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Summary 
This paper examines the concept of change in conceptual 

modeling. Change is inherent in the nature of things and has 

increasingly become a focus of much interest and investigation. 

Change can be modeled as a transition between two states of a 

finite state machine (FSM). This change represents an 

exploratory starting point in this paper. Accordingly, a sample 

FSM that models a car’s transmission system is re-expressed in 

terms of a new modeling methodology called thinging machine 

(TM) modeling. Recasting the car-transmission model involves 

developing (1) an S model that captures the static aspects, (2) a 

D model that identifies states, and (3) a B model that specifies 

the behavior. The analysis progresses as follows.  

- S represents an atemporal diagrammatic description that 

embeds underlying compositions (static changes) from which the 

roots of system behavior can be traced. 

- S is broken down into multiple subsystems that correspond to 

static states (ordered constitutive components). 

- Introducing time into static states converts these states into 

events, and the behavior (B) model is constructed based on the 

chronology of these events.  

The analysis shows that FSM states are static (atemporal) 

changes that introduce temporal events as carriers of behavior. 

This result enhances the semantics of the concepts of change, 

states, and events in modeling and shows how to specify a 

system’s behavior through its static description. 

Key words: 
Static changes; conceptual model; finite state machine; 

requirements modeling; static states; events; behavior 
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1. Introduction 

Change is one of the most discussed topics of our time, 

and scientific journals had published more than a million 

articles on the topic by the beginning of the 21st century, 

[1]. Quoting Whitehead, Stickland [2] asserted that change 

is inherent in the nature of things. Nevertheless, research 

on change lacks theoretical underpinnings and suffers 

from an absence of “a process orientation and a wider 

contextualism.” 

The lack of these elements essentially reflects myopic and 

largely unsubstantiated conceptual perspectives on change 

([3] as cited in [1]). Numerous works have investigated the 

concept of change, including reviews across literature 

regarding change’s definition, change relative to time, 

change conditions and states, the character of the change 

process, and change in various entities. 

The earliest conception of change can be traced to 

Heraclitus (535 BC–475 BC), for whom all things were in 

a continuous, ceaseless flux and nothing existed as a static 

entity. He compared this endless change to a river and 

remarked, “You can never step in the same river twice” 

[4]. Other philosophers, such as Parmenides (late sixth or 

early fifth century BC) and Zeno (495–430 BC), 

maintained that change is an illusion and that there is just 

one timeless “being,” in contrast to Heraclitus’s concept of 

“becoming” [4]. Several kinds of change have been 

recognized. For example, Aristotle articulated two kinds 

of change: accidental change, such as an alteration (e.g., 

Socrates becomes pale), and substantial change (e.g., the 

bronze becomes a statue). Typically, change is viewed as 

a general notion that is useful in developing ideas that are 

more specific about change. The concept stimulates 

critical thinking, which leads to inventiveness and ideas 

[5].  

1.1 Change in Computer Science  

Computers can be powerful vehicles for change [6]. 

However, the concept of change is rarely addressed in 

computer science, except with regard to software 

engineering and modeling with finite state machines 

(FSMs). Many domain-specific (computational) ontologies 

(e.g., OWL) have neglected the notion of change [7]. 

Change is inevitable for software. Changes in software are 

implemented to better adapt the software to its 

environment. In software systems, concerns about change 

dominate costs at all levels of development as change is 

adapted to new requirements. As Robbes [8] states, 

“Systems on which continuous changes are performed 

inevitably decay, making maintenance harder.” This 

problem is not new: The software research community has 

been tackling it for more than two decades. However, 

most approaches have targeted specific maintenance 

activities using an ad hoc model of software evolution. 

Robbes [8] proposed “treating change as a first-class 

entity” through change-based software evolution, in which 

changes to programs are recorded as they happen. 

https://en.wikiquote.org/wiki/535_BC
https://en.wikiquote.org/wiki/475_BC
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1.2 Change in Modeling 

This paper focuses on representing change and its uses in 

a much more limited domain: conceptual modeling. 

Conceptual modeling is a central apparatus used in 

developing systems. In this context, model-based 

methodologies have been adopted in which a system is 

represented graphically at several levels of granularity 

(e.g., UML and SysML). According to Chen et al. [9], a 

challenge in conceptual modeling is anticipating and 

accommodating change (e.g., in software or database 

systems) because “any change of structure, processes and 

interaction is made through conceptual modeling.” 

Consequently, understanding the concept of change and its 

related notions (e.g., state, time, and events) is the very 

crux of modeling.  

In pursuing this aim, an entry point into the topic is change 

in FSM modeling, in which change is viewed as a 

transition between two states. The most widely used 

notion in modeling is that of state. FSM is considered a 

behavioral model, which can be analyzed using a new 

modeling methodology called thinging machine (TM) 

modeling to understand change further. Beyond 

understanding change, another aim of this research is to 

explore the semantics and expressibility, of both FSM and 

TM, with regard to related notions such as states and 

events. Specifically, the focus is on examining how to 

specify system behavior through its static description. We 

introduce the concepts of static change and static state, 

which lead to time-based construction of events. 

1.3 FSMs as a Conceptual Model 

FSMs have been used in software design, especially after 

the introduction of the extended state machine called a 

statechart, which permits substates of states. Nevertheless, 

specifying complex state machines can be quite tedious 

[10]. According to Wagner and Wolstenholme [11], “The 

concept [of state machine], although born 50 years ago, is 

still not well understood or interpreted in the software 

domain, despite its wide application in hardware design. 

Misunderstandings about state machines have produced 

several stories and half-truths. The concept of the state 

machine has been several times (unintentionally?) 

reinvented for software.” 

FSMs can be viewed as conceptual tools for modeling a 

system’s behavior as a sequence of transitions, including 

of time [12]. FSMs are also used to model complex logic 

in dynamic systems such as automatic transmissions, 

robotic systems, and mobile phones. Statecharts can 

represent FSM modeling that allows additional capabilities 

beyond traditional FSMs such as hierarchical state 

parallelism [13]. 

FSMs can change from one state to another, which is 

called a transition. The concepts of change and state seem 

highly related; for example, “in change… there is at each 

stage a moment when the changing item is both in a given 

state, because it has just reached that state, but also not in 

that state, because it is not stationary but moving through 

and beyond that state” [14]. Additionally, FSMs rely on 

the notions of events, behavior, and time, which are all 

related to change. 

1.4 Aim of the Paper 

This paper studies and explores the concept of change in 

the context of modeling. FSMs are based on the notion of 

state, which is very close to that of change. Given that 

change is missing as an independent concept from 

conceptual modeling, we use states as a starting point. If 

FSMs were a type of behavioral model, as is the case with 

UML and SysML, then further understanding of states 

would lead to more appreciation of change in modeling. 

1.5 Outlines of the Approach 

Accordingly, state machines are re-expressed in terms of a 

new modeling methodology called TM modeling. TM 

modeling is a conceptual tool that abstractly represents a 

system. It involves capturing (1) static aspects of the 

system in a model denoted by S, (2) a dynamic 

representation (denoted as D) that identifies static 

changes in S, and (3) a behavioral model, B, that 

specifies the chronology of events. 

We provide examples that support TM modeling as a new 

methodology suitable for all three levels of specification. 

We can summarize the concepts in this paper in the 

following steps. 

1. A FSM for a car-transmission system (Fig. 1) is 

selected for analysis. 

2. The S TM model for the car-transmission system 

is presented. Fig. 2 shows a condensed picture of 

the model, which is shown in full later in this 

paper. 

 
Fig. 1  State machine of a car transmission (partially from [15]). 

… 

… 
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3. Fig. 3 shows a similar picture of the D model of S.  

4. The behavioral model B is extracted from D. 

 

The crucial analysis step of this multilevel modeling 

involves the move from staticity in S (Fig. 2) to staticity 

in subsystems, which are shown as colored subdiagrams in 

D (Fig. 3). The general transformation of this process is 

as follows: 
 

Static S  

↓ 

Static changes (multiplicity in S with no order) 

↓ 

Static states (static changes with order, D) 

↓ 

Events (static states with time order) 
↓ 

B 

 

The main observations in this process are as follows: 

• S only represents the steady (static) whole, so it is 

necessary to analyze the underlying decompositions 

where behavior can happen (potentiality of dynamism). 

• Dividing S causes multiple subsystems to be created 

(see Fig. 3), which convert the system in static changes 

(constitutive components) with respect to the whole S. 

• For static changes (the colored areas in Fig. 3), 

multiplicity is a form of becoming from the unity (S). A 

static change here is analogous to a set that is replaced 

by its members. 

• Static states are ordered static changes. 

• The states in FSM modeling are types of static states; 

thus, they and their transitions cannot represent the 

system’s behavior (i.e., they do not introduce time). 

• A system’s behavior is specified by introducing time 

into its static states, thus converting them to events and 

fixing their chronology, producing the B model. 

 
The aim of this discussion is to understand what a system 
state is, what is involved in the notion of change, and how 
change is related to states. Furthermore, we seek to 
understand how a static description is made of a dynamic 
specification of a system behavior, how to create multiple 
subsystems from a single system, and the roles of time and 
order in this arrangement.  

The enhanced review in the next section summarizes the 

general features of the TM model, which is a promising 

modeling approach that can be applied in diverse 

applications such as designing unmanned aerial vehicles 

[16], documenting computer networks [17], modeling 

network architectures [18], modeling advanced persistent 

threats [19], modeling an IP phone communication system 

[20], and programming [21]. 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The TM model can also be used to model service-oriented 

systems [22], business systems [23], a tendering system 

[24], robotic architectural structure [25], the VLSI 

engineering process [26], physical security [27], the 

privacy of the processing cycle of bank checks [28], a 

small company process [29], wastewater treatment 

controls [30], asset-management systems [31], IT 

processes using Microsoft Orchestrator [32], digital 

circuits [33], and automobile tracking systems [34]. The 

remaining sections discuss how the TM model can be 

applied in analyzing changes and FSMs. 

2. Thinging Machine Model 

Imagine that, for various reasons, you are not satisfied 

with the ontology used in object-oriented modeling (e.g., 

[35]). Before describing or embracing a new model, you 

must adapt a certain conceptualization of the “domain 

view” (relevant to a particular sphere of interest, e.g., 

accounting or tourism). Specifically, in the context of this 

model, you must determine what your ontology is. That is, 

what are the things in your model, what is their order, how 

are they constructed, and what basic presuppositions 

underlie the model? Note that, by contrast, philosophical 

ontology starts with what exists. 

Ontologies are frameworks used to represent shareable 

information and knowledge (e.g., Semantic Web [36]). An 

ontology is a “specification of a conceptualization” within 

the involved domain [37]. In modeling, ontologies give 

descriptions of the “things that are modeled” in a 

particular domain area. However, an ontology not only is a 

 

Fig. 3. A contracted view of the D model that corresponds to S in Fig. 2. 

 

Fig. 2. A contracted view of the schematic S model that corresponds to 

a state machine of a car transmission in Fig. 1. The full details of S will 

be shown later in this paper. 
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set of categories but also involves a structure that includes 

relationships (e.g., is–a), order (e.g., part–of), and 

constraints. 

An ontology matters as a workable means of 

communicating, planning, and guiding the development of 

projects (e.g., building and controlling a system such as 

the car-transmission system modeled later in this paper). 

We model such a system using TM modeling, which starts 

with declaring the kinds of things used in a TM. In 

contrast to object-oriented modeling, TM modeling does 

not include notions such as objects, properties, or 

relationships.  

Deciding the sorts of things in a model involves 

understanding the categorical structure of the modeled 

domain under consideration, which is typically 

hierarchical (e.g., classification). The number of 

categories may distinguish different ontologies. Aristotle 

(384–322 BC) articulated 10 categories of things in the 

world. An example of the three-category ontology is the 

state machine categories (states, events, and transactions). 

In philosophy, a one-category ontology exists that only 

includes so-called tropes. According to Paul [38], “One 

category ontologies are deeply appealing, because their 

ontological simplicity gives them an unmatched elegance 

and sparseness.… We don’t need a fundamental 

categorical division between particulars, individuals, or 

space-time regions and their properties, nor do we need a 

fundamental categorical division between things, 

individuals, or bearers and the qualities ‘borne’ by them.” 

TM modeling has one category called things/machines 

(thimacs). Note that this study offers an idealization and, 

sometimes, rational and linguistic arguments (no data, as 

in physics research) closely reflecting philosophical-like 

(computer science philosophy) speculations. The proposed 

ontology in terms of thimacs is a deliberate simplification 

of a modeled domain’s description used to identify core 

concepts in modeling. 

One of the main interests of this paper is understanding 

change in the context of the TM thimacs. Specifically, we 

focus on the change in the thimacs in the S model when 

time is introduced to convert them into event thimacs. 

2.1 Basic TM Model Constructs 

A thimac in TM modeling is denoted as ∆, which has a 

dual mode of being: the machine side, denoted as M (see 

Fig. 4), and the thing side, denoted as T. Thus, ∆ = (M, T). 

The S model is the grand thimac, with a subthimac 

structure comparable to classes and subclasses in object-

oriented modeling.  

The notion of T relies more on Heidegger’s [39] notion of 

“things” than it does on the notion of objects, with the 

latter being a very popular notion in computer science 

(e.g., object-oriented modeling). M refers to a special 

abstract TM (Fig. 4), which exists as a basic, complete 

machine. The thimac ∆ is the TM element of modeling that 

reflects an object/process and a product/productivity 

simultaneously. Conceptually, such a picture implies two 

facets: a being (in the context of the model) as the thing 

and its passage (machine) to being (thing). The thing and 

the machine are like the faces of a faceted jewel, in that 

the thimac retains its unity simultaneously embracing a 

plurality of facets. For example, water is a water-thing, 

and its machine is its processual configuration 

(organization), which involves oxygen and hydrogen and 

leads to its manifestation. The machine is written as H2O 

in shorthand, which indicates a process that generates a 

unity.  

Philosophically, the thimac is “being/becoming.” 

According to Zubiri [40], the process “would be the inner, 

intrinsic joining of what we call ‘being’ and what we call 

‘non-being’” (italics added). We interpret this joining 

from nonbeing as a passage from one condition to another.   

A machine can be a subdiagram of the diagram of Fig. 4 

(e.g., it can only create and process things), or it can be a 

complex of these machines. M is built under the 

postulation that it performs five generic actions (creating, 

processing [altering], releasing, transferring, and 

receiving) or a subset or complex of these actions. A thing 

is created, processed, released, transferred, and/or received, 

whereas a machine creates, processes, releases, transfers, 

and/or receives things.  

 The five actions (also called stages) in Fig. 4 form the 

foundation for ∆-based modeling. Among the five stages, 

flow (a solid arrow in Fig. 4) signifies conceptual 

movement from one machine to another or among the 

machine’s stages. The stages can be described as follows. 

 Arrival: A thing reaches a new machine.  

 Acceptance: A thing is permitted to enter the 

machine. If arriving things are always accepted, 

then arrival and acceptance can be combined into 

a “receiving” stage. For simplicity, this paper’s 

examples assume that a receive stage exists. 

 

Fig. 4. The thinging machine M. 
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Processing (alteration): A thing undergoes modifications 

without creating a new thing.  

 Release: A thing is marked as ready to be 

transferred outside of the machine. 

 Transference: A thing is input or output outside of 

or within the machine. 

 Creation: A new thing is born (created) within a 

machine. Creation can designate bringing into 

existence (e.g., ∃ in logic) in the system because 

what exists is what is found. Creation in M 

indicates “there is” in the system but not at any 

particular time.  

 

The machine T can be simplified as shown in Fig. 5. 

 
The TM model also includes the notion of triggering, 
which connects two subdiagrams where there is no flow 
between them. The triggering is represented by dashed 
arrows in the TM diagram. The TM model can be 
specified in a textual language, wherein the arrows are 
represented by dots. For example, the different flows in 
Fig. 4 can be specified as follows: 
Flow.create.release.transfer.output 
Flow.create.process.release.transfer.output 
Flow.transfer.input.receive.arrive.release.transfer.output 
Flow.transfer.input.receive.arrive.accept.release.transfer.

output 
Flow.transfer.input.receive.arrive.accept.process.release.t

ransfer.output 

2.2 TM Example 

According to Busse et al. [41], the Aristotelian categories 

were accepted for quite a long time. Other categories were 

only introduced as subcategories. In the 19th century, the 

additional category “facts” was added. For example, A 

phoned B on May 23, 2012, at 2:11pm is a fact [41]. In 

TM ontology, it is an event. Fig. 6 shows the TM model 

S for A phoned B. When time is considered, the event A 

phoned B on May 23rd, 2012, at 2:11 pm occurs as shown 

in Fig. 7. Figs. 6 and 7 show the machine side of the 

thimac A phoned B and its corresponding time subthimac. 

In this paper, we investigate the transformation shown 

from Fig. 6 to Fig. 7 to better understand how to arrive at a 

dynamic specification of a system. In such an examination, 

the notion of (static) changes and (static) states appears 

during this transformation to A phoned B on May 23, 2012, 

at 2:11 pm. 

 

 

3. First Phase of Modeling: TM Static Model 

Badreldin [15] introduced a state machine example (Fig. 

1) of a car-transmission system comprising a two-level 

nested state machine. The transmission starts in the neutral 

state. While in the neutral state, the state machine responds 

to four FSM events, namely the selectFirst, selectDrive, 

selectSecond, and selectReverse events. Each FSM event 

triggers a transition to a new FSM state. While in the 

Second state, the transmission system responds to two 

events—reachThirdSpeed and dropBelowSecondSpeed—

which trigger transitions to the ThirdGear and FirstGear 

states, respectively [15]. 

Fig. 8 shows the static TM model S of the transmission 

system. S “pops up” into existence from the modeler’s 

conceptualization piece by piece (it may not be written in 

language at first) as the modeler looks at the patterns 

dance before their imagination. In TM, these patterns 

come in terms of thimacs that are expressed as in S. 

This process of thinking in terms of thimacs begins with 

the car starting (1), which creates a signal that reaches the 

transmission (2) that is processed (3) to trigger the neutral 

process state (4). At this moment, the transmission is ready 

to move from the neutral position. 
- In the neutral position, upon the driver selecting the 

first position (5), the transmission (gear) moves to the 
first position (6 and 7). 

- The processing of the first position (8) triggers (dashed 
arrow) the first driving condition (Driving label in the 
diagram) for the car (9). 

- Upon the driver selecting the second position (10), the 
transmission (gear) moves to the first position (11 and 
12). 

 

 

Fig. 7  The TM event A phoned B on May 23, 2012, at 2:11 pm. 

Time: May 23, 2012 at 

2:11pm 

  A B 
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Fig. 6  The TM representation (S model) of A phoned B. 

Fig. 5  Simplification of M. 
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- The processing of the first position (13) triggers the 
second driving condition for the car (14). 

- Upon selecting the third position (15), the transmission 
(gear) moves to the third position (16 and 17). 

- The processing of the third position (18) triggers the 
third driving condition for the car (19). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 

Similar descriptions are applied when moving the position 

from third to neutral. To avoid repetition, we only describe 

one such action: from the third position to the second. 

Upon the driver selecting the second position (20), the 

transmission (gear) moves to the second position (21 and 

22). 
- The processing of the second position (23) triggers the 

second driving condition for the car (14). 

Fig. 8. The TM representation (S model) of a car’s transmission system. 
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Back in the neutral position, the transmission is ready 
to move to the reverse position. 

- Upon the driver selecting the reverse position (24), the 
transmission (gear) moves to the reverse position (25 
and 26). 

- The processing of the second position (27) triggers the 
reverse driving condition for the car (28). 

- Upon the driver selecting the neutral position (29), the 
transmission (gear) moves to the reverse position (30 
and 31). 

4. Steps to Achieve Dynamism: Decomposing 

S  

Behavioral states and transitions appear in Badreldin’s 

[15] state diagram without any explanation for how they 

emerged from the English description of the transmission 

device. Do the states in Fig. 1 represent parts (fragments) 

of the transmission system? If they do, then how are these 

static parts converted to temporal states that represent the 

system’s behavior? In this discussion, we try to develop a 

theory for transformation in the TM model, from a static 

description such as S to a description of dynamic 

behavior. Accordingly, in this section, we analyze the 

roots of dynamism in static modeling (e.g., S). The 

results of this analysis are applied to model the 

transmission system’s behavior. 

S (Fig. 8) is a static description that represents a stillness 

or rest (no time) condition. It lacks a type of structure that 

applies “meaningfulness” (which is explained later) to its 

parts. This S/parts requirement is reminiscent of 

Deleuze’s philosophical notion of a “body without 

organs,” but in our case (in contrast to Deleuze’s aim of 

immanence), we aim to identify “static organs” (parts) to 

specify a dynamic system of S. The static organs 

facilitate the roles of the release, transfer, and receive 

stages in the TM model (i.e., communication with other 

machines). The body without organs is a thimac with only 

the create and process actions. 

From a different perspective, S is a machine schema that 

is amenable to compositional exploration to generate a 

new structural level (multiplicity). Building on Maturana 

and Varela’s [42] work, the organization notion defines a 

system (e.g., S) as a unity that outlines its form and 

serves as its core identity. According to Whitaker [43] 

(describing Maturana and Varela’s [42] ideas), “A 

system's organization defines its identity, its properties as 

a unity, and the frame within which it must be addressed 

as a unary whole.” On the other hand, the structure of a 

particular composite unity is the manner in which it is 

made by actual static components in a particular space as 

well as a particular composite unity (this description is a 

modified version of the notion of structure in Maturana 

and Varela [42]). The point of this discussion is to view S 

as an organization that needs structure so that its behavior 

can be specified. While the wholeness of S is the same, S 

may have different structures, depending on how it is 

divided into parts.  

The concept of whole-multiplicity helps in forming an 

assemblage of the fragments that evolve to facilitate 

dynamism. Dynamism, in this context, refers to ordered 

temporal events. To partition S, we create multiplicity 

through parts that emerged from the whole. This 

emergence may be conceived of as a qualitative change 

that consists of the appearance of “things of a new kind or 

ontological species” [42]. The selected subdiagrams of S 

become new thimacs, and the original thimac becomes a 

network of subthimacs. This is an evolutionary change 

from thimac S to its parts/subthimacs utilized to identify 

the abstract notion of the system’s behavior. Evolution 

refers to change simpliciter [44]. 

S is a complex entity consisting of many subthimacs 

interconnected in some specific way. The system’s 

characterization (both static and dynamic) resides not only 

in the separate subthimacs but also in the structure they 

form. The new parts form a new structure. In the state 

machine phase of design, the states of the transmission 

machine are identified (by the modeler, in a vague way) 

and connected together to characterize the transmission 

behavior. In the example, the transmission thimac consists 

of the subthimacs first, second, third, neutral, and reverse. 

The first three states form a subthimac called driving.  

S becoming (forming) multiple parts with different 

properties is analogous to a tree in the fall, which 

experiences many changes occurring simultaneously: red 

leaves, yellow leaves, dry leaves, etc. In the transmission 

example, the transmission machine is transformed into 

many submachines: the FirstGear machine, SecondGear 

machine, ThirdGear machine, NeutralGear machine, etc. 

Accordingly, a transformation occurs from sameness to 

different parts. This is not an easy task because no clear 

borders mark where the cutting occurs. However, this is 

better than the FSM method because we have a 

diagrammatic description instead of simply text.  

4.1 Justification for Decomposition 

(a) Decomposition is necessary because the system 

described by S is obviously “provoked” behaviorally, 

piece by piece (subdiagrams); for example, in a FSM, a 

state at a time (at this point, we ignore the order of the S 

parts being activated). TM modeling produces a single, 

whole description of the system to avoid any 

inconsistency; hence, after this whole is generated, the 

description is divided into pieces to define the dynamism 

of its interiority. The division is performed to pursue a 
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(correct) variety that produces a blend of staticity and 

changeability. While staticity is conserved, changeability 

emerges from differences of parts, just as cutting an ice 

block into smaller blocks preserves coldness. Importantly, 

the gestalt of the parts must be assembled into the original 

totality of the system during the dividing process. The 

original single machine of the transmission system is 

replaced by an assembled machine that is formed from 

selected submachines.  

(b) The overall work of the transmission system is 

assigned to distinct subthimacs (subsystems); therefore, 

understanding the system requires identifying these 

thimacs and their contributions to this overall work. In 

other words, the system description S needs to be 

regenerated in joinable parts that come into reflective 

relation with the whole. This causes the system to be 

restructured under the influence of parts.  

(c) Exposing the order is important because S represents 

only the whole, so the underlying decomposition must be 

revealed where behavior potentialities may happen. The 

selected parts may have originally been thimacs, several 

thimacs, portions of thimacs, or a mix of thimacs and 

portions of thimacs. These parts of S allow one to 

understand the system’s behavior, which involves 

activating certain prearranged subdiagrams, whose 

semantics are determined by how the subdiagrams are 

interconnected. Importantly, the decomposition of S 

exposes orders (i.e., before, after, and simultaneous) 

among parts of S that are recognizable by the flows and 

triggering among the parts (subdiagrams). These relations 

make a difference when specifying the system-level 

behavior. Each part of the system has a distinct role, and 

the parts are interdependent based on their position in S. 

Our aim is to identify these interdependencies. Note that 

S is an atemporal model, so the interdependencies are 

static relations among parts of S. 

(d) Directional control: Decomposing S into parts causes 

a multiplicity of subsystems to be created that convert the 

system into constitutive components with respect to the 

whole, to anticipate and infer what is expected. In the 

transmission example, suppose that the car is idling and 

the neutral state is active. Then, the system control 

concentrates its processing activity on a “shift to one” or 

to “reverse” and neglects all other parts (two and three) 

that have no direct bearing upon the expected next state. 

When the transmission is shifted to the “reverse part,” the 

focus will be shifted to “driving in reverse” or “moving 

back to neutral.” The other parts are ignored. Note that 

parts of S such as FirstGear and SecondGear, etc. are 

representations that are taken as a base for dynamic 

specification of a concrete phenomenon in a particular 

instant of time in the D and B models. 

4.2 The Change: Whole to Multiplicity 

A change ordinarily refers to two meanings: 
(a) An event of changing (typically called a process); for 
example, the elevator door is opening.  
(b) A state of being a change (e.g., the elevator door is 
open).  

These types of change involve the “same thing becoming” 

(Aristotle’s words) different. Aristotle mentioned another 

type of change: becoming from nonbeing to being. In this 

change, nonbeing is a different thing from the being. 

Similarly, the unity (S) becomes multiplicity as a result of 

multiple becoming of S into its parts (we call them static 

changes). Change here means variation in the sense of 

different parts of S (e.g., changing a bill into coins).  

Fig. 9 shows a selected division of S for the transmission 

system into 22 static changes. This division produces 

distinct parts of S. An analogy is a die that has six 

changes corresponding to its six faces. The dynamism of 

the die originates from conceptually dividing it as a whole 

cube and replacing it by its six faces. Similarly, the aim of 

dividing S is replacing it with a certain number of 

changes. Yet, a better analogy is a chess game, which 

features many changes. A change in this case is a part of 

the chessboard’s setup or its static description (S of the 

chess). Accordingly, when specifying the chess tree (as in 

artificial intelligence) of the chronology of legal changes 

allowed in the game, the tree is not related to the behavior 

but to the static arrangements of parts relative to each 

other. In another example involving numbers, the 

sequence 2, 3, and 4 expresses a logical relationship, not a 

temporal one. 

The point of these analogies is to project the division of 

the whole (e.g., a die) onto dividing S as a static 

description that embeds its possible changes. Identifying 

these changes and their relations produces an atemporal 

description. Hence, identifying states (types of changes) in 

Badreldin’s [15] state diagram does not involve the 

system’s dynamism (temporal-based order) or behavior.  

A static change in the S model is not the common notion 

of so-called dynamic change as the process of causing a 

thing to become different from what it is at present or 

what it was in the past. This process change refers to 

becoming different or becoming altered or modified. In the 

TM multiplicity paradigm, static change refers to the 

feature of being different. In the static atemporal 

progressions in S, there is no becoming (a process) but 

only being (a thing). Dividing S into a form of 

multiplicity produces atemporal changes with no specific 

order (e.g., when using a multicutter to cut an apple into 

pieces, all of the pieces are produced simultaneously).  

https://simple.wikipedia.org/wiki/Coin
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4.3 Required Properties of Static Changes 

 The division should produce a juxtaposition (a topology of 
parts) with parts that are sufficiently “meaningful.” The 

meaningfulness of a part of S resides in the isomorphism 

between the part and the thing it is supposed to represent in 
reality (in the modeler’s conceptual framework). For 
example, in the context of changing the transmission from 
one position to another, “release” by itself as a subdiagram  

does not seem to have this meaningfulness. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

“Release and transfer” seems to be a more meaningful part, 

but “release, transfer, transfer, and receive” is an ideal 

whole/part because it corresponds to the familiar notion of 

“moving from… to…,” as in the transmission moving 

from the NeutralGear to the ReverseGear positions. This 

moving from… to… part of S is an example of the 

(partial) “whole” that we are looking for in dividing S. 

Note that it is formulated from two halves of different 

thimacs.  In general, the initial “elements” (e.g., thimacts) 

of the whole (S) are not the best ‘carving’ suitable for our 

purpose. 

Fig. 9. The TM representation (S model) of the transmission system. 
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When modeling the state diagram of the transmission 
system, Badreldin 15] unconsciously followed a 
“meaningful” criterion. Badreldin’s [15] state diagram 
seems to be a coarse-grained description because the 
classical definition of a state and the mixing up of states 
and transitions create a confused vision that hides the 
granularity of static description. Ontologically, the state 
diagram is a “states and transitions diagram” in which 
transitions are labels on the diagram’s edges. This 
distinction between states and transitions is an outcome of 
the separation of object/process in the object-oriented 
paradigm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In TM modeling, states and transitions are thimacs. In the 

scheme to divide S, operators do not need to transform 

one state into another because the operators are parts of S, 

and connections among parts (states) are pre-specified by 
flows (inputs and outputs) and triggering. Thus, as is 

shown later, the behavior model D has no labels on the 

edges. The multiplicity of S encompasses states, 

transitions, and other parts as one category: subthimacs 

(subdiagrams) of S. Fig. 10 shows the conversion of 

changes to TM states and the order imposed on these states. 

Fig. 10  The TM representation (d model) of the transmission system. 
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5. TM States: Ordered Static Changes 

The aim of this discussion is to understand how to identify 
a system’s states. However, the static change notion under 
consideration is more general than the classical notion of a 
state. The basic idea is that a system is divided to allow 
anticipation of its behavior. The supposition is that 
multiplicity can be represented as a chronology of states.  
 
Fig. 11 shows the chronology of the transmission system’s 
states. 
 
Static changes and static states are different, in terms of 
their context of simultaneity and order. Whereas static 
changes are created simultaneously, states are changes with 
an atemporal order. Thus, we can develop a chronology of 
states but not of changes. Note that the FSM distinction 
between a state and a transition is not applied in TM 
modeling. The transitions, as well as FSM states, are static 
changes. For example, in Fig. 7 (the transmission model), 
the transition from first gear to second gear is represented 
by the subdiagram 
One.release.transfer.Two.transter.receive; thus, it is one 

part (static change) of S. This subdiagram is a static state 

when order is imposed on all static changes. In FSM 
modeling, only one FSM state is active at any given time. 
Ambiguity exists in the meaning of this transition with 
regard to the object’s condition between two FSM states. 
The transition seems to have an existence comparable to 
that of states.  
 
Consider the transition between the liquid and vapor states 
of water. Boiling takes time and in many physics texts, it is 
called the boiling state. The boiling water stays partially 
liquid and partially vapor. This is similar to what is called 
entanglement between systems in quantum theory, as 
demonstrated in the famous Schrödinger’s cat puzzle. In 
the TM model’s rough macroscopic static states, the 
observing of the entangled mixed state is considered a 
static state because the whole scenario is timeless. Hence, 
the subdiagram described by 
One.release.transfer.Two.transter.receive is considered a 
state in its order within static states. 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10 specifies static states based on changes. Consider 
the following two changes, assuming the car has started: 

C′: The transmission is moved to the first position. 

C″: The transmission is moved to the reverse position. 

A subdiagram of Fig. 10 represents each of these changes. 
In terms of “after,” “before,” and “simultaneously,” it is 
unclear how to order these changes. In contrast, when 
given 7, 8, and 9 (or any three different integers), we can 
establish the ordering (e.g., in ascending or descending 

order). If we replace C″  with C‴: The transmission is 

moved to the third position, then it is easy to observe that 

C′ is before C‴. Note that the relationship is atemporal 

(similar to relationships between numbers), whereas a 
point, a line, and a square embed some atemporal ordering. 

6. Events: It Is Time to Introduce Time  

Changes and TM states form the foundation upon which to 
understand events. An event is a period when a thimac 
materializes. We have projected the thimac materialization 
in terms of its subthimac’s (changes/states) materialization. 
Car travel is a thimac, and a car traveling at a particular 
time is an event (a thimac with a time subthimac). Car 
travel has many subthimacs; hence, these subthimacs have 
many “small” events that comprise the car travel event, 
including the car’s transmission events. To identify these 
small events, the transmission is replaced by its parts (static 
changes), which are infused with an order to produce small, 
correlated static states. Lastly, these states are altered by 
inducing time to be transformed into events. A 
phenomenon (e.g., acts that happen to the car/by the 
transmission) undergoes transformation from staticity to 
dynamism in terms of events, as illustrated in Fig. 12. 

S1 S2 S3 S4 S5 S13 S14 S15 S18 S19 S20 

S21 

S22 

S6 

S7 S8 

S9 

S10 S11 

S12 

S16 

S17 

First Neutral 

Reverse 

Second Third 

Fig. 11  The chronology of the transmission system’s static states. 

Static whole description 

Changes division 

States ordering 

Events in time 

Fig. 12  Progression of the stages from staticity to dynamism. 

Phenomenon 
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The chronology of states that specifies “before,” “after,” 
and “simultaneously” (Fig. 10) does not designate a 
dynamic (temporal) change when we go from one state to 
another. However, this (static) “subtransformation” refers 

to the whole (e.g., S) stimulating its parts to appropriate 

their roles from each other (e.g., the transmission in the 
“third-gear position” state shifting to the “second-gear 
position” state). The static states can be converted to events 
when the time is brought into the static picture of the states’ 
chronology (Fig. 13). Events, not states, are the genuine 
conveyers of behavior. Thus, Fig. 13 shows the system’s 
behavior in terms of these events, described as follows. 
Event 1: (E1): Starting the car 
Event 2: (E2): Neutral is ready 
Event 3: (E3): Shifting from neutral to first gear 
Event 4: (E4): Shifting from neutral to first 
Event 5: (E5): Driving in first (car accelerates) 
Event 6: (E6): Selecting from neutral to reverse 
Event 7: (E7): Shifting from neutral to reverse 
Event 8: (E8): Driving in reverse 
Event 9: (E9): Selecting from reverse to neutral 
Event 10: (E10): Shifting from reverse to neutral 
Event 11: (E11): Selecting from first to neutral 
Event 12: (E12): Shifting from first to neutral 

Event 13: (E13): Selecting from first to second 
Event 14: (E14): Shifting from first to second 
Event 15: (E15): Driving in second  
Event 16: (E16): Selecting from second to first 
Event 17: (E17): Shifting from second to first 
Event 18: (E18): Selecting from second to third 
Event 19: (E19): Moving from second to third 
Event 20: (E20): Driving in third  
Event 21: (E21): Selecting from third to second 
Event 22: (E22): Shifting from third to second 
Additional events can be added, such as waiting, 
interruptions, or warnings. Some of the events may be 
regionless events that can be interwoven with the events 
that originate from states.  

7. Conclusion 

This paper contributes to establishing a broad ontological 
foundation for the transformation from static modeling to 
specifying a system’s behavior. Such a distinction of 
modeling phases involves replacing the static 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
descriptive whole by the organization of its parts (e.g., by 
neighborhood). This transformation starts with dividing the 
static description into static changes. Static changes lead to 
a conception of static states (with more fine-tuned 
meaningfulness than those of FSM states) that contrasts 
with the sudden appearance of FSM states when 
developing the FSM model. The static states are further 
synthesized (in terms of realistic practicality) as events 
assembled by the establishment of a common temporality.  
The significance of this discussion is its role in clarifying 
the notion of a state and its relationship to systems’ 
behavior. Further research will connect this analysis with 
the classical philosophical notion of change and behavior.  
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