

is presented. Fig. 2 shows a condensed picture of

the model, which is shown in full later in this

paper.

Fig. 1 State machine of a car transmission (partially from [15]).

…

…

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

140

3. Fig. 3 shows a similar picture of the D model of S.

4. The behavioral model B is extracted from D.

The crucial analysis step of this multilevel modeling

involves the move from staticity in S (Fig. 2) to staticity

in subsystems, which are shown as colored subdiagrams in

D (Fig. 3). The general transformation of this process is

as follows:

Static S

↓

Static changes (multiplicity in S with no order)

↓

Static states (static changes with order, D)

↓

Events (static states with time order)
↓

B

The main observations in this process are as follows:

• S only represents the steady (static) whole, so it is

necessary to analyze the underlying decompositions

where behavior can happen (potentiality of dynamism).

• Dividing S causes multiple subsystems to be created

(see Fig. 3), which convert the system in static changes

(constitutive components) with respect to the whole S.

• For static changes (the colored areas in Fig. 3),

multiplicity is a form of becoming from the unity (S). A

static change here is analogous to a set that is replaced

by its members.

• Static states are ordered static changes.

• The states in FSM modeling are types of static states;

thus, they and their transitions cannot represent the

system’s behavior (i.e., they do not introduce time).

• A system’s behavior is specified by introducing time

into its static states, thus converting them to events and

fixing their chronology, producing the B model.

The aim of this discussion is to understand what a system
state is, what is involved in the notion of change, and how
change is related to states. Furthermore, we seek to
understand how a static description is made of a dynamic
specification of a system behavior, how to create multiple
subsystems from a single system, and the roles of time and
order in this arrangement.

The enhanced review in the next section summarizes the

general features of the TM model, which is a promising

modeling approach that can be applied in diverse

applications such as designing unmanned aerial vehicles

[16], documenting computer networks [17], modeling

network architectures [18], modeling advanced persistent

threats [19], modeling an IP phone communication system

[20], and programming [21].

The TM model can also be used to model service-oriented

systems [22], business systems [23], a tendering system

[24], robotic architectural structure [25], the VLSI

engineering process [26], physical security [27], the

privacy of the processing cycle of bank checks [28], a

small company process [29], wastewater treatment

controls [30], asset-management systems [31], IT

processes using Microsoft Orchestrator [32], digital

circuits [33], and automobile tracking systems [34]. The

remaining sections discuss how the TM model can be

applied in analyzing changes and FSMs.

2. Thinging Machine Model

Imagine that, for various reasons, you are not satisfied

with the ontology used in object-oriented modeling (e.g.,

[35]). Before describing or embracing a new model, you

must adapt a certain conceptualization of the “domain

view” (relevant to a particular sphere of interest, e.g.,

accounting or tourism). Specifically, in the context of this

model, you must determine what your ontology is. That is,

what are the things in your model, what is their order, how

are they constructed, and what basic presuppositions

underlie the model? Note that, by contrast, philosophical

ontology starts with what exists.

Ontologies are frameworks used to represent shareable

information and knowledge (e.g., Semantic Web [36]). An

ontology is a “specification of a conceptualization” within

the involved domain [37]. In modeling, ontologies give

descriptions of the “things that are modeled” in a

particular domain area. However, an ontology not only is a

Fig. 3. A contracted view of the D model that corresponds to S in Fig. 2.

Fig. 2. A contracted view of the schematic S model that corresponds to

a state machine of a car transmission in Fig. 1. The full details of S will

be shown later in this paper.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

141

set of categories but also involves a structure that includes

relationships (e.g., is–a), order (e.g., part–of), and

constraints.

An ontology matters as a workable means of

communicating, planning, and guiding the development of

projects (e.g., building and controlling a system such as

the car-transmission system modeled later in this paper).

We model such a system using TM modeling, which starts

with declaring the kinds of things used in a TM. In

contrast to object-oriented modeling, TM modeling does

not include notions such as objects, properties, or

relationships.

Deciding the sorts of things in a model involves

understanding the categorical structure of the modeled

domain under consideration, which is typically

hierarchical (e.g., classification). The number of

categories may distinguish different ontologies. Aristotle

(384–322 BC) articulated 10 categories of things in the

world. An example of the three-category ontology is the

state machine categories (states, events, and transactions).

In philosophy, a one-category ontology exists that only

includes so-called tropes. According to Paul [38], “One

category ontologies are deeply appealing, because their

ontological simplicity gives them an unmatched elegance

and sparseness.… We don’t need a fundamental

categorical division between particulars, individuals, or

space-time regions and their properties, nor do we need a

fundamental categorical division between things,

individuals, or bearers and the qualities ‘borne’ by them.”

TM modeling has one category called things/machines

(thimacs). Note that this study offers an idealization and,

sometimes, rational and linguistic arguments (no data, as

in physics research) closely reflecting philosophical-like

(computer science philosophy) speculations. The proposed

ontology in terms of thimacs is a deliberate simplification

of a modeled domain’s description used to identify core

concepts in modeling.

One of the main interests of this paper is understanding

change in the context of the TM thimacs. Specifically, we

focus on the change in the thimacs in the S model when

time is introduced to convert them into event thimacs.

2.1 Basic TM Model Constructs

A thimac in TM modeling is denoted as ∆, which has a

dual mode of being: the machine side, denoted as M (see

Fig. 4), and the thing side, denoted as T. Thus, ∆ = (M, T).

The S model is the grand thimac, with a subthimac

structure comparable to classes and subclasses in object-

oriented modeling.

The notion of T relies more on Heidegger’s [39] notion of

“things” than it does on the notion of objects, with the

latter being a very popular notion in computer science

(e.g., object-oriented modeling). M refers to a special

abstract TM (Fig. 4), which exists as a basic, complete

machine. The thimac ∆ is the TM element of modeling that

reflects an object/process and a product/productivity

simultaneously. Conceptually, such a picture implies two

facets: a being (in the context of the model) as the thing

and its passage (machine) to being (thing). The thing and

the machine are like the faces of a faceted jewel, in that

the thimac retains its unity simultaneously embracing a

plurality of facets. For example, water is a water-thing,

and its machine is its processual configuration

(organization), which involves oxygen and hydrogen and

leads to its manifestation. The machine is written as H2O

in shorthand, which indicates a process that generates a

unity.

Philosophically, the thimac is “being/becoming.”

According to Zubiri [40], the process “would be the inner,

intrinsic joining of what we call ‘being’ and what we call

‘non-being’” (italics added). We interpret this joining

from nonbeing as a passage from one condition to another.

A machine can be a subdiagram of the diagram of Fig. 4

(e.g., it can only create and process things), or it can be a

complex of these machines. M is built under the

postulation that it performs five generic actions (creating,

processing [altering], releasing, transferring, and

receiving) or a subset or complex of these actions. A thing

is created, processed, released, transferred, and/or received,

whereas a machine creates, processes, releases, transfers,

and/or receives things.

 The five actions (also called stages) in Fig. 4 form the

foundation for ∆-based modeling. Among the five stages,

flow (a solid arrow in Fig. 4) signifies conceptual

movement from one machine to another or among the

machine’s stages. The stages can be described as follows.

 Arrival: A thing reaches a new machine.

 Acceptance: A thing is permitted to enter the

machine. If arriving things are always accepted,

then arrival and acceptance can be combined into

a “receiving” stage. For simplicity, this paper’s

examples assume that a receive stage exists.

Fig. 4. The thinging machine M.

Receive

Transfer

Accept Arrive

Output Input
Create

Process

Release

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

142

Processing (alteration): A thing undergoes modifications

without creating a new thing.

 Release: A thing is marked as ready to be

transferred outside of the machine.

 Transference: A thing is input or output outside of

or within the machine.

 Creation: A new thing is born (created) within a

machine. Creation can designate bringing into

existence (e.g., ∃ in logic) in the system because

what exists is what is found. Creation in M

indicates “there is” in the system but not at any

particular time.

The machine T can be simplified as shown in Fig. 5.

The TM model also includes the notion of triggering,
which connects two subdiagrams where there is no flow
between them. The triggering is represented by dashed
arrows in the TM diagram. The TM model can be
specified in a textual language, wherein the arrows are
represented by dots. For example, the different flows in
Fig. 4 can be specified as follows:
Flow.create.release.transfer.output
Flow.create.process.release.transfer.output
Flow.transfer.input.receive.arrive.release.transfer.output
Flow.transfer.input.receive.arrive.accept.release.transfer.

output
Flow.transfer.input.receive.arrive.accept.process.release.t

ransfer.output

2.2 TM Example

According to Busse et al. [41], the Aristotelian categories

were accepted for quite a long time. Other categories were

only introduced as subcategories. In the 19th century, the

additional category “facts” was added. For example, A

phoned B on May 23, 2012, at 2:11pm is a fact [41]. In

TM ontology, it is an event. Fig. 6 shows the TM model

S for A phoned B. When time is considered, the event A

phoned B on May 23rd, 2012, at 2:11 pm occurs as shown

in Fig. 7. Figs. 6 and 7 show the machine side of the

thimac A phoned B and its corresponding time subthimac.

In this paper, we investigate the transformation shown

from Fig. 6 to Fig. 7 to better understand how to arrive at a

dynamic specification of a system. In such an examination,

the notion of (static) changes and (static) states appears

during this transformation to A phoned B on May 23, 2012,

at 2:11 pm.

3. First Phase of Modeling: TM Static Model

Badreldin [15] introduced a state machine example (Fig.

1) of a car-transmission system comprising a two-level

nested state machine. The transmission starts in the neutral

state. While in the neutral state, the state machine responds

to four FSM events, namely the selectFirst, selectDrive,

selectSecond, and selectReverse events. Each FSM event

triggers a transition to a new FSM state. While in the

Second state, the transmission system responds to two

events—reachThirdSpeed and dropBelowSecondSpeed—

which trigger transitions to the ThirdGear and FirstGear

states, respectively [15].

Fig. 8 shows the static TM model S of the transmission

system. S “pops up” into existence from the modeler’s

conceptualization piece by piece (it may not be written in

language at first) as the modeler looks at the patterns

dance before their imagination. In TM, these patterns

come in terms of thimacs that are expressed as in S.

This process of thinking in terms of thimacs begins with

the car starting (1), which creates a signal that reaches the

transmission (2) that is processed (3) to trigger the neutral

process state (4). At this moment, the transmission is ready

to move from the neutral position.
- In the neutral position, upon the driver selecting the

first position (5), the transmission (gear) moves to the
first position (6 and 7).

- The processing of the first position (8) triggers (dashed
arrow) the first driving condition (Driving label in the
diagram) for the car (9).

- Upon the driver selecting the second position (10), the
transmission (gear) moves to the first position (11 and
12).

Fig. 7 The TM event A phoned B on May 23, 2012, at 2:11 pm.

Time: May 23, 2012 at

2:11pm

 A B

Process Create

Phone call

Release Transfer Receive Transfer

Event

Region (of event)

Process: takes its course Receive Transfer Release Transfer

Process

Create A
B Phone call

Release Transfer Receive Transfer

Fig. 6 The TM representation (S model) of A phoned B.

Fig. 5 Simplification of M.

 Create

Receive

Transfer

Process

Re
le

as
e

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

143

- The processing of the first position (13) triggers the
second driving condition for the car (14).

- Upon selecting the third position (15), the transmission
(gear) moves to the third position (16 and 17).

- The processing of the third position (18) triggers the
third driving condition for the car (19).

Similar descriptions are applied when moving the position

from third to neutral. To avoid repetition, we only describe

one such action: from the third position to the second.

Upon the driver selecting the second position (20), the

transmission (gear) moves to the second position (21 and

22).
- The processing of the second position (23) triggers the

second driving condition for the car (14).

Fig. 8. The TM representation (S model) of a car’s transmission system.

Process

Neutral

C
re

at
e

Driving

Receive

Process

Receive

Process

Release

Receive

Process

Receive

Receive

Process

P
ro

ce
ss

Transmission

Receive

First

Second

Third

Create

Position

Receive

Process Release

Reverse

Transfer

Receive

Transfer

Release

Transfer

Transfer

Release

Transfer

Transfer

Release

Transfer

Transfer

Transfer

Transfer

Transfer

Release

Transfer

Release

Transfer

Transfer

Transfer

C
re

at
e

P
ro

ce
ss

Transfer

Release

Create

Process

Create

Process

Transfer

Receive

Transfer

Release

Create

Process

Create

Process

Create

Process

Create

Process

Create

Process

Create

Process

Selection

Selection

Reverse

driving

C
re

at
e

P
ro

ce
ss

C
re

at
e

P
ro

ce
ss

Start
1

30 29

28
27

26

25

24

7

3 4

2

5
6

8 9

10

11

12

13

3

14

2
15

16

17

18
19

23

22

21

20

31

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

144

Back in the neutral position, the transmission is ready
to move to the reverse position.

- Upon the driver selecting the reverse position (24), the
transmission (gear) moves to the reverse position (25
and 26).

- The processing of the second position (27) triggers the
reverse driving condition for the car (28).

- Upon the driver selecting the neutral position (29), the
transmission (gear) moves to the reverse position (30
and 31).

4. Steps to Achieve Dynamism: Decomposing

S

Behavioral states and transitions appear in Badreldin’s

[15] state diagram without any explanation for how they

emerged from the English description of the transmission

device. Do the states in Fig. 1 represent parts (fragments)

of the transmission system? If they do, then how are these

static parts converted to temporal states that represent the

system’s behavior? In this discussion, we try to develop a

theory for transformation in the TM model, from a static

description such as S to a description of dynamic

behavior. Accordingly, in this section, we analyze the

roots of dynamism in static modeling (e.g., S). The

results of this analysis are applied to model the

transmission system’s behavior.

S (Fig. 8) is a static description that represents a stillness

or rest (no time) condition. It lacks a type of structure that

applies “meaningfulness” (which is explained later) to its

parts. This S/parts requirement is reminiscent of

Deleuze’s philosophical notion of a “body without

organs,” but in our case (in contrast to Deleuze’s aim of

immanence), we aim to identify “static organs” (parts) to

specify a dynamic system of S. The static organs

facilitate the roles of the release, transfer, and receive

stages in the TM model (i.e., communication with other

machines). The body without organs is a thimac with only

the create and process actions.

From a different perspective, S is a machine schema that

is amenable to compositional exploration to generate a

new structural level (multiplicity). Building on Maturana

and Varela’s [42] work, the organization notion defines a

system (e.g., S) as a unity that outlines its form and

serves as its core identity. According to Whitaker [43]

(describing Maturana and Varela’s [42] ideas), “A

system's organization defines its identity, its properties as

a unity, and the frame within which it must be addressed

as a unary whole.” On the other hand, the structure of a

particular composite unity is the manner in which it is

made by actual static components in a particular space as

well as a particular composite unity (this description is a

modified version of the notion of structure in Maturana

and Varela [42]). The point of this discussion is to view S

as an organization that needs structure so that its behavior

can be specified. While the wholeness of S is the same, S

may have different structures, depending on how it is

divided into parts.

The concept of whole-multiplicity helps in forming an

assemblage of the fragments that evolve to facilitate

dynamism. Dynamism, in this context, refers to ordered

temporal events. To partition S, we create multiplicity

through parts that emerged from the whole. This

emergence may be conceived of as a qualitative change

that consists of the appearance of “things of a new kind or

ontological species” [42]. The selected subdiagrams of S

become new thimacs, and the original thimac becomes a

network of subthimacs. This is an evolutionary change

from thimac S to its parts/subthimacs utilized to identify

the abstract notion of the system’s behavior. Evolution

refers to change simpliciter [44].

S is a complex entity consisting of many subthimacs

interconnected in some specific way. The system’s

characterization (both static and dynamic) resides not only

in the separate subthimacs but also in the structure they

form. The new parts form a new structure. In the state

machine phase of design, the states of the transmission

machine are identified (by the modeler, in a vague way)

and connected together to characterize the transmission

behavior. In the example, the transmission thimac consists

of the subthimacs first, second, third, neutral, and reverse.

The first three states form a subthimac called driving.

S becoming (forming) multiple parts with different

properties is analogous to a tree in the fall, which

experiences many changes occurring simultaneously: red

leaves, yellow leaves, dry leaves, etc. In the transmission

example, the transmission machine is transformed into

many submachines: the FirstGear machine, SecondGear

machine, ThirdGear machine, NeutralGear machine, etc.

Accordingly, a transformation occurs from sameness to

different parts. This is not an easy task because no clear

borders mark where the cutting occurs. However, this is

better than the FSM method because we have a

diagrammatic description instead of simply text.

4.1 Justification for Decomposition

(a) Decomposition is necessary because the system

described by S is obviously “provoked” behaviorally,

piece by piece (subdiagrams); for example, in a FSM, a

state at a time (at this point, we ignore the order of the S

parts being activated). TM modeling produces a single,

whole description of the system to avoid any

inconsistency; hence, after this whole is generated, the

description is divided into pieces to define the dynamism

of its interiority. The division is performed to pursue a

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

145

(correct) variety that produces a blend of staticity and

changeability. While staticity is conserved, changeability

emerges from differences of parts, just as cutting an ice

block into smaller blocks preserves coldness. Importantly,

the gestalt of the parts must be assembled into the original

totality of the system during the dividing process. The

original single machine of the transmission system is

replaced by an assembled machine that is formed from

selected submachines.

(b) The overall work of the transmission system is

assigned to distinct subthimacs (subsystems); therefore,

understanding the system requires identifying these

thimacs and their contributions to this overall work. In

other words, the system description S needs to be

regenerated in joinable parts that come into reflective

relation with the whole. This causes the system to be

restructured under the influence of parts.

(c) Exposing the order is important because S represents

only the whole, so the underlying decomposition must be

revealed where behavior potentialities may happen. The

selected parts may have originally been thimacs, several

thimacs, portions of thimacs, or a mix of thimacs and

portions of thimacs. These parts of S allow one to

understand the system’s behavior, which involves

activating certain prearranged subdiagrams, whose

semantics are determined by how the subdiagrams are

interconnected. Importantly, the decomposition of S

exposes orders (i.e., before, after, and simultaneous)

among parts of S that are recognizable by the flows and

triggering among the parts (subdiagrams). These relations

make a difference when specifying the system-level

behavior. Each part of the system has a distinct role, and

the parts are interdependent based on their position in S.

Our aim is to identify these interdependencies. Note that

S is an atemporal model, so the interdependencies are

static relations among parts of S.

(d) Directional control: Decomposing S into parts causes

a multiplicity of subsystems to be created that convert the

system into constitutive components with respect to the

whole, to anticipate and infer what is expected. In the

transmission example, suppose that the car is idling and

the neutral state is active. Then, the system control

concentrates its processing activity on a “shift to one” or

to “reverse” and neglects all other parts (two and three)

that have no direct bearing upon the expected next state.

When the transmission is shifted to the “reverse part,” the

focus will be shifted to “driving in reverse” or “moving

back to neutral.” The other parts are ignored. Note that

parts of S such as FirstGear and SecondGear, etc. are

representations that are taken as a base for dynamic

specification of a concrete phenomenon in a particular

instant of time in the D and B models.

4.2 The Change: Whole to Multiplicity

A change ordinarily refers to two meanings:
(a) An event of changing (typically called a process); for
example, the elevator door is opening.
(b) A state of being a change (e.g., the elevator door is
open).

These types of change involve the “same thing becoming”

(Aristotle’s words) different. Aristotle mentioned another

type of change: becoming from nonbeing to being. In this

change, nonbeing is a different thing from the being.

Similarly, the unity (S) becomes multiplicity as a result of

multiple becoming of S into its parts (we call them static

changes). Change here means variation in the sense of

different parts of S (e.g., changing a bill into coins).

Fig. 9 shows a selected division of S for the transmission

system into 22 static changes. This division produces

distinct parts of S. An analogy is a die that has six

changes corresponding to its six faces. The dynamism of

the die originates from conceptually dividing it as a whole

cube and replacing it by its six faces. Similarly, the aim of

dividing S is replacing it with a certain number of

changes. Yet, a better analogy is a chess game, which

features many changes. A change in this case is a part of

the chessboard’s setup or its static description (S of the

chess). Accordingly, when specifying the chess tree (as in

artificial intelligence) of the chronology of legal changes

allowed in the game, the tree is not related to the behavior

but to the static arrangements of parts relative to each

other. In another example involving numbers, the

sequence 2, 3, and 4 expresses a logical relationship, not a

temporal one.

The point of these analogies is to project the division of

the whole (e.g., a die) onto dividing S as a static

description that embeds its possible changes. Identifying

these changes and their relations produces an atemporal

description. Hence, identifying states (types of changes) in

Badreldin’s [15] state diagram does not involve the

system’s dynamism (temporal-based order) or behavior.

A static change in the S model is not the common notion

of so-called dynamic change as the process of causing a

thing to become different from what it is at present or

what it was in the past. This process change refers to

becoming different or becoming altered or modified. In the

TM multiplicity paradigm, static change refers to the

feature of being different. In the static atemporal

progressions in S, there is no becoming (a process) but

only being (a thing). Dividing S into a form of

multiplicity produces atemporal changes with no specific

order (e.g., when using a multicutter to cut an apple into

pieces, all of the pieces are produced simultaneously).

https://simple.wikipedia.org/wiki/Coin

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

146

4.3 Required Properties of Static Changes

 The division should produce a juxtaposition (a topology of
parts) with parts that are sufficiently “meaningful.” The

meaningfulness of a part of S resides in the isomorphism

between the part and the thing it is supposed to represent in
reality (in the modeler’s conceptual framework). For
example, in the context of changing the transmission from
one position to another, “release” by itself as a subdiagram

does not seem to have this meaningfulness.

“Release and transfer” seems to be a more meaningful part,

but “release, transfer, transfer, and receive” is an ideal

whole/part because it corresponds to the familiar notion of

“moving from… to…,” as in the transmission moving

from the NeutralGear to the ReverseGear positions. This

moving from… to… part of S is an example of the

(partial) “whole” that we are looking for in dividing S.

Note that it is formulated from two halves of different

thimacs. In general, the initial “elements” (e.g., thimacts)

of the whole (S) are not the best ‘carving’ suitable for our

purpose.

Fig. 9. The TM representation (S model) of the transmission system.

 Selection

Create

Process

Create

Process

Create

Process

C
re

at
e

Driving

P
ro

ce
ss

C
re

at
e

P
ro

ce
ss

Create

Process

Create

Process

Create

Process

Create

Process

Create

Process

Selection

Reverse

driving

C
re

at
e

P
ro

ce
ss

C
re

at
e

P
ro

ce
ss

Process

Neutral

Receive

Process

Receive

Process

Release

Receive

Process

Receive

Process

Receive

Process

Transmission

Receive

First

Second

Third

Create

Position

Receive

Process Release

Reverse

Transfer

Receive

Transfer

Release

Transfer

Transfer

Release

Transfer

Transfer

Release

Transfer

Transfer

Transfer

Transfer

Transfer

Release

Transfer

Release

Transfer

Transfer

Transfer

Transfer

Release

Transfer

Receive

Transfer

Release

Start

C2 C3

C4

C5

C6

C7

C8
C9

C10

C11

C12

C13

C14

C15 C16

C17

C18

C19

C20 C21

C22

C1

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

147

When modeling the state diagram of the transmission
system, Badreldin 15] unconsciously followed a
“meaningful” criterion. Badreldin’s [15] state diagram
seems to be a coarse-grained description because the
classical definition of a state and the mixing up of states
and transitions create a confused vision that hides the
granularity of static description. Ontologically, the state
diagram is a “states and transitions diagram” in which
transitions are labels on the diagram’s edges. This
distinction between states and transitions is an outcome of
the separation of object/process in the object-oriented
paradigm.

In TM modeling, states and transitions are thimacs. In the

scheme to divide S, operators do not need to transform

one state into another because the operators are parts of S,

and connections among parts (states) are pre-specified by
flows (inputs and outputs) and triggering. Thus, as is

shown later, the behavior model D has no labels on the

edges. The multiplicity of S encompasses states,

transitions, and other parts as one category: subthimacs

(subdiagrams) of S. Fig. 10 shows the conversion of

changes to TM states and the order imposed on these states.

Fig. 10 The TM representation (d model) of the transmission system.

 Selection

Create

Process

Create

Process

Create

Process

C
re

at
e

Driving

P
ro

ce
ss

C
re

at
e

P
ro

ce
ss

Create

Process

Create

Process

Create

Process

Create

Process

Create

Process

Selection

Reverse

driving

C
re

at
e

P
ro

ce
ss

C
re

at
e

P
ro

ce
ss

Process

Neutral

Receive

Process

Receive

Process

Release

Receive

Process

Receive

Process

Receive

Process

Transmission

Receive

First

Second

Third

Create

Position

Receive

Process Release

Reverse

Transfer

Receive

Transfer

Release

Transfer

Transfer

Release

Transfer

Transfer

Release

Transfer

Transfer

Transfer

Transfer

Transfer

Release

Transfer

Release

Transfer

Transfer

Transfer

Transfer

Release

Transfer

Receive

Transfer

Release

Start

S2 S3

S4

S5

S6

S7

S8
S9

S10

C11

S12

S13

S14

S15 S16

S17

S18

S19

S20 S21

S22

S1

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

148

5. TM States: Ordered Static Changes

The aim of this discussion is to understand how to identify
a system’s states. However, the static change notion under
consideration is more general than the classical notion of a
state. The basic idea is that a system is divided to allow
anticipation of its behavior. The supposition is that
multiplicity can be represented as a chronology of states.

Fig. 11 shows the chronology of the transmission system’s
states.

Static changes and static states are different, in terms of
their context of simultaneity and order. Whereas static
changes are created simultaneously, states are changes with
an atemporal order. Thus, we can develop a chronology of
states but not of changes. Note that the FSM distinction
between a state and a transition is not applied in TM
modeling. The transitions, as well as FSM states, are static
changes. For example, in Fig. 7 (the transmission model),
the transition from first gear to second gear is represented
by the subdiagram
One.release.transfer.Two.transter.receive; thus, it is one

part (static change) of S. This subdiagram is a static state

when order is imposed on all static changes. In FSM
modeling, only one FSM state is active at any given time.
Ambiguity exists in the meaning of this transition with
regard to the object’s condition between two FSM states.
The transition seems to have an existence comparable to
that of states.

Consider the transition between the liquid and vapor states
of water. Boiling takes time and in many physics texts, it is
called the boiling state. The boiling water stays partially
liquid and partially vapor. This is similar to what is called
entanglement between systems in quantum theory, as
demonstrated in the famous Schrödinger’s cat puzzle. In
the TM model’s rough macroscopic static states, the
observing of the entangled mixed state is considered a
static state because the whole scenario is timeless. Hence,
the subdiagram described by
One.release.transfer.Two.transter.receive is considered a
state in its order within static states.

Fig. 10 specifies static states based on changes. Consider
the following two changes, assuming the car has started:

C′: The transmission is moved to the first position.

C″: The transmission is moved to the reverse position.

A subdiagram of Fig. 10 represents each of these changes.
In terms of “after,” “before,” and “simultaneously,” it is
unclear how to order these changes. In contrast, when
given 7, 8, and 9 (or any three different integers), we can
establish the ordering (e.g., in ascending or descending

order). If we replace C″ with C‴: The transmission is

moved to the third position, then it is easy to observe that

C′ is before C‴. Note that the relationship is atemporal

(similar to relationships between numbers), whereas a
point, a line, and a square embed some atemporal ordering.

6. Events: It Is Time to Introduce Time

Changes and TM states form the foundation upon which to
understand events. An event is a period when a thimac
materializes. We have projected the thimac materialization
in terms of its subthimac’s (changes/states) materialization.
Car travel is a thimac, and a car traveling at a particular
time is an event (a thimac with a time subthimac). Car
travel has many subthimacs; hence, these subthimacs have
many “small” events that comprise the car travel event,
including the car’s transmission events. To identify these
small events, the transmission is replaced by its parts (static
changes), which are infused with an order to produce small,
correlated static states. Lastly, these states are altered by
inducing time to be transformed into events. A
phenomenon (e.g., acts that happen to the car/by the
transmission) undergoes transformation from staticity to
dynamism in terms of events, as illustrated in Fig. 12.

S1 S2 S3 S4 S5 S13 S14 S15 S18 S19 S20

S21

S22

S6

S7 S8

S9

S10 S11

S12

S16

S17

First Neutral

Reverse

Second Third

Fig. 11 The chronology of the transmission system’s static states.

Static whole description

Changes division

States ordering

Events in time

Fig. 12 Progression of the stages from staticity to dynamism.

Phenomenon

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

149

The chronology of states that specifies “before,” “after,”
and “simultaneously” (Fig. 10) does not designate a
dynamic (temporal) change when we go from one state to
another. However, this (static) “subtransformation” refers

to the whole (e.g., S) stimulating its parts to appropriate

their roles from each other (e.g., the transmission in the
“third-gear position” state shifting to the “second-gear
position” state). The static states can be converted to events
when the time is brought into the static picture of the states’
chronology (Fig. 13). Events, not states, are the genuine
conveyers of behavior. Thus, Fig. 13 shows the system’s
behavior in terms of these events, described as follows.
Event 1: (E1): Starting the car
Event 2: (E2): Neutral is ready
Event 3: (E3): Shifting from neutral to first gear
Event 4: (E4): Shifting from neutral to first
Event 5: (E5): Driving in first (car accelerates)
Event 6: (E6): Selecting from neutral to reverse
Event 7: (E7): Shifting from neutral to reverse
Event 8: (E8): Driving in reverse
Event 9: (E9): Selecting from reverse to neutral
Event 10: (E10): Shifting from reverse to neutral
Event 11: (E11): Selecting from first to neutral
Event 12: (E12): Shifting from first to neutral

Event 13: (E13): Selecting from first to second
Event 14: (E14): Shifting from first to second
Event 15: (E15): Driving in second
Event 16: (E16): Selecting from second to first
Event 17: (E17): Shifting from second to first
Event 18: (E18): Selecting from second to third
Event 19: (E19): Moving from second to third
Event 20: (E20): Driving in third
Event 21: (E21): Selecting from third to second
Event 22: (E22): Shifting from third to second
Additional events can be added, such as waiting,
interruptions, or warnings. Some of the events may be
regionless events that can be interwoven with the events
that originate from states.

7. Conclusion

This paper contributes to establishing a broad ontological
foundation for the transformation from static modeling to
specifying a system’s behavior. Such a distinction of
modeling phases involves replacing the static

descriptive whole by the organization of its parts (e.g., by
neighborhood). This transformation starts with dividing the
static description into static changes. Static changes lead to
a conception of static states (with more fine-tuned
meaningfulness than those of FSM states) that contrasts
with the sudden appearance of FSM states when
developing the FSM model. The static states are further
synthesized (in terms of realistic practicality) as events
assembled by the establishment of a common temporality.
The significance of this discussion is its role in clarifying
the notion of a state and its relationship to systems’
behavior. Further research will connect this analysis with
the classical philosophical notion of change and behavior.

References
[1] C.L. Van Tonder, “The March of Time and the ‘Evolution’

of Change, SA J. of Industrial Psychology, vol.30, no.3, 41-

52, 2004.

[2] F. Stickland, “The Nature and Dynamics of Change: A

Systems Approach to Exploring Organisational Change,”

Ph.D. Thesis, Department of Systems Science, The City

University, London, December, 1995.

[3] A.M. Pettigrew, “Introduction: researching strategies

change,” in The Management of Strategic Change, ed. A.M.

Pettigrew. Basil Blackwell, Oxford, 1988.

doi.org/10.1177/017084068901000111

[4] F. Heylighen, Representation and Change. A

Metarepresentational Framework for the Foundations of

Physical and Cognitive Science, Communication &

Cognition, Ghent, 1990.

http://134.184.131.111/THESIS.html

E1 E2 E3 E4 E5 E13 E14 E15 E18 E19 E20

E21

E22

E6

E7 E8

E9

E10 E11

E12

E16

E17

First Neutral

Reverse

Second Third

Fig. 13. The chronology of static states of the transmission system.

https://doi.org/10.1177%2F017084068901000111

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

150

[5] Health Quality Ontario, Change Concepts and Ideas,

Queen’s Printer for Ontario, July 2013..

http://www.hqontario.ca/Portals/0/Documents/qi/qi-change-

concepts-and-ideas-primer-en.pdf

[6] R. Scroggins, “Vehicles for Change,” Global Journal of

Computer Science and Technology: Information &

Technology, vol.17, iss.3, 2017.

<https://computerresearch.org/index.php/computer/article/vi

ew/1593>

[7] M. Katsumi and M. Fox, “A Logical Design Pattern for

Representing Change Over Time in OWL,” 8th Workshop

on Ontology Design and Patterns - WOP 2017, Vienna,

Austria, 21st October 21, 2017. http://ceur-ws.org/Vol-

2043/paper-05.pdf

[8] R. Robbes, “Of Change and Software,” PhD Thesis, Faculty

of Informatics, University of Lugano, Lugano, Switzerland,

December 2008.

[9] P.P. Chen, J. Akoka, H. Kangassalu and B. Thalheim,

Conceptual Modeling: Current Issues and Future Directions,

Springer, 1999. DOI 10.1007/3-540-48854-5

[10] MIT OpenCourseWare (2011, Spring). Chapter 4: State

Machines, 6.01SC Introduction to Electrical Engineering

and Computer Science.

[11] F. Wagner and P. Wolstenholme, “Misunderstandings

About State Machines,” IEE Computing & Control

Engineering, vol.15, iss.4, 40 – 45, 2004.

[12] D. Berardi, F. De Rosa, L De Santis and M. Mecella, ”Finite

State Automata as Conceptual Model for E-Services,”

Integrated Design and Process Technology, vol.8, no 2,

105-121, 2003.

[13] MathWorks, “Using Finite State Machines to Model Control

Logic,” The MathWorks, Inc, 2020.

https://www.mathworks.com/discovery/finite-state-

machine.html

[14] C. Mortensen, "Change and Inconsistency,” The Stanford

Encyclopedia of Philosophy (Spring 2020 Edition), Edward

N. Zalta (ed.),

<https://plato.stanford.edu/archives/spr2020/entries/change/

>.

[15] O. Badreldin, “A Manifestation of Model-Code Duality:

Facilitating the Representation of State Machines in the

Umple Model-Oriented Programming Language,” PhD

Thesis, Ottawa-Carleton Institute for Computer Science,

School of Information Technology and Engineering,

University of Ottawa, Ottawa, Canada, 2012..

[16] S. Al-Fedaghi and J. Al-Fadhli, “Thinging-oriented

Modeling of Unmanned Aerial Vehicles,” Int. J. Adv.

Comput. Sci. Applic., vol.11, no.5, 610-619, 2020.

DOI: 10.14569/IJACSA.2020.0110575.

[17] S. Al-Fedaghi and B. Behbehani, “How to Document

Computer Networks,” Journal of Computer Science, vol.16,

no.6, 423-434, 2020. DOI: 10.3844/jcssp.2020.723.434.

[18] S. Al-Fedaghi and D. Al-Qemlas, “Modeling Network

Architecture: A Cloud Case Study,” IJCSNS International

Journal of Computer Science and Network Security, vol.20,

no.3, 195-209, 2020.

[19] S. Al-Fedaghi and M. Bayoumi, “Modeling Advanced

Persistent Threats: A Case Study of APT38,” 14th

International Conference for Internet Technology and

Secured Transactions (ICITST-2019), London, UK,

December 9-11, 2019.

[20] S. Al-Fedaghi and G. Aldamkhi, “Conceptual Modeling of

an IP Phone Communication System: A Case Study,” 18th

Annual Wireless Telecommunications Symposium (WTS

2019), New York City, New York, USA, April 9-12, 2019.

[21] S. Al-Fedaghi and E. Haidar, “Programming is

Diagramming is Programming,” J. Software, vol.14, 410-

422, 2019. DOI: 10.17706/jsw.14.9.410-422.

[22] S. Al-Fedaghi and M. Al-Otaibi, “Service-Oriented Systems

as a Thinging Machine: A Case Study of Customer

Relationship Management,” Proceedings of the IEEE

International Conference on Information and Computer

Technologies, pp. 243-254, University of Hawaii, Maui

College, Kahului, Hawaii, USA, March 14-17, 2019. DOI:

10.1109/INFOCT.2019.8710891.

[23] S. Al-Fedaghi and M. Makdessi, “Modeling Business

Process and Events,” 9th Computer Science On-line

Conference, Springer, Applied Informatics and Cybernetics

in Intelligent Systems, pp 83-97, April 23 - 26, 2020.

doi.org/10.1007/978-3-030-30329-7_8

[24] S. Al-Fedaghi and E. Haidar, “Thinging-based Conceptual

Modeling: Case Study of a Tendering System,” Journal of

Computer Science, vol.16, no.4, 452-466, 2020. DOI:

10.3844/jcssp.2020.452.466.

[25] S. Al-Fedaghi and M. Al-Saraf, “Thinging the Robotic

Architectural Structure,” The 3rd Intern. Conf. on

Mechatronics, Control and Robotics, Tokyo, Japan, Feb. 22-

24, 2020.

[26] S. Al-Fedaghi and A. Hassouneh, “Modeling the

Engineering Process as a Thinging Machine: A Case Study

of Chip Manufacturing,” The 8th Computer Science On-line

Conference. Springer, pp. 67-77, 2019

[27] S. Al-Fedaghi and O. Alsumait, “Toward a Conceptual

Foundation for Physical Security: Case Study of an IT

Department,” International Journal of Safety and Security

Engineering, vol. 9, no 2, 137-156, 2019.

[28] S. Al-Fedaghi and M.Alsulaimi, “Privacy Thinging Applied

to the Processing Cycle of Bank Cheques,” 3rd International

Conference on System Reliability and Safety (ICSRS 2018),

Barcelona, Spain, November 24-26, 2018.

DOI: 10.1109/ICSRS.2018.8688874

[29] S. Al-Fedaghi and H. Aljenfawi, “A Small Company as a

Thinging Machine,” 10th International Conference on

Information Management and Engineering (ICIME 2018),

pp. 27-34, University of Salford, Manchester, United

Kingdoom, September 22-24, 2018.

doi.org/10.1145/3285957.3285988

[30] S. Al-Fedaghi and R. Al-Azmi, “Control of Waste Water

Treatment as a Flow Machine: A Case Study,” The 24th

IEEE International Conference on Automation and

Computing (ICAC’18), Newcastle University, Newcastle

upon Tyne, UK, 6-7 September 6-7, 2018.

DOI: 10.23919/IConAC.2018.8748989

[31] S. Al-Fedaghi and N. Al-Huwais, "Toward modeling

information in asset management: Case study using

Maximo," 2018 4th International Conference on

Information Management (ICIM), pp. 117-124, Oxford,

2018. doi: 10.1109/INFOMAN.2018.8392821.

http://www.hqontario.ca/Portals/0/Documents/qi/qi-change-concepts-and-ideas-primer-en.pdf
http://www.hqontario.ca/Portals/0/Documents/qi/qi-change-concepts-and-ideas-primer-en.pdf
https://computerresearch.org/index.php/computer/article/view/1593
https://computerresearch.org/index.php/computer/article/view/1593
http://ceur-ws.org/Vol-2043/paper-05.pdf
http://ceur-ws.org/Vol-2043/paper-05.pdf
https://www.mathworks.com/discovery/finite-state-machine.html
https://www.mathworks.com/discovery/finite-state-machine.html
https://arxiv.org/search/cs?searchtype=author&query=Al-Fadhli%2C+J
https://dx.doi.org/10.14569/IJACSA.2020.0110575
https://doi.org/10.1109/ICSRS.2018.8688874
https://doi.org/10.1145/3285957.3285988
https://doi.org/10.23919/IConAC.2018.8748989

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.7, July 2020

151

[32] S. Al-Fedaghi and M. Alsharah, "Modeling IT Processes: A

Case Study using Microsoft Orchestrator," 2018

International Conference on Advances in Computing and

Communication Engineering (ICACCE), pp. 394-401, Paris,

France, 2018. doi: 10.1109/ICACCE.2018.8441692.

[33] S. Al-Fedaghi and A. Esmaeel, “Modeling Digital Circuits

as Machines of Things that Flow,” 2018 International

Conference on Mechatronics Systems and Control

Engineering (ICMSCE 2018), Amsterdam, Netherlands,

February 21-23, 2018.

[34] S. Al-Fedaghi and Y. Atiyah, “Tracking Systems as

Thinging Machine: A Case Study of a Service Company,

International Journal of Advanced Computer Science and

Applications (IJACSA),” vol.9, no.10, 110-119, 2018.

DOI 10.14569/IJACSA.2018.091014

[35] S.C. Johnson, “Objecting to objects,” WTEC'94:

Proceedings of the USENIX Winter Technical Conference

on USENIX Winter 1994 Technical Conference, January

1994.

[36] T. Berners-Lee, J. Hendler and O. Lassila, , “The Semantic

Web,” Scientific American, vol.284, no.5, 34–43, 2001.

[37] T.R. Gruber, “A Translation Approach to Portable Ontology

Specifications,” Knowledge Acquisition, vol.5, no.2, 199-

220, 1993.

[38] L. A. Paul, “A one category ontology,” in Being, Freedom,

and Method: Themes from the Philosophy of Peter van

Inwagen, ed. J.A. Keller, Oxford University Press, Oxford,

2017.

[39] M. Heidegger, “The thing,” in Poetry, Language, Thought,

trans. A. Hofstadter, pp.161-184, Harper and Row, New

York, 1975.

[40] X. Zubiri, Dynamic Structure of Reality. University of

Illinois Press, Chicago, 2003.

[41] J. Busse, B. Humm, C. Lubbert, F. Moelter, A. Reibold, M.

Rewald, V. Schluter, B. Seiler, E. Tegtmeier and T. Zeh,

“Actually, What Does "Ontology" Mean? A Term Coined

by Philosophy in the Light of Different Scientific

Disciplines ,” Journal of Computing and Information

Technology - CIT 23, vol.1, 29–41, 2015.

doi:10.2498/cit.1002508

[42] H. Maturana and F. Varela (1980) “Autopoiesis and

Cognition: The Realization of the Living”, Boston Studies

in the Philosophy of Science, Cohen, Robert S., and Marx

W. Wartofsky (eds.), Vol. 42, Dordecht: D. Reidel

Publishing Co., 1980.

[43] Randall Whitaker, "A Tutorial in Autopoiesis," (Accessed

June 20, 2020)

http://www.dca.fee.unicamp.br/~gudwin/ftp/ia005/Autopoie

sis.pdf

[44] M. Mahner and M. Bunge, Foundations of Biophilosophy, .

SpringerVerlag, Berlin, 1997.

https://dx.doi.org/10.14569/IJACSA.2018.091014
http://www.dca.fee.unicamp.br/~gudwin/ftp/ia005/Autopoiesis.pdf
http://www.dca.fee.unicamp.br/~gudwin/ftp/ia005/Autopoiesis.pdf

