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Summary 
There is a shred of ample evidence that optimization is an enormous 
field that pervades essentially every aspect of our day-to-day life 
ranging from academic and engineering fields, going to industrial and 
agricultural segments, passing through social domains, and ending 
with commercial and business sectors. Evidently, the philosophy of 
optimization has emerged out of the utmost need for finding the best 
available solution among a set of candidate ones, without which our 
life will lose its vitality. 

Over the last few decades, a worthy amount of interest has been 
focused on finding solutions for a wide range of intractable 
optimization problems by scientists and researchers from diversified 
domains not only for academic and research objectives but also due 
to the existence of a wide variety of real-life applications. They 
indeed see the remarkable resemblance between the swarms, for 
instance, and the behavior of a human in solving problems and trying 
to come up with new goal-oriented operating methods to tackle many 
important real-world problems. Nature Inspired Computing (NIC), as 
its name implies, is the fusion of nature, by itself, and Artificial 
Intelligence (AI) to solve various global optimization problems. 
Furthermore, swarm optimization is considered as the most 
representative of these nature-inspired algorithms. Motivated by 
applying natural phenomena to metaheuristics and trying to simulate 
the harmonious behaviors of creatures in solving problems 
particularly the joint hunting behavior of the sea lions, the aim of the 
research work reported in this paper is twofold. On the one hand, 
many theoretical and practical aspects of heuristic and metaheuristic 
approaches, from classical to novel approaches, are discussed and 
covered. On the other hand, this nature-inspired paper addresses a 
pioneer metaheuristic optimization algorithm in the context of 
finding the optimal solution for the Maximum Flow Problem (MFP). 
To be more precise, this paper elaborates on using the Sea Lion 
Optimization (SLnO) Algorithm for solving the Maximum Flow 
Problem (MFP), hence the name “SLnO-MFP”. 

After the proposed solution SLnO-MFP algorithm is analyzed and 
the experimental tests are conducted on various real-case datasets, the 
reported practical results are represented, discussed, and compared 
using the same datasets with other algorithms, including the Whale 
Optimization Algorithm (WOA) and Ford-Fulkerson (FF) algorithm, 
which have been used to solve the same problem of interest. As the 
accomplishment achieved in this valuable research is efficient and 
robust, the proposed algorithm is proved to be a senior-level 
alternative to the optimization problem and, in turn, can be efficiently 
used to solve various optimization problems having a fairly large-
scale data such as the underlying problem (i.e. MFP).  
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1. Introduction 

Every aspect, visible or invisible, of our life, encompasses 
inside its folds a wide range of optimization problems. Not just 
that, every real-world system, or even a portion of a system, 
can be abstracted as an optimization system and encapsulates 
internally one or more optimization problems. In the most 
basic sense, the primary interests of optimization algorithms 
(OAs) are pivoting around making something more and more 
effective to the greatest possible extent by recursively 
searching to provide more refined and scalable solutions for the 
problem of interest [1][2][3]. This implies that there is an 
ultimate need for reformulating the considered problems in 
terms of optimization which, in turn, has two faces of the same 
coin: first, generating a set of candidate solutions for the 
desired problem which is referred to as the “search space”, 
second and more importantly, assessing the achieved 
performance of these available solutions based on some quality 
measures which should be previously defined [4][3][5]. These 
quality-measures or as so-called fitness functions, objective 
functions, or goodness levels are quantifiable and revolve 
around maximizing some desired features and/or minimizing 
the undesirable ones until a predefined optimization goal is 
achieved [6]. Generally speaking, neither generating these 
solutions from the search pool nor devising their objective 
functions is a simple task to do; hence, most real-life 
optimization problems are too challenging to solve [4]. 
Inevitably, there is a pressing necessity for a search 
methodology that is used to get in-depth information that 
originally exists in one way or another within the promising 
search space of the problem domain. In terms of this, there are 
broad ranges of searching algorithms and a number of features 
for which to categorize them. Some are classified according to 
the searching strategies, some are classified by the searching 
scope and area, some are classified upon the optimality of their 
output, some are classified by their ways in generating 
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solutions, and so forth. Each of them is inspired, implicitly or 
explicitly, by an existing natural world phenomenon or a 
certain sort of metaphor [6]. Nonetheless, all of them seek 
around the same goal of improving effectiveness. 

Broadly speaking, there are actually many types of networks 
that are routinely faced through daily life-cycle. These various 
types, which have enormous practical importance in our life, 
include the following real-life examples: Internet, telephone, 
cell, highways, rail, water, sewer, electrical power, oil, and gas, 
to name just a few. Depending on each one, every network has 
a material flowing from point to point [7][8]. While each point 
is referred to as a node, each connected path between any two 
nodes is called a route or an arc [7][8]. In analogous to its type, 
each material has a corresponding unit to measure the flowing 
capacity such as time, price, distance, quantity, and other units 
[7][9]. Based on this, optimization is a solution procedure in 
which one aims to systematically enhance the material flowing 
through a given network [4]. From a different perspective, this 
enhancement can be either maximize the goodness or minimize 
the badness of a stated solution [4]. Without loss of generality, 
the maximization problems are considered instead of the 
minimization throughout this paper. In case of the need for 
considering minimization problems, the same methodology is 
simply used after reversing the sign of calculation. To this 

objective, this paper is trying to reach the maximum flow 
capacity of the network at which the flow can be transmitted 
more reliably from the starting source node “s” to the target 
node “t”. This rate is greatly related to the same network “G”, 
which, undoubtedly, depends heavily on both the number of 
nodes “n” and the number of edges “m” [7][8]. Going forward, 
this problem itself is known as the Maximum Flow Problem 
(MFP) where the search space is actually represented by a 
graph, an example of which is shown in Fig. 1 where the first 
value that is associated with every edge represents the actual 
flow value and the second value represents the maximum 
capacity value; this will be explained later. The comparison of 
these networks are often defined by the amount of flow, the 
number of edges and vertices they have, as well as whether 
their flows are bidirectional or not. The values of “n” and “m” 
of this example are equal to seven and ten, respectively. It is 
worth remarking that neither side of “m” and “n” is dominant 
over the other, both are important in driving the size of the 
problem. In this regard, both the number of nodes “n” and the 
number of edges “m” with their capacities determine the 
complexity of the network “G” and, for that the runtime 
complexity associated with any instance generated from “G” 
increases rapidly with the dimension of the network graph, i.e. 
the numbers of vertices and edges [10][7].  

 
 
 
 
 
 
 

 
Fig. 1. An example of MFP, having seven nodes and ten edges 

As shown in Fig. 1, MFP is much related to the essence of the 
objects' movement through the desired network where four 
milestones are there: source place called a source or a start 
node “s”, a destination node called “t”, one or more connected 
routes between the source and the target, and an associated 
positive number to represent the flow between every directed 
route that connects any two nodes [11][8]. In order to simplify 
the problem of interest, one can think of this problem as using 
pipes of different sizes for carrying liquid from a source node 
to a destination one. Or, one can think of this problem as using 
conduits to link between the start and the destination nodes. 
Anyway, the important thing is the availability of several 
intermediate connecting paths, called by routes or tracks, 
which can be followed in carrying the flow between “s” and “t”. 
It is vitally important to mention that MFPs are part of the 
graph paradigm that doesn't require capturing every low detail 
of the problem under discussion. The rationale behind this 
relates to the fact that they are mainly based on 
abstract concepts where deep knowledge of the problem at 
hand is no longer required. And so, the ordinary user can use 

the metaheuristic optimization algorithm in solving many 
optimization problems without having to have an in-depth 
exhaustive understanding of the same algorithms.  

The critical thing to keep an eye on is that nodes can't transfer 
any matter more than their previously defined capacity value 
[11][7]. This term might be generalized in the long-run as that 
any network can't transfer more than its computed capacity 
value. Whenever there is more than one feasible track to be 
chosen between the source and the destination nodes, the MFP 
is regarded as a player with a considerable role in enabling a 
greater movement of these objects or matters. And so, the 
intended objective is to choose the most optimal route between 
the source “s” and the destination “t” that has the maximum 
throughput, i.e. flow [7]. Even though the focus view varied 
depending on each network, one fundamental three-sided 
cornerstone remained fairly viewed in a broad sense: speed up 
the flow to the looked-for value and reduce the time and cost. 
Simply, this objective can be redefined as the more flow the 
network has, the more efficient and effective it will be. 
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To this aim, the core motivation behind this research article is 
to get the maximum flow capacity at which this flow might be 
transferred reliably between the two special extremes: the 
source node “s” and the destination node “t”. However, this 
amount is closely associated to the same network “G”, which, 
in turn, rely upon the various intermediate paths between these 
two extremes and on both the number of nodes “n” and the 
number of edges “m” by which the size of the network is 
defined accordingly.  

This research is concerned with solving optimization problems 
and describes a new metaheuristic optimization algorithm 
(namely, Sea Lion Optimization Algorithm for Solving the 
Maximum Flow Problem, SLnO-MFP) which, as a member of 
the swarm-intelligence family, mimicking the hunting behavior 
of the sea lions. According to the acquaintance of the author of 
this research, there is no previous literature on the usage of 
SLnO for solving the MFP and this finding has not been 
reported yet in the optimization literature. 

In line with the said objectives and in order to lay the 
foundation of this paper, an outline of this paper is structured 
as follows. After this section justifies the importance of this 
research and provides background knowledge on the maximum 
flow problem for the novice readers, Section 2 explores the 
depth of literature to introduce both the heuristic and the 
metaheuristic optimization paradigm. Section 3 surveys the 
literature within the research area to gain a concise overview of 
the other related work and, moreover, it ferrets out the 
objectives of the underlying problem and discusses some of the 
different algorithms which are proposed to solve this problem 
intelligently. The model formulation and the different 
assumptions related to the problem of interest are provided and 
discussed in Section 4. In order to build an authentic depiction 
of the considered problem, the formulation of the theoretical 
and mathematical foundation of this proposed solution is 
introduced in Section 5. Section 6 is where the real work 
begins; it takes a closer look at the current algorithm developed 
in this contribution and then walks through all the various 
stages which would be required to implement. While the 
conducted experiments and their detailed intensive analysis are 
discussed in Section 7, Section 8 concludes the project work of 
this research. Lastly, to close the discussion of this research 
article, Section 9 offers some ample research scopes and 
introduces a fairly wide range of promising research 
opportunities in furthering the aims and objectives of the 
research. 

2. Background of Metaheuristic Optimization 
Algorithms 

With the purpose of providing a self-explanatory paper, this 
section establishes preliminary knowledge of the background 
pertaining to the concepts of the optimization paradigm and 
draws an inclusive image for both the current and future status 
of metaheuristic research. Therefore, the following subsections 
discuss the different categories of optimization algorithms. 

2.1 Types of Searching Algorithms 

As such, there is definitely a broad range of techniques 
proposed in today’s progressive and growing arena of 
optimization; each of which has its own capability, strength, 
weakness, objective space, detailed specifications, constraints, 
requirements, and other fundamental relevant features of 
searching. Since most of them claim a progressive style to 
implement, the right decision for the most reliable algorithm to 
encompass a given problem selection is no longer a simple 
mission to be carried out. Bearing in mind that most of the 
complicated hard problems can be framed within the 
optimization borders in which one strives harder in an effort to 
either minimize or maximize the achieved results within 
limited resources [12][13], Fig. 2 is directly interrelated to the 
question of which algorithm to choose and which notions to 
implement for a given problem of interest. In terms of reaching 
the most right one of the optimization algorithms, this figure 
deliberate and then formulates the different critical factors 
which influence people’s decisions in picking up one of them. 
However, there are various distinct elements between them 
which overlap with each other. Viewed in a broad sense, the 
classification of these algorithms encloses, but is not limited to, 
the following overlapped categories: 

· Problem Functionality: In terms of functionality, 
algorithms can be classified into two major types: problem-
specific and problem-independent. While the former 
provides that the algorithm, as well as the code, is just 
tailor-made for a specific type of problems, the latter 
assures that the same code is used for various varieties of 
problems, namely it is a generic-implementation code. 
While the focus of the latter search strategies is mainly 
concentrated on using the algorithms without any problem-
dependent knowledge, the former look as if they were 
tailor-made for a narrow range of problems. [14]  

· Searching Scope: From a classification point of view, the 
searching scope is used as well. Different than the global 
ones that are commonly used in finding the global optimum 
quality solutions, local search techniques might become 
stuck in the so-called local-optimum values of the solution 
space when no better solution is observed in the present 
existing neighborhoods. Even though both techniques are 
striving to find a solution that more optimizes the cost 
criterion among a set of candidate ones, the distinction 
between them is that the global search looks at the entire 
problem space as a single entity when trying to find the best 
possible candidate solution [15]. Despite that all of the 
global optimum solutions are never guaranteed concerning 
solution level of quality, finding global optimums in global 
search ones could be more counted on.  
In the pursuit of being on the best of what it has already 
been achieved so far, most current-state-of-the-art 
optimization algorithms fall within the realm of iteratively 
improving the outcomes in the course of the search 
process. Thus, by considering their ways of generating 
solutions, further additional taxonomy can be possible for 
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the exploration of the solution space effectively. Fig. 2 
exhibits that the searching process falls into quadruple 
pivot points: stochastic, exploration versus exploitation, 
iterated (i.e. iterative), and guided:  

- The searching has a stochastic nature when the set of 
random variables is employed in extracting a new 
generation, called a potential solution [9][16]. Each 
generation's new values of these variables are chosen 
stochastically in harmony with the general paradigm. 
On the other side, some problems are evolving 
stochastically at different points in time which makes 
the optimization hard to grasp and solve. For instance, 
the passengers' numbers of airlines occur stochastically 
which calls the airlines for implementing the statistical 
theories, including stochastic analysis and probability 
distributions, in forecasting the numbers of passengers.  

- Exploration and exploitation are two supplementary 
activities used to explore the search space. The first one 
is the activity through which the search algorithm tries 
to explore as much broad search space as possible to 
evade falling in the local-optima traps. Whereas the 
second one is representing the activity in which the 
searching algorithm tries to develop the finest 
discovered solutions through some targeted 
approaches. While exploitation is the optimized 
outcome derived out of exploration, the progress of the 
search for more solutions continues in both cases to 
find more-optimal ones. [10][17][18] 

- For highly efficient exploiting the former iteration (also 
called trial or time-step) to the greatest possible extent, 
the outcomes in the guided search are frequently 
improved over the course of the iteration steps where 
the newly generated trials are influenced by the older 
ones. The basic idea of that is wrapping around 
deliberating knowledge and extracting patterns from 
the former good-quality searching iterations in an effort 
to harmony guide the searching process in the 
subsequent iteration steps hoping to be in the optimal 
solution direction, hence the notion of “guided” is used 
to continuously approximate the goal based on 
replacing the old solutions with the new successful 
ones. From a more general angle, the useful 
information related to the optimas of the preceding 
iteration steps is stored on to get benefit from them in 
the succeeding ones. That is, the key philosophy of 
deriving more successful trials is coupled with building 
up a well-stocked knowledge store containing the past 
trials. [10][17][16] 

Unlike the conventional local search that stops when it 
gets stuck by any local optima, the guided local search 
makes the best use of the available features of the 
current optima to escape away and then form another 
more optimum feasible solution. In the guided search 
absence, an optimization algorithm (OA) inevitably 

takes on a longer exploratory time range that is mainly 
driven by the trial-and-error aspects. [10][17][18] 

- The progress of the searching process will be 
continuing iteratively with the same searching 
procedure until one or more of the predefined 
evaluation functions, called termination conditions or 
stopping criteria, imposed by the user are reached, and 
accordingly, the best possible candidate solution is 
produced. Without that, the progress of the searching 
mechanism will obviously be in an infinite loop 
[10][17]. The followings are some of the possible 
termination conditions that may be imposed by the user 
to terminate the series of iterations: the maximum 
number of iterations steps previously defined (i.e. no. 
of runs) is reached, the maximum allowable CPU 
computational run-time (i.e. max-CPU-time), coming 
across some significant evidence that an optimal 
solution has been achieved, the maximum number of 
iteration attempts that comes amid two successive 
developments is reached, the maximum number of 
iteration attempts has reached without noticing any 
difference or making any forward positive progress for 
the problem of interest, or there is no way to get more 
developments for the problem of interest (i.e. there is 
no progress) [10][17]. Related to the first termination 
condition, the applications of the Artificial Neural 
Networks (ANNs) use the name “epoch” to represent 
an iteration step (i.e. time-step) [10][18]. In-line with 
the second termination condition, it's very crucial to 
balance between the quality of given feasible solutions 
and the overall computation time frame that is utilized 
in generating these solutions and decide accordingly 
how to set up the timeout bound [10][18]. On the other 
hand, the last termination condition represents the case 
that after many generations, the solutions start 
approaching each other in the hope that this 
approaching is a good indicator that the final achieved 
solution is closer to the ideal solution of the problem 
under research [10][18]. In the report of this, there is an 
essential need for suitable criteria to define the quality 
of the acceptable solution and to decide according to 
that whether to stop the searching activity or not 
[10][17][18]. If the procedure fails to reach a visible 
solution or a practical compromise within the timeout 
bound, it is inevitably stopped [10][18]. 

· Output Optimality: The problems are basically 
categorized into two different types of models: 
Deterministic (i.e. exact) and Stochastic [9]. While the first 
one is directly associated with the problems in which the 
different-used variables are known in advance with 
certainty and before solving them, the second model is 
indicating to the cases where the associated variables 
involved a degree of uncertainty [9][18]. Upon the 
optimality of their output through the different runs, 
algorithms are generally categorized into two fields: 
deterministic and nondeterministic. Within this context, the 
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“Deterministic Algorithm”, also known as exact algorithms, 
describes the cases where the same algorithm at all times of 
the repeated runs will definitely produce one and only one 
same output, called solution, for the given particular input 
data. As this grip on the reality of a single certain outcome, 
it is obvious that their exclusive orphan solution is the 
provably optimal one, and nothing else. Furthermore, since 
such solutions can be extracted within a fair rational time, 
they are used only for problems of small-scale instances as 
they defined under the term “Deterministic”. Conversely, 
complex large-scale instances can't be generally resolved 
within a rational time by using these classical exact 
approaches. This is caused by the fact that proceeding 
ahead in the real-world with all possible solutions, as is the 
case of exact or precise approaches, is sometimes time-
consuming and hard to sustain in terms of resource 
availability and utilization. From a computational aspect, 
enumerating and checking all potential candidate solutions 
for optimality satisfaction is systematically impossible for 
the majority of large-scale optimization problems 
especially those involve hundreds and even thousands of 
variables. [19][20] 
Going forward, the “non-deterministic algorithm”, by 
contrast, means that the same algorithm may show some 
alternative behaviors from run to run even though the input 
data are the same. Form another perspective, this 
discrepancy in the behavior is attributed to the fact that the 
calculation is subject to some norm of randomization and, 
for that, the outputs have a fluctuating-stochastically 
behavior and may vary from one run to another. With 
regard to this norm of uncertainly, all the generated 
behaviors are considered as valid outcomes and every one 
of them may be the optimal solution or close to the sole 
optimal one. And so, every execution for any algorithm 
belonged to this type hides a degree of “uncertainty” or 
“randomness” behind its output. Definitely, this extent of 
“uncertainty” is only limited to agreed sets of rules that 
should be defined before. [9][17][21][5] 
Beyond that, this category is commonly used when the 
tackled problem tolerates multiple possible outcomes 
where all of them are considered as valid ones through the 
solution space without providing proof of optimality. 
Within the fact that they may perform differently within 
various routes, the non-deterministic algorithms are 
extensively used in finding estimated solutions; this is 
specifically true when we coming across credible evidence 
that revealing the optimal solution among a set of possible 
candidate ones is beyond the capability of exact algorithms 
and, perhaps more importantly, an optimal solution is too 
costly to be attained especially in terms of time function. 
[14][5] 

· Time complexity: By considering their time-growth 
complexity, a further taxonomy can be possible for these 
algorithms; Fig. 2 illustrates that algorithms can be forked 
into two subfields: polynomial and non-polynomial. 
Polynomial, as the name implies, means that the tackled 

problem can be initially solved from scratch in polynomial 
run-time by not less than one algorithm [10]. However, in 
the other case, the problem at hand needs non-polynomial 
time to be solved which often means too long 
computational time to be tolerated [10]. If the processing 
time is narrow and usually it is that, there is a sorely need to 
sacrifice the seeking of the solution optimality at the 
expense of near-optimal solutions [20].  

· Problem Hardness: When the last two categorizations are 
integrated together, another categorization is emerged out 
of them. In view of this, the problems themselves can be 
categorized according to their complexity: Polynomial 
problems and NP-hard problems. Even though the former 
one is directly related to the problems whose computational 
time is growing polynomially with the problem size, the 
latter is relevant to the problems whose time-growth rates 
are often growing exponentially with the size of the 
problem. Notwithstanding that the computational time of 
the NP-hard problems might not strictly with exponential 
increases in all cases, but they are definitely not 
polynomially. As opposite to NP-hard problems, the time 
of the former category is firmly constrained by a 
polynomial function based mainly on the problem size. For 
instance, suppose that “q” is the problem size, then all the 
followings are polynomial functions “q2”, “q3”, “q4”, “q5”, 
etc. Quite the opposite, there isn't any known polynomial 
algorithm that is capable to solve the problems that lie 
under the latter category. As a matter of fact, most 
optimization problems are classified under the second 
category and they are describable as non-deterministic 
polynomial-time hardness (NP-hard) problems which 
address the case that a solution for the problem under 
consideration can be achieved within a polynomial time by 
using a nondeterministic computer without providing proof 
of optimality. [22][23][13][10] 

The followings are some of the key factors that are related 
to NP-hard problems [22][10]: 

- It is often the case that most of the NP-Hard problems 
are very easy to define and described but so hard to be 
framed or/and solved as optimization problems. 

- Searching space: These problems are usually of huge 
dimensions, namely, they involve a fairly wide range of 
possible solutions so that they are usually very hard to 
be tackled.  

- Solution's quality level: The good-quality assurance or 
excellence of the calculated results is not guaranteed. 
But, if the optimal solution has not been reached, it 
doesn’t mean that a “good” one isn't achieved. All in 
all, this is much related to the nature of the underlying 
problem. In terms of time-growth complexity, the 
perceived relationship between the optimal solution 
(i.e. the best candidate solution) and the size of the 
problem under consideration is exponential. As soon as 
the problem size begins to mount, the computational 
time needed for further refining the candidate solutions 
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is growing at an exponential pace. In such scenarios, 
these algorithms need a relatively long processing time 
for driving the optimal solution and, as a result, these 
problems are generally not resolvable within a rational 
amount of computational time. In a variety of cases, 
extracting an approximation to the optimal solution is 
also hard to be achieved within a rational period.  

- Exhaustive search: In practice, brute-force examining 
of all candidate solutions may be placed into the realm 
of the sheer impossibility.  

- Time-growth complexity: Since this norm of problems 
is ordinarily large-scale and, as a result, demanding 
some “expensive” time computations, they are often 

difficult to solve. To this end, these problems are 
generally calling for exponential resources to reach the 
optimum quality solution or the near-optimum one.  

- Despite the fact that some of these problems are said to 
as having a polynomial-time algorithm to solve but as a 
matter of fact, no anyone at all sets apart what the 
algorithm is! 
In all these contexts, these problems are also referred to 
as long-term problems. To state a truth, the largest 
fraction of real-world optimization problems falls into 
the NP-hard class or at least in the sense of NP-hard. 
[22][10] 

 

 
Fig. 2. Types of Searching Algorithms 

  
· The Number of Objectives: Depending on the nature of 

the problem, some problems have a single-objective 
function while there are many others that have goals with 
multi-objective functions, referred to as multi-objective 
optimization. In reality, the latter case requires to be 
incorporated with a weighted average to reflect the nature 
of the several objectives' existence. So, a multi-parameter 
vector is used for their fitness functions. [6] 

· The Number of Starting Solutions: On conformity with 
the problem domain and in order to come up with these 
classifications, single-solution (also referred to as trajectory) 
versus population-based searches may be considered as an 
additional alternative classification element. The following 
core points are listed here to compare and contrast the two 
searching strategies: 
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- The single-solution category contains methods that 
start by choosing one solution randomly and then 
enhanced it in the course of the search process. Since 
these methods contain only one solution in every one 
of the iterations, they are also called single-point or 
trajectory methods. Simulated Annealing (SA) and 
Tabu Search (TS) methods are the most leading 
examples of this category On the contrary of starting 
with a single nominal solution, the population-based 
category starts initially by generating a set of multiple 
random solutions, and then these solutions are 
enhanced extensively towards more superior search 
areas throughout the series of iteration steps. The 
enhancement of the population-based strategy is 
emanated either by recombination of more than one 
solution into a single one or reforming each solution by 
the use of a given strategy adopted especially to impose 
exploration and exploitation of the search space. [10] 
[20][24][16][18] 

- A higher exploration power is attained in the 
population-based towards finding out the overall global 
solution rather than staying on local ones. On the other 
hand, the nature of the single-solution category is 
considered as more exploitation oriented. [20][24][16] 

- Since the abstracted knowledge about the search space 
in the population-based approaches is shared between 
many possible solutions, there may a sudden and 
widespread shift in the direction of the optimal solution 
[16]. 

- The recombined solutions of the population-based 
methods are normally based on big-guided steps while 
these steps in the single-solution methods are 
commonly smaller-guided and, of course, the 
movement of each of the two alternatives for more 
productive solutions and bettered outcomes is only 
within its corresponding own search space. Despite 
these solutions' improvements, these big and small 
guided steps are at the expense of the danger of being 
close to or missing good solutions where this danger is 
higher in the population-based approaches of that of 
the single-solution approaches.[10][16] 

- By the population-based methods, multiple possible 
solutions collaborate with one another to go beyond 
local-optima traps [16]. Namely, all new solutions are 
built on previous ones and provide inspiration for 
future ones. 

With respect to the fact that there are no clear-cut boundaries 
that are determining where the above-named categories start 
and stop, there might be many varieties of hybridized 
categories. For instance, a further forked group may compose 
of some approaches which deal directly or implicitly with the 
graphs. From a different point of view, the positive capabilities 
of two or more approaches may be fused together to form a 

new hybrid technique that can be used to solve problems from 
the same domains or the others. 

2.2 Approximation and heuristic approaches 

Due to the stated limitations of the classical exact approaches 
in supporting most complex optimization problems, scientists 
and experts from both research and industrial communities 
think intensely for finding possible alternative approaches that 
are developed to support and capture efficiently the solution of 
the optimization problems within a fully acceptable time 
border even if there aren't some high levels of certainty. To this 
end, approximation and heuristic approaches are eventually 
evolved for finding the optimum or at least close-to-optimum 
solutions regardless that these approaches have no assurance 
for the computational time or the accuracy of the in reaching 
the optimal solution. Ground truth, the quality level of the 
approximated methods is ordinarily under the terms of 
predefined boundaries that are not far off the exact solutions. In 
contrast to this, the quality level of the heuristics methods is 
not guaranteed in exploring the global optimum solutions or to 
be within these predefined boundaries; however, the exact 
results might be caught in some exceptional situations. Unlike 
the approximate ones, heuristic approaches may have included 
some chancy errors that are incapable of being anticipated. [25] 
[1][14][10][20] 

To further control optimization problems, there is an utmost 
need for a higher-level of heuristic especially when one be 
faced with some extensive searches that have one or more of 
the following feasible constraints and obstacles: [14][26][13] 
[9][27] 

· Information constraint: Incomplete, limited, imperfect, or 
conflicted pieces of information upcoming from different 
causes and sources. 

· Resources constraints: Restricted by limited computation 
capacity or with resource availability and utilization. 

· Time constraint: Guaranteeing the computational time to 
be within the stipulated time is an ever-growing concern for 
the decision-makers and all the stakeholders in both the 
industry and academia communities. 

· Problem difficulty: The tackling problem is, to some 
extent, a difficult optimization one that is comparatively 
hard to solve. 

· Quality constraints: In some occasional cases, the search 
process may be caught by some local-optima traps without 
having the ability to bypass them. However, it is an 
important issue to look beyond these local optimas in the 
hoping of finding the global optima. 

· Knowledge constraint: A shortage of sufficient 
knowledge to design the equivalent well-organized solving 
methods. 
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Crucially, all of the above-stated critical issues are worthy 
enough to address the necessity for “high-level heuristics” 
especially for the cases where capturing every low-level detail 
of the considered problem is hard to attain in a reasonable 
amount of time. Due to these challenges and with the 
advancement in alternative modeling, scientists over the past 
few years are constantly trying their best to come up with new 
goal-oriented operating methods to solve these important real-
world issues. They find their enlightenment and guidance by 
abstracting the structure and function of nature's laws, by itself, 
and the so remarkable behaviors of the different creatures in 
solving problems; hence, “metaheuristic” algorithms arose into 
the vision among which nature-inspired algorithms are actually 
the largest fraction of them. The next subsection introduces the 
basic concepts of metaheuristic algorithms. [10][2][28][16]  

2.3 Metaheuristic 

Fig. 3 illustrates the most ten leading areas that are imitated by 
most metaheuristic algorithms. It is obvious from this figure 
that insects are the most popular imitated area among these 
areas where (23%) of the total publishing metaheuristic 
literature are concentrated on mimicking the living ways and 
the survival systems of insects. The next area has (17%) which 
is inspired by the natural evolution of Darwin's theory of 
evolution and survival (i.e. survival-of-the fittest). Then, the 
next one is with animals (whales, wolves, fish, cats, monkeys, 
bats, and many others) which has (16%), and so on up to the 
percentage (4%). To state a relevant truth, the social behavior 
of bees followed by ants are the most top favorite insects that 
are foremost imitated and reported while searching the related 
metaheuristic literature. [20][27][29] 

 
Fig. 3. The top ten leading metaheuristic areas 

On the other hand, the drawing of Fig. 4 states that (93%) of 
the available reported metaheuristics are distributed among six 
disciplines where more than half of them are classified as 
nature-inspired optimization algorithms; they are also termed 
as bio-inspired or bio-based metaheuristic [20][27][29]. 

 

Fig. 4. The top six leading metaheuristics disciplines 

In addition to that these nature-inspired optimization 
algorithms are relatively easier to implement as compared to 
the conventional optimization techniques used earlier, they can 
be adopted and implemented in widely varied fields of 
problems covering multidisciplinary fields and objectives. 
Above and beyond that these optimization algorithms have 
more abstract concepts and relying on the usage of simple 
concepts of the higher-level strategies (hence the term “meta”), 
they are heuristic, stochastic in their nature, and, perhaps more 
importantly, they are categorized under the iterative 
optimization techniques. Besides that they encompass highly-
scalable intelligent methodologies and problem-independent 
algorithmic frameworks, they normally revolve around adding 
flexibility to the ways of utilizing control parameters that can 
be customized and tuned to well suit the nature of the problem 
under consideration. It is worthwhile considering that these 
techniques can eventually be implemented so that the complex 
working details are simply abstracted away from the end-users 
[21]. This high reliability and simplicity that metaheuristics 
offer are the principle behind their broad diffusion and finding 
them in numerous successful applications. [10][28][16]  

Even though the global optimality of the final metaheuristic 
solutions among the multiple possible alternatives is not 
guaranteed or proven to be optimal, these techniques may be at 
least worthy enough to be trusted in extracting the 
approximated solutions within reasonable computational time. 
In its absence, many problems that may be solved with 
metaheuristics will be inevitably unsolvable. This is especially 
true for the hard problems in which their exact solutions are too 
hard to be achieved within rational computation time. As a 
matter of fact, the price to be paid for the time complexity or as 
so-named scalability improvement is mainly at the expense of 
approximation of the optimal matching and, therefore, a fair 
balancing as empirical as possible between time and quality is 
definitely a determining factor and a radical issue. [10][20] 
[28] 
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Table I highlight the abovementioned notions related to 
metaheuristic optimization techniques. As they are coined to 
utilize the power of nature, the source of inspiration for every 
metaheuristic algorithm has an attractive story behind. 
Motivated by this and as shown in Fig. 5, they can be 
categorized upon their common features into at least nine basic 
categories: [14][15][20][27][2][28][30][17][31][26]  

· Evolution-inspired algorithms: These algorithms attempt 
to imitate the rules and laws of the natural evolution of the 
biological world. Regardless of their nature, these 
evolutionary-based optimization algorithms are regarded as 
generic population-based metaheuristic algorithms. The 
search process of this norm of algorithms has two focal 
stages; exploration and exploitation. The exploration phase 
precedes the exploitation phase which can be regarded as 
the process of exploring in detail the search space. At the 
exploration stage, the progress of the search process is 
launched with a randomly generated population which is 
then evolved over a number of subsequent generations. The 
most applicable point of these heuristics is that the next 
generation of individuals is shaped by collecting the best 
individuals and then integrating them together. Through this 
integration, the population is enhanced over the succeeding 
generations. On the basis of this, the optimizer of the 
exploration stage includes some design parameters that 
have to be randomized as much as possible to globally 
explore the promising solution search space. [17][18][32] 

Because of the stochastic-based nature included in the 
optimization process, picking up the right parameters for an 
adequate balancing between the exploration-exploitation 
dilemmas is a serious challenge and perhaps the most 
critical challenge facing the development stages of any 
metaheuristic algorithm [33]. The most popular leading 
examples of this category are Genetic Algorithms (GA), 
Genetic Programming (GP), Biogeography-Based 
Optimizer (BBO). [17][18][32][28] 

To sum up, it is vitally important to realize that decision 
making by using metaheuristics implicit involves a 
fundamental selection between “Exploration” by which 
more information is assembled that might direct us to more 
superior forthcoming decisions or “Exploitation” by which 
the finest decision is made in the light of the existing 
knowledge. 

· Swarm Intelligence (SI) algorithms: These optimization 
algorithms are evolved out from the collective intelligence 
and the communication channels that can be observed in the 
social behavior of the biological populations in nature. They 
are used to solve most of the optimization problems that 
arose on the metaheuristics' horizon over recent years. A 
typical example of this category is the Sea Lion 
Optimization (SLnO) algorithm that imitates the hunting 
activities of the sea lions. Artificial Bee Colony (ABC), Ant 
Colony Optimization (ACO), and Particle Swarm 

Optimization (PSO) algorithms are considered as other 
common examples. [17][18][32] 

Furthermore, these algorithms remain the most fertile 
research area in the field of metaheuristics. In comparison 
swarm-based with evolution-based algorithms, the former 
has some more advantages over the latter. Since 
evolutionary approaches have relatively more operators 
than swarm-based, they are more difficult to apply. 
Different than evolution-based approaches that immediately 
discard any obtained piece of information related to the old 
iteration once a new population is generated, swarm-based 
algorithms normally keep these valuable pieces 
of information over the subsequent iterations. [17][28][32] 

· Physics-based algorithms: These algorithms are mainly 
coined to simulate the physical phenomena in the world. 
Gravitational Search Algorithm (GSA) is one of the best-
known examples of this category. GSA is formulated on 
both the law of gravity and the law of motion. Harmony 
Search (HS), and Simulated Annealing (SA) are other 
dominant examples of this category. [18][28] 

· Chemical-based mechanisms (CBM): The natural process 
that involves transforming unstable ingredients into stable 
ones is named as a chemical reaction. During these 
interactive operations, excrescent energy exists due to the 
sequence of elementary interactions between these 
molecules. But at the end of these transformations, the 
unstable molecules are converted to stable ones and, 
naturally, with low energy stability. In this regard, scientists 
focus their efforts on trying to find algorithms that imitate 
the chemical interactions among molecules that happen 
during the chemical reactions and usually lead to chemical 
changes. Chemical Reaction Optimization (CRO) proposed 
by Lam and Li (2010) is one of the best-known examples of 
this category of algorithms. [11][21][34][29]  

· Stochastic optimization (SO) Algorithms: The 
formulation of these optimization algorithms includes not 
only generating random variables to be used in the progress 
of the searching process but also using methods that have 
arbitrary (i.e. random) iterate steps. However, the outcome 
success of the iteration steps couldn't be guaranteed. The 
followings include broad examples of these algorithms: 
stochastic hill-climbing, swarm algorithms, evolutionary 
algorithms, genetic algorithms, simulated annealing, to 
mention but a few. [29][10] 

· Probabilistic-based Algorithms (PA): These algorithms 
are so named because the probabilities play a significant 
role in making decisions within the different runs (i.e. 
iteration steps). Simulated Annealing (SA) is mostly the 
oldest example of this type of algorithms. [10][18][35][32] 

· Artificial Immune Systems (AIS): As a sub-field of 
biologically-inspired computing, these artificial intelligence 
algorithms are mainly concerned with imitating the 
biological immune processes of the human immune system 
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towards solving a broad category of different optimization 
problems from engineering, information technology, and 
mathematics. [10][28] 

· Artificial neural networks (ANNs): These algorithms are 
one of the information processing paradigms and a subfield 
of biologically-inspired computational intelligence family. 
Inspired by the manner that biological neural systems 
process data and based on the principle that self-learning is 
acquired from experience, these artificial networks need to 
be trained enough by using a set of examples to create 
adequate knowledge that can be used later for solving a 
wide variety of optimization problems in real life. [36][18] 
[37][29] 

· Human-based algorithms: Because there are laws 
governing all the internal operations of the human being, all 
the contained internal activities of these complicated 
systems operate functionally without any problems. 
Attractive by this motivation, scientists from all domains try 
to simulate the ways in which these subsystems work and 
come up with new goal-oriented operating methods to solve 
many important real-world problems. Thus, the algorithms 
of this category emulate the intelligence and the social 
behaviors of the human being and their associated activities. 
Teaching Learning Based Optimization (TLBO) [2][29], 
Interior Search Algorithm (ISA)[2][29], Colliding Bodies 
Optimization (CBO)[2][29], and Harmony Search 
Algorithm (HSA) [30][3][38][29] are broad examples that 
are classified under this category.  

From a broader perspective and under one scheme, these 
optimization techniques can also be categorized by some wider 
classifications as the followings:  

· They can be categorized as being either exact (i.e. 
enumerative) or approximated methods [2][10].  

· Under another scheme, they can be also categorized 
according to whether they are used in forming other hybrid 
metaheuristics or not [29]. Regarding this hybridization, 
evolutionary and nature-inspired algorithms are the most 
algorithms that have been extensively hybridized with each 
other over the last few years to solve a wide variety of 
optimization problems [10].  

· Another further broader categorization can be as 
conventional metaheuristics, like Genetic Algorithms (GA) 
which is the most famous and prevalent one, and the new 
generation ones, such as the proposed algorithm of this 
paper [29][27]. Compared to the classical ones, these 
modern algorithms usually require lower computational 
time and memory, fewer setting parameters to fit the 
problem, and moreover easier to implement [10][20].  

· Another completely different but it is a common 
classification scheme is the availability or not of local 
search mechanisms within their stages. Since local searches 
usually give the best chances for approaching the best 
candidate solution, this facility gives more feasible chances 

for the candidate solutions improvement during the course 
of successive iterations [29][32]. 

Yet, regardless of the fact that there is a fairly wide range of 
heuristic and metaheuristic approaches that were proposed so 
far in the spectrum of the optimization paradigm, there is still 
immense room for improving and/or investing the available 
ones or at least coming up with new viable algorithms and 
techniques like the one described in this paper. This is 
especially true if the following silent points are under the 
vision: [13][12][9][4][21][20] 

· Most optimization problems that arose on the horizon over 
recent years are often very hard to be tackled by the 
conventional models and, hence, they require new ways of 
thinking to be solved. Anyway, creativity comes from the 
well recognizing of the problems that require further 
innovative usages of the optimization algorithms.  

· As the scope of the optimization problems is growing 
extremely in size and heterogeneity, the number of 
optimization problems residing on diversified domains of 
our life is exponentially larger than most scientists and 
researchers have ever proposed. 

· Since not all metaheuristics are reported as being successful 
ones, there remains a relatively substantial research gap that 
needs to be filled between the small number of accepted 
metaheuristic methods, from classical to novel approaches, 
and the vast number of day-to-day optimization problems 
that are increasingly duplicated. 

· Since many of the conventional optimization algorithms 
used earlier may no longer be sufficient to upkeep the new 
needs of today’s attitudes, it is vitally important to 
reengineer them or make a permutation for them with new 
applicable and practical alternatives.  

· In the optimization paradigm, it seems so strange and 
somehow unfamiliar to find a single algorithm that 
performs well on most optimization problems, especially 
that a large fraction of them have their own circumstances, 
requirements, constraints, and implementations scenarios. 

· It is regarded as axiomatic that the system that has been 
constructed to meet the high needs of scalability and 
reliability has more opportunities to stay functional for a 
longer time. So, there may be counterintuitive variations in 
the solution quality between the algorithms that had been 
implemented and evaluated only on just small or medium 
benchmark instances of the problem and the algorithms that 
had been tested on all benchmark instances of various sizes 
including complex large-scale ones.  

· There is a clear and distinguishable variance between both 
theorizing that is largely based on the theoretical-academic 
world and the implementation that is conducted upon real-
world cases. An analogy with this, there may be some 
considerable gaps between the metaheuristic theories and 
their corresponding real-world implementation. This 
mismatch between both of them is, of course, caused by the 
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fact that some metaheuristics are relying on just theoretical 
or abstract possibilities without applying them viably with 
the real-world applications or that some of them have been 
tested and then evaluated using only low-to-mid-range data 
without exposing them hard on large-range data. Close 
related to this, a considerable fraction of these researches 
have been originally initiated for only research purposes 
without being for real-life applications.  

More importantly, some metaheuristics are just carried out 
inside research labs where some of them have been 
constructed based on hypothetical projections with only an 
academic or theoretical vision that may be far away from 
the factual situations. That is, carrying out lab-problems 
merely without being exposed to diverse real and hard tests 
is subject to guesswork and experimentation may lead to 
unexpected results. On top of all that, nearly the majority 
of these labs are subject to some financial constraints with 
rare to no external support available. Inevitably, this lack 
of certainty may rarely lead to unfaithful decisions and 
hence far-reaching problems. 

· Some metaheuristics were conducted upon simulated data 
that are nearly different from the relevant real-life ones and 
they may not initially design for fully exploiting the real 
environment. Since they are firmly governed by purely 
theoretical standpoints without having a strong empirical 

base or practical evidence, they could be as a matter of 
theoretical tests and, for that reason, building knowledge 
about simulated data could be neither viable nor feasible. 
This, in a way or another, maybe behind finding some 
missing environments to conduct experiments on.  

Apart from the foregoing mentioned discussion, all 
metaheuristic optimization approaches are alike on average in 
terms of their performance. The extensive research studies in 
this field show that an algorithm may be the topmost choice for 
some norms of problems, but at the same, it may become to be 
the inferior selection for other types of problems. On the other 
hand, since most real-world optimization problems have 
different needs and requirements that vary from industry to 
industry, there is no universal algorithm or approach that can 
be applied to every circumstance, and, therefore, it becomes a 
challenge to pick up the right algorithm that sufficiently suits 
these essentials [21][29][12]. 

What's more, the metaheuristic research community frequently 
uses the two terms “Heuristics” and “heuristic methods” 
interchangeably to simply give the same meaning. Like so, the 
two terms “metaheuristics” and “metaheuristic methods” are 
also used interchangeably. Furthermore, it is recalled that the 
following optimization terms will be used to refer to the same 
metaphor: algorithm, method, and technique. 

Table I. Local search heuristic vs metaheuristic strategies 

Feature Heuristics Metaheuristics 

Heuristics level · Low-level heuristics · High-level heuristics 

Evolution level · Low · High 

Performance 
level · Low · Generally, they have better performance, but it is not 

guaranteed. 

Domain 

· Because they are tailor-made for specific 
problems, they have a narrower and less generic 
domain relevant to the problem type. 

·  A large fraction of them is proposed by and for 
specialists in the same domain. 

· They are problem-dependent & special-purpose 
methods. Since they are usually created to solve 
problems of a particular type (i.e. problem-
specific), they are more related to the problem 
that needs to be solved. Therefore, they usually 
work poorly when they are applied to solve other 
problems.  

· They are applicable in solving real-life problems that are 
complex, nonlinear, high dimensional, and multimodal. 
Moreover, these problems are usually having unknown 
search space and a massive number of local-optima traps. 
These problems can be easily seen in many aspects and 
extents of our day-to-day life, like industry, agriculture, 
engineering, business, social, and many other fields. 

· So, these algorithms might be used to solve those problems 
which are unsolvable. 

· Since metaheuristics are based on novel and abstract 
concepts, they allow designing versatile software that can be 
applied to a broad range of optimization problems covering 
various domains and disciplines. Hence, they are 
categorized under the general-purpose methods. 

· Wider and more generic domain, in relevant to the problem 
type. 

· They can be adopted to solve NP-hard problems that can’t 
be unraveled by utilizing ordinary heuristic methods. 

· They have multidisciplinary domains and objectives. 
· Problem-independent & general-purpose heuristics 
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Feature Heuristics Metaheuristics 

Searching 
space  

· They have a narrower search criterion. 
· They are applicable to solve optimization 

problems whose search landscapes are well-
formalized. 

· They are mostly more exploitative approaches. 

· They have a wider search criterion and a broad range of 
possible scales. So, they are primarily prepared to process 
instances of large-scale problems. 

· These algorithms are mainly suitable for solving 
optimization problems for which the search space isn't well-
formalized. 

· They are mostly more exploratory in nature. 

Searching 
process & 
Local optima 
trap 

· A local search: The searching process is no more 
than within the neighborhood surrounding. 

· They have only one searching rule for guiding the 
progress of the search process in the search-
space. 

· Thus, they are more prone to stagnation in local 
optimas. They might get trapped in some local 
solutions (i.e. local optimums) without making 
some progress in bypassing them. 

· A global and widespread search: Since it is important to 
look beyond local optimas to find the global optima that any 
algorithm is ultimately looking for, the searching is relying 
on the context of generalized searching hoping to be as near 
as possible to the most optimal solution.  

· As they have multiple abstract rules and higher-level 
computational strategies, they are always exploring the 
search space thoroughly under many highly intelligent 
scenarios. 

· They have some mechanisms to evade being stuck in some 
local optimas traps and in forcing the algorithms to escape 
away from them. Most of these mechanisms have a 
stochastic nature to widely search the entire space.  

The overall 
searching 
behavior 

· Single behavior: They have just one and only one 
behavior in achieving the most optimum solution.  
 

· Multi behaviors: Based on self-adaptive computing, they 
have multi behaviors that keep changing according to the 
status of the problem. 

· They are quite smart to tune their parameters in the direction 
of finding the most optimum solution with the least possible 
computational cost. 

Abstraction 
level 

· The abstraction level is low and more specific in 
relevant to the problem type. 

· They take local views of the considered 
problems. 

· The abstraction level is high and more generic in relevant to 
the problem type. 

· Goal-oriented operating methods 
· Bedside that they are based on abstract concepts, they 

encompass highly-scalable methodologies. 
· They take global views for the considered problems. 
· Complex working details are simply abstracted away from 

the end-users. 

Simplicity 

· They are relatively difficult to implement and 
required more setting parameters to fit the 
considered problems as it should be. 

· a far less attractive 

· They need fewer control parameters to fit the considered 
problems. 

· Since they are based on the usage of simpler concepts and 
the utilizing of the setting parameters that can be adjusted 
and tuned to match the problem nature, they are relatively 
far more attractive and easier to implement. 

Reliability and 
Flexibility 

· Capturing every detail of the problem under 
consideration is always fundamental. 

· less practical solutions 

· Most of them look to the considered problem as a black box 
that has an easily-known group of input and output as if 
capturing every low-level detail is not always essential. 

· Many diverse problems can be solved without much 
changing in the original algorithm structure. 

Other core 
properties 

· Approximated  
· They require detailed knowledge of the 

considered problem. 

· Approximated, Heuristics & Stochastic & Iterative. 
· Most of them are nature-inspired. 
· They can be used in a broad array of problems without any 

problem-dependent knowledge. 
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Fig. 5. The various strategies for solving optimization problems and some of their main representatives. 

 

3. Related Work 

Related to its importance, researchers, experts, and 
practitioners all over the globe increasingly extend their 
literature towards solving the Maximum Flow Problem (MFP) 
using different methods and techniques. In the course of that, 
they made every effort in every way they could to propose new 
potential solutions or modifying the already available ones. 
Along this way, the first notable solution was presented by 
Ford and Fulkerson in (1956) by using the augmenting path 
algorithm which is later known as FF [39][8]. Their algorithm 
is all about solving a problem that is described as the 
followings: [39] 

“Consider a rail network connecting two cities by way of a 
number of intermediate cities, where each link of the network 
has a number assigned to it representing its capacity. 
Assuming a steady-state condition, find a maximal flow from 
one given city to the other.” 

Although the FF algorithm is the most popular one in this 
paradigm, its overall complexity is comparatively high, which 
is O(mn). Nonetheless, they remain the founders and the great 
pioneers of MFP even with that aforesaid complexity, and 
moreover, their research and standard results remain a 
benchmark for excellence by which many other researchers 
compare theirs. [39][8] 
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Since the seminal paper of FF and throughout the years, 
researchers and scientists continue their goal-oriented research 
toward finding various techniques and methods that are 
revolved around the mission of capturing more optimal 
solutions for the considered problem. Based on that, the lines 
of advances have been initiated and a sequence of numerous 
algorithms was suggested, presented, and released. Because 
there's a large body of research studies on this line of research 
and to offer a coherent narrative as an alternative of annotated 
bibliography, this section is inherently selective to a certain 
extent, and so there are some of a fair-bit less relevant topics 
that haven't been presented. Some of these salient studies are, 
therefore, presented in the following subsections. 

3.1 Chemical Reaction Optimization (CRO) 

In a broad sense, scientists frequently noted that the nature of 
both chemical interactions, named as Chemical Reactions 
(CRs), and optimization paradigms have high-level common 
attributes and details. At the starting point, the following 
noteworthy points highlight the common phenomena in 
between: [13] 

· Elements are substances, also better-known as materials, 
which cannot be reduced to be simpler by the usual 
chemical means. 

· In its simplest terms, the basic unit in any CR is the 
molecule. 

· When a substance is transformed from an unstable case to a 
more stable one, a chemical change will occur to this 

substance which is referred to as chemical reaction (CR). In 
fairness, this chemical process is considered as a natural 
process and nothing else.  

· A collision is the exact cause of any CR. In this regard, the 
molecules are considered as being the manipulated agents 
and, therefore, CR is a multi-agent paradigm. Each agent 
has a number of features, some of which are fundamental to 
the CR operations. However, other features may be easily 
attributed to the agent.  

· Taking for granted that the CR event is only triggered by 
the sequence series of collisions in-between molecules (i.e. 
agents) and nothing else, some rhythmic interactions 
between these agents may occur that lead to some changes 
upon these agents themselves. On the other hand, CRs can 
be commonly categorized into four elementary schemes 
that are viewed in Table II. Additionally, stability is the 
primary objective of any CR in which involves changes in 
the molecules.  

· The following triple rules are directly related to energy. 
First, energy already presents and can't be made. Second, 
energy may inter-change from one shape to one or more 
other. Third, energy can't be smashed. Related to the 
second rule, collisions usually lead to the rearranging of 
energies among molecules, but there may be a collision in 
which no energy is transferred. 

· Both CRs and optimization undergo a sequence of step-by-
step events. They both strive in finding the optimal solution 
or at least the near-optimal one. 

Table II. The four major types of chemical reactions 

Name General Reaction Pattern A chemical formula example 

Combination or synthesis reactions A + B ð AB S + O2 ð SO2 

Decomposition reactions AB ð A + B CaCO3 ð CaO + CO2 

Substitution or single replacement reactions A + BC ð B + AC H2 + 2 AgNO3 ð 2 Ag + 2 HNO3 

Metathesis or double displacement reactions AB + CD ð AD + CB HCl + NaOH ð NaCl + HOH 

  
Based on manipulating the above-mentioned observations, 
especially the step-wise process of searching, many researchers 
aim to relate the chemical reactions with the optimization 
paradigm and, as a result, try to embed all the common 
concepts and properties between them in new optimization 
algorithms. Consequently, they proposed many general-
purpose metaheuristic potential algorithms that emulate by the 
natural process of chemical reactions. Then, they successfully 
utilized these algorithms with the intention of resolving a broad 
range of both discrete and continuous engineering problems 
which cannot be underestimated. In all cases, it is important to 
take into account that these chemical-reaction-inspired 
algorithms are often population-based and have a high ability 
to be adapted to cover other problems. They are commonly 

referred to as Chemical Reaction Optimization (CRO) 
algorithms. [13] 

For satisfiability, the core of the overall CRO-based algorithms 
is primarily all about the followings [13]: 
· Compared with the other classical algorithms, CRO offers 

some flexibility to be customized and controlled by the 
users themselves to fine suit their specific needs or to be 
easily adapted to address particular problems.  

· In order to reach or at least approach the global optima, 
CRO-based algorithms are a self-adapted to reflect the 
problem domain. 

· In reality, CRO has the ability to solve some optimization 
problems which have not earlier been successfully tackled 
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by other metaheuristic algorithms or that have been 
classified as having some run-time complicity issues.  

· Including C++ and Java, CROs can be easily coded using 
object-oriented programming (OOP) languages. In this 
context, the molecules are defined as classes and the 
elementary reaction types are defined by the methods. 

· For solving a particular problem, multiple CROs can be 
implemented simultaneously without any trouble. 

· Since each CRO keeps up its particular relevant population 
size, it will not have to remain pending at any certain 
instant until any other CRO accomplishing its certain tasks. 

To be truthful, the CRO algorithm was originally devised up by 
Lam and Li (2010) for the purpose of fixing the combinatorial 
optimization problems [21]. Just within less than two years, 
CRO was applied successfully to resolve a considerable 
number of optimization problems, outperforming several other 
existing algorithms in the majority of the experimental results 
[13]. Through the said research, they put the generic 
formulation for any optimization problem. In terms of this, 
they mathematically define the minimization objective function 
“f ” by utilizing Equation 1: [21]  ()    subject to   ()=0                 ()≤0                                    (1) 

Where the following points analyze the elements of this 
equation: 

· “R”, “E”, and “I” represent the real number set, the index 
set for equalities, and the index set for inequalities, 
respectively.  

·  = {, , , … , } and  = {, , , … , }  are the 
vectors of variables and constraints, respectively. “n” and 
“m” are the problem dimension and the total number of 
constraints, respectively. 

· If a negative sign is added to “f”, then it will be the 
maximization objective function. 

In order to evaluate the performance of the proposed solution, 
the simulation code has been implemented using the Microsoft 
Visual C++ programming language. The algorithm has been 
applied successfully in solving 23 large-scale instances in 
which their considered datasets were categorized as being NP-
hard of the type Quadratic Assignment Problem (QAP). They 
observed that the proposed algorithm achieved the objective 
drastically. Then, an ample computational investigation was 
carried out in which the simulation results of the proposed 
algorithm were evaluated and compared to the best performing 
three metaheuristics recommended in the literature at that time, 
relating to the solutions' quality level and their computational 
execution times. These three competitors are: Fast Ant System 
(FANT), an Improved Annealing Scheme (ISA), and Robust 
Taboo Search procedure (TABU). Moreover and to offer more 
objective among the other three compared metaheuristics and 
to eliminate any issues related to the variations in the execution 

environment, the same implementation environment was used 
related to the computer type and model, operating system, the 
function evaluation limit of the stopping criterion, and all the 
other standard measures. In most of the cases, their pilot 
experiments gained the best result and that is why this 
proposed algorithm is among the current best algorithms which 
can be used to solve QAP. Because it can be used as a generic 
searching algorithm to formulate several NP-hard problems, 
their algorithm is part of importance and remarkableness.[21] 

After the antecedent algorithm successfully solves a variety of 
optimization problems, Lam and Victor (2012) presented 
another expanded research for solving a wide variety of 
engineering problems, such as the quadratic assignment 
problem, multimodal continuous problems, ANN training, and 
other optimization problems. During their notable research, 
they build a roadmap framework and theoretical guidelines 
recommending other users on how to customize and tune the 
CRO's setting parameters to match the nature of the other 
problems. Besides that, their effective research is considered as 
a tutorial and practical procedure that encourages other 
researchers in exploiting CRO in solving their research 
problems. In other words, their research study is 
an inspiration for every optimization research which comes 
along. [13] 

The study by Barham et al. (2016) introduced another 
noteworthy CRO algorithm which is conducted using JAVA 
programming language. This CRO achieves an overall 
complexity of “O(I E2)”, where “I” and “E” indicate the 
number of iterations and arcs of the directed-weighted graph, 
respectively. They prove that the number of iterations has 
assured evidence towards capturing additional optimal 
solutions and approaching the most optimal ones. [34] 

3.1 Whale Optimization Algorithm (WOA) 

On the relatively species-rich sea, humpback whales need a 
developed strategy in their hunting for together. These whales 
types actively hunt small fish or krill, following them 
according to tight enough coherent strategy. This foraging 
social process for self-maintaining is a unique interaction that 
hasn't been detected in other creatures yet. It is interesting to 
note that this type of social creature has no teeth and above that, 
it has a very narrow throat and so, this is the rationale behind 
that it couldn't swallow large prey as a whole. However, this 
type of whales has an amazing policy in attacking a great group 
of small prey and catching them, the studies find. This unique 
to the concept foraging policy is called “bubble-net feeding” 
and it is based upon a multi-stage coordinated mechanism for 
capturing as much as possible fish at once. Once they are 
teaming up together, they dive brilliantly beneath a large group 
of prey and then all begin cleverly in bubbling out to produce a 
net made of bubbles and forcing prey to be inside. To make 
sure that the net of bubbles surrounds all the prey, they should 
reinforce all the net’s weak points and, accordingly, they splash 
their flippers (i.e. fins) at these weak parts. By this witty tactic, 
a large group of prey is trapped tightly inside a well-organized 
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fence isolated from outside, and so the only remaining event to 
do is swallowing all of them by the helping of their flippers 
that swiftly direct fish headed for their mouths. [26][40][29] 

Whale Optimization Algorithm (WOA) is proposed by 
Mirjalili and Lewis (2016) [26] which is considered as a new 
competitive swarm-based optimization algorithm that evolved 
mainly out of abstracting the fascinating hunting behavior of 
the humpback whales. With this article, the researchers have 
successfully created a mathematical model to match the 
humpback whales' feeding strategy upon which many NP-Hard 
optimization problems have been solved. This mathematical 
model begins initially with a population of various stochastic 
solutions, each of which is generated by a search agent (i.e. a 
humpback whale). Whenever the best solution is determined 
among the other ones, all the other search agents should 
arrange their current locations accordingly. On the other hand, 
this research also addresses the case where these animals may 
make a random search moving towards finding other better 
positions instead of remaining stuck with one of the current 
search solutions. [26][29] 

In order to test and evaluate the algorithm, WOA was 
implemented empirically by solving 35 real-life optimization 
problems of practical importance, 29 of them are mathematical 
and the remainders are structural design. Furthermore, WOA 
was verified to evaluate its performance using classical 
benchmark functions that are usually utilized in the 
optimization literature. Each one of the considered experiments 
was iterated thirty times. After WOA is compared with other 
conventional techniques, the gaining results were relatively 
competitive. Due to its considerable success, this algorithm 
becomes popular from then on. Day by day, a sequence of 
similar research was conducted based on WOA. [26] 

Any electric power system has been considered to entail three 
functional zones. First of all, the electricity generation by 
which the energy is transformed from the available resources 
into electric power. Secondly, the transmission of bulk electric 
power over long distances by using high-voltage networks. 
Thirdly, the distribution which is related to providing the end 
consumers' low-voltage service points from the high-voltage 
networks. On the condition that the energy is consumed 
directly by those end consumers as soon as it is changed into 
electric power in the first functional stage, the important point 
related to the entire system is that there is an electrical power 
loss and the largest portion of this is routinely occurring at the 

distribution level; it is about 70% of the total circuit loss. Due 
to this, increasing the overall energy efficiency of any 
distribution path is the hardest part of setting up any electric 
power system. The study by Reddy et al. (2107) is based on 
WOA by clearly decreasing the generating plants' losing power 
during this distribution. In the long run, this study can be used 
not only in reducing the voltage and the high power loss but 
also in lowering the cost and producing stable, efficient 
voltages by optimizing the placement and sizing the distributed 
generators (DGs). [38] 

Back-and-forth, Masadeh et al. (2018) suggested the 
“MaxFlow-WOA” algorithm that is based mainly on the Whale 
Optimization Algorithm (WOA). The proposed solution was 
compared to Ford-Fulkerson's MF with respect to the accuracy 
of the results and the average computational run-time where it 
acquired “O (E2)” as the overall time complexity. According to 
the authors’ experimental analysis, the impressive experimental 
results give sufficient sound evidence and reinforce the 
conclusion that “MaxFlow-WOA” is an effective metaheuristic 
for solving the Maximum Flow Problem (MFP). [1] 

Combining the WOA and the rapid and the big advances in the 
distributed parallel applications of metaheuristics, a parallel 
whale optimization (Parallel-MaxFlow-WOA) algorithm is 
developed by Masadeh et al. (2020) to solve the MFP. But the 
truth, this algorithm is considered as a more powerful and an 
expanded version of the sequential MaxFlow-WOA. It works 
by segmenting the search space (i.e. the network graph) into 
four segments, all of which are computed in conjunction with 
each other. Then, the best maximum flow of these segments is 
selected. The algorithm was tested on different datasets that 
have between 50 to 1000 vertices and the number of edges 
between 502498 to 50024998. Then, the algorithm's solution 
quality was evaluated for each dataset. Compared to the FF 
sequential algorithm, the proposed algorithm achieved a 
tangible (3.79) reduction in the overall computational running 
time by running the segments on four-independent-parallel 
processors. As this result is a great enhancement of the 
computing time, the first noticeable impression of this four-part 
segmentation stimulates the authors to strongly recommend 
applying this proposed algorithm using the distributed systems 
architectures, at least to gain their parallelism powerful benefits. 
Table III shows a computational complexity comparison 
between the FF, Sequential-MaxFlow-WOA, and Parallel-
MaxFlow-WOA. [40]  

Table III. Complexity comparison between FF, Sequential-MaxFlow-WOA, and Parallel-MaxFlow-WOA 

Complexity type FF Sequential MaxFlow-WOA Parallel MaxFlow-WOA Note 

Augmenting path cost O (mV) O (|E|) O (|E|) · “m” denotes the number of the 
arcs.  

· “N” denotes the number of 
clusters. 

· “V” is the number of humpback 
whales (i.e. vertices or nodes). 

· “E” is the number of edges in the 
directed-weighted flow graph. 

Run-time complexity O (|V| + |E|2) O (|V| + |E|2) O (|V| + |E|2) 

The overall computational 
running time O (|V| + |E|2) N * O (|V| + |E|2) Max (O (|V| + |E|2)N) 

The maximum flow |E| |E| |E| 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020 
 
 

46

3.2 Grey Wolf Optimization (GWO) 

Within the animal kingdom, an animal itself may be the 
predator and/or the eaten prey of the others. Grey wolves as 
predators are mostly known to prey on a variety of large, 
hoofed animals such as bison, mountain goats, moose, and 
other different kinds of deer. These wolves, also formerly 
known as “Canis Lupus”, are living in packs with an average 
size between five and twelve; they have a very strict leadership 
hierarchy or perhaps not surprisingly, one of the most 
fascinating social behaviors one has ever seen. Mirjalili et al. 
(2014) tried to mathematically simulate this dominance 
hierarchy structure and the sovereignty levels during the social 
hunting practice and, for that, a going-on-down-hierarchy 
algorithm is designed that is closely related to this. This 
algorithm is called Grey Wolf Optimization (GWO). As 
illustrated in both Fig. 6 and Table IV, the dominance level in 
this suggested tactic reclines from the top towards the bottom 
and can be carried out at four-hierarchical commanding levels: 
Alpha which is the dominant leader the one with the topmost 
liability, Beta which is Alpha's assistance for decision-making, 
Delta which controls Omega, and Omega which are under the 
domination of the other wolves. Granted, each team member is 
classified as being one of these four levels. [16] 

 
Fig. 6. Pyramid of the leadership hierarchy for the grey wolves 

Since catching and killing the prey should be simulated with a 
particular interest, a three-stage algorithm that matches up to 
their hunting plan of action is proposed in this research paper. 
First, the exploration stage when these predators are searching 
the area (i.e. the search space) in pursuit of prey. Second, what 
they are doing when they are finding certain prey attain their 
request; they pursue and then try to harass it to encircle. This 
stage ends when the prey is encircled and stops moving to 
escape. Third, the exploitation stage which represents the 
scenario where the actual attack process will be launched on. 
At this stage, Alpha begins a sheer attack on the prey. 
Whenever Alpha needs assistance, Beta and Delta help in the 
attacking process, but under the control of alpha. In short, 

every wolf is part of a one-team attack that organized and 
carried out the execution. [16] 

Table IV. Grey wolves' dominance structure 

Name General  
Reaction Pattern Duties Solution 

Hierarchy 

Alpha  

The dominant 
leader, i.e. the 
one with the 
highest liability. 

Design the hunting 
plan, the place to 
sleep, the time to 
sleep or wake up, and 
so on. 

The best 
solution 

Beta  

The deputy 
leader and the 
commander 
alternative. 

The Alpha's decision-
making assistance 
that rules the other 
lower-level members. 
Besides it is the 
pack's educator, it 
supplies alpha with 
any constructive 
feedbacks rendered to 
carry out and support 
the Liability. Since it 
is the commander 
alternative, it will be 
appointed as a leader 
in the case of Alpha's 
dysfunctionality. 

The second 
best 
candidate 
solution (i.e. 
the second 
level in the 
hierarchy). 

Delta 

They lead 
omega, i.e. 
members of 
omega are 
dominated by 
delta. 

The general care and 
safeguard 
responsibilities are 
attached to them. 
Hunters, scouts, 
experts, ex-alphas, 
ex-betas, and 
caretakers are 
belonging to this 
category. 

The third 
best 
candidate 
solutions 

Omega  
The working class which is under the 
domination of the other wolves (i.e. 
Subordinates). 

The 
underneath 
level in the 
hierarchy. 

To ensure that the algorithm' efficacy standard is of a high 
level, the following investigations were applied in [16]: 

· To benchmark its performance, the GWO algorithm was 
evaluated against a comparison group containing twenty-
nine prominent test functions which were categorized as 
benchmark tests. The algorithm was executed and iterated 
thirty times on every one of these benchmark functions. 

· The quality of the proposed algorithm was also compared 
with the other five well-known metaheuristics 
recommended in the literature which are Differential 
Evolution (DE), Evolution Strategy (ES), Particle Swarm 
Optimization (PSO), Evolutionary Programming (EP), and 
Gravitational Search Algorithm (GSA). 

· To further properly teste and extensively investigate its 
behavior, all the aforesaid benchmark functions are 

Alpha

Beta
Alpha's assistance for 

decision-making

Omega
which controls Delta

Delta Subordinates
These subordinates are under the 
domination of the other wolves.
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employed in testing the algorithm in terms of the 
followings:  

- Exploration: in relevant to this point, the algorithm 
provides either a merit result when it has provided very 
competitive outcomes compare to FEP and DE or a 
distinction grade when it has outperformed GSA and 
PSO, as well. 

- Exploitation: the algorithm provided outstanding 
performance and presented highly competitive 
outcomes in the matter of exploiting the optimum 
solution with the least possible computational cost. 

- Local optima avoidance: At this point, the algorithm 
extremely has outperforms the others in at least half of 
the benchmark functions and has also provided 
successful competitive results in the second half. 

- Convergence: the behavior of the algorithm proves 
that it has the ability to eventually convergences at a 
point in the search space. 

To tell the whole truth, the ability of the algorithm in 
making and controlling a fair balancing between the two 
cornerstones of any metaheuristic algorithm, exploration 
and exploitation, has resulted in successfully going 
beyond most local-optima traps. 

· An important step forward was to proceed in evaluating the 
algorithm on a wide range of three large and difficult 
instances of engineering design problems that are quite 
popular among researchers around the world. These 
challenging problems are tension/compression spring, 
welded beam, and pressure vessel designs. The algorithm 
indicated a high-performance capability in solving these 
problems.  

· The said authors also took into account proving the 
performance of the algorithm in an authentic application 
and, in turn, the algorithm was inspected in an optical 
engineering problem which is referred to as optical buffer 
design. This problem is directly related to one of the 
internal key elements of the optical CPUs. All over again, 
the algorithm is also able to solve this real-world 
application and can be widely adopted by the optical CPU 
industry 

To put it in a nutshell, all the above-mentioned experimental 
analyses and the comparisons that have been made with the 
other approaches have guaranteed that the GWO algorithm is 
able to offer more competitive results and it is applicable in 
many challenging problems, especially those that have 
unknown search spaces. 

Since then, the pyramid of the grey wolves' commanding levels 
has garnered a lot of attention from the researchers and, so, 
another GWO-based research has been held by Masadeh et al. 
(2017) for solving the maximum flow problem (MFP), named 
MaxFlow-GWO. The authors utilized the K-means technique 
to divide the grey wolves into groups, called clusters, each has 

its leadership and encloses by five-to-twelve wolfs. 
Accordingly, the graph is segmented into clusters and each 
five-to-twelve vertices are grouped together as one cluster. 
Then, they proposed a three-stage algorithm that matched up 
with their corresponding fishing scenario: searching for prey, 
encircling prey, and attacking prey. The time-growth 
complexity of this proposed algorithm is “O(|n| + |E|2)”, where 
“E” indicates the number of arcs (i.e. the number of edges 
between wolves) and “n” stands to the number of vertices (i.e. 
wolves). After the computational run time of this algorithm 
was compared with the well-known Ford-Fulkerson' algorithm 
by using the same datasets, the achieved outstanding results 
were significantly more optimal. [24]  

3.3 Metaheuristics' Parallelism 

As the systems of the clustered parallel data processing can be 
employed for producing high-quality results and, at the same 
time, surpassing the calculation speed, the artificial intelligence 
(AI) specialists and other interrelated participants exploited this 
distributed architecture in carrying out their High-Performance 
Computing (HPC) codes to process large-scale problems. To 
address this, the same network graph is divided into a number 
of subgraphs based on the existing number of processors. Each 
subgraph contains a number of augmenting paths. Then the 
calculation of the whole network graph is distributed among a 
number of processors where each subgraph is computed alone 
by a single processor. On the grounds of this, all the processors 
cooperate together to solve the problem simultaneously. [11] 
[12][41] 

In this context, some Jordanian researchers use IMAN1 
supercomputer which is located in Jordan to conduct their 
experiments. It was assembled using 2260 Sony PlayStation3 
(PS3) devices that are linked together via a fiber-based network. 
Combined, this supercomputer provides multiple resources, 
high-end integrated clusters, and an open parallel and 
distributed computing environment. Besides that this 
supercomputer has an extraordinary efficiency such as its 
capability in driving 25 trillion operations per second and 
serving thousands of concurrent clients with sub-millisecond 
latency, it has also many supporting powerful tools meeting 
both industrial and academic computing needs performing 
millions of simultaneous input/output actions. [42] 

With the intention of solving the MFP by utilizing the modern 
technology of IMAN1, a parallel genetic algorithm (PGA) is 
suggested by Surakhi et al. (2017) which is an extension to the 
serial version of the algorithm [41]. Based on a real distributed 
system, they exploited the HPC cluster architecture in 
designing the stages for each one of the iterations to work 
simultaneously in conjunction with the others. After the 
network's directed-weighted graph is segmented into a set of 
subgraphs, all the different augmenting routes from the start 
node “s” going to the target node “t” are altogether computed 
concurrently through the using of the so-popular message 
passing interface (MPI) library which is a standard library used 
for multi-core multi-thread parallel execution development. As 
each subgraph has its own local Maximum Flow (MF) solution, 
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all the local MFs contribute together in generating the overall 
global MFP solution. And so, the total maximum flow value 
for every one of the iterations can be produced by the simple 
summation of these augmenting routes. Consequently, this 
value is subject to be enhanced from iteration to another one. 
Compared with the sequential version of this algorithm, the 
needed time was rationed by 50% and they have achieved more 
worthy results in terms of accuracy, speed, and time efficiency.  

In their ways of seeking high-level computation with respect to 
the quality of the solutions and the response time, IMAN1 as a 
supercomputing center is used yet again by Alkhanafseh et al. 
(2017) in solving some of the chemical reactions problems. As 
an improvement of the standard Chemical Reaction 
Optimization (CRO) algorithm, the authors proposed a 
modified version of the serial CRO algorithm where the main 
problem graph was segmented into a set of subgraphs 
distributed on multiple processors; each one was responsible 
for computing one augmenting path. In comparison with the 
sequential CRO, good enhancement was significantly achieved 
by applying the parallel version in terms of the quality of 
solutions and the overall computational running times. The 
time needed (i.e. time complexity ) to solve the maximum flow 
instance for the parallel implementation of the algorithm is 
“O(NEF * P)” where “N”, “E”, “F”, and “P” are the count of 
vertices (i.e. nodes) for each subgraph of the flow network, the 
count of edges for each augmenting path between the source 
and the sink vertices, the maximum flow value from the source 
vertex to the sink vertex, and the number of concurrent 
processors that are used in execution the algorithm, 
respectively. [11] 

Going with the new vision of the smart digital world, El-Omari 
within two research articles, (2019) and (2020), ends up that 
the CC digital-priceless environment is truly the most tolerable 
place for hosting many complicated algorithms especially that 
it has actually emanated out from unlimited and never-dying 
diverse resources for ever-sooner and inexpensive calculation 
and, moreover, it has the world's best price-per-performance 
ratios for the HPC operations. The author also pointed out that 
there are genuinely thousands to millions of virtual machines 
(VMs) that are dynamically generated and demolished to serve 
numerous customers in easily ending their very sophisticated 
or even unmanageable tasks. Accordingly, the author pointed, 
at least implicitly, to another further step forward by building 
the needed optimization algorithms remotely as web-based 
innovative services within the CC environments. From over 
here, it is foreseen in the next few coming years that global 
solving for the optimization problems based on utilizing CC 
might become a wildly-popular simple practice among 
ordinary users. [12][43]  

3.4 Artificial Neural Network (ANN) 

ANNs are a family of computational intelligent models that 
strive to simulate the process of exchanging messages among 
neural networks' biological systems that especially exist inside 
the human and the animals' brains. In analogy to the brains' 

working process when catching information, these artificial 
nervous models are used particularly to solve the optimization 
problems that have an extreme number of inputs in which 
most of them are usually unknown. The neurons are imitated 
in these artificial models as nodes connected with each other 
to form an artificial model viewed as a network of nodes. The 
important point is that every connection connects two nodes is 
associated with a given numerical value that represents its 
weight, called the neuron's activation value. These connection 
weights are determined by feeding the training data set to the 
input layer and adjusting these weights recursively over the 
course of the training process' iterations. Since the acquired 
knowledge is learned accumulatively from the collected data, 
these neural networks need to be trained sufficiently on a 
fairly large set of data that is relevant to the problem domain. 
During the training process or as a so-called learning process, 
these weights are fine-tuned based on the extracted 
knowledge; this step is regarded as the most crucial one to 
accomplish high recognition accuracy. From a purely practical 
standpoint, the training process should be repeated until the 
network is capable of learning and adaptive to the different 
inputs. [36][18]  

The objective of the learning process is to analyze, 
summarize, extract, and elicit the associated knowledge from 
the training data set. All these foregoing errands entail a deep 
understanding of the basic structures of the training data set. 
Even though exploring great amounts of data with the purpose 
of retrieving some relevant knowledge could be a frustrating 
and complicated task, the acquired knowledge could be latter 
used successfully in detecting patterns and trends for the sake 
of classifying information. 

Since ANNs were introduced in the pattern recognition field 
and optimizing nonlinear functions that work recursively, El-
Omari (2008) developed a new robust technique that intends 
to optimize the segmentation of the compound images based 
on modeling the solution sample space using the ANN 
paradigm. By building prior knowledge utilizing four 
interconnected ANN's as a one-model component, an image 
can be segmented by this brilliant approach into labeled and 
coherent regions of four classes: pictures, graphics, texts, and 
backgrounds. Then each region is manipulated individually 
according to its characteristics with the most effective 
compression method that either a new one or one off-the-shelf. 
In that research work, there were another three proposed 
techniques to meet the preceding stated segmentation 
objective; all of them revolve around a vivid central point by 
modeling the ANN but each one has its own layered-structure 
topology and characteristics related to the applied evaluation 
criteria (i.e. activation function), the number of the hidden 
layers and the number of nodes (i.e. neurons) in each one of 
the hidden layers.  

A fifth hybrid approach is further proposed in that research 
work as a result of hybridizing these four stated approaches. 
However, each of these proposed approaches has it is certain 
trade-offs such as speed, reliability, accuracy, efficiency, and 
ease of use. In fairness, the main concern of these proposed 
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models, particularly the last approach, is related to the high-
level computational power and the time complicity where the 
author of the said study suggested two highly efficient 
strategies to this end. The first one is by building the 
segmentation methodology as utility software that may be 
considered as part of any operating system. The second 
strategy is by building the data segmentation mechanism 
internally as a special-purpose built-in chip. Within these two 
strategies, every image is right away encoded when it is stored 
and, vice versa, decoded when it is retrieved back. [18][43]  

Another relevant ANN research was developed by El-Omari et 
al. (2012) for optimizing the segmentation process of the 
compound images by using both the multilayer feed-forward 
Artificial Neural Network (FF-ANN) and the Back-
Propagation (BP) learning methodology to feed-backward the 
losses. BP, also called the error-BP method, is so named 
because of the difference (i.e. error) between the desired 
outcome of the current neural network iteration step, “Od”, 
and the preceding one, “Oa” is fed back to the same neural 
network, namely from the output units to the input ones. The 
mathematical construction of this main difference can be 
modeled as in Equation 2: [36] 

      E = 0.5 * (Od - Oa)2                                  (2)  

In the course of this added-value work, the proposed algorithm 
breaks down any compound image into equal-size-square 
blocks. The network was designed and modeled to discover 
and identify patterns that are relevant to the set of the various 
components of the block. Since the right training of the neural 
network is the most critical side of building a reliable model, 
the neural network was modeled and implemented using 
MATLAB® and trained empirically upon a collected database 
containing 2987 24-bit-RGB-bitmap images of different 
resolutions, each has its own features. After the necessary 
proper-sufficient training of this neural network to ensure 
lower error rates, the neural network weights were tuned 
properly many times and then each block was evaluated to 
determine its type and then classified accordingly. Once the 
blocks are been classified as it’s intended to, all adjacent 
blocks having alike features and classes are fused together to 
form a single and coherent whole region. From the 
observation of actual practices, the nuanced outcomes indicate 
that the proposed model is successfully capable to define the 
types of each block with an average accuracy of 89% and 
broadly applicable. [36] 

Despite its low error rates, the noteworthy issue of the 
proposed solution of [36] is that the training process of ANN, 
especially over big data, is seemed somewhat computationally 
expensive and depends on a large number of hard-headed 
setting parameters that demand extra steering effort to fit the 
considered problem. So there is a necessity to enhance the 
overall performance by speeding up the ANN's learning 
activity. To make things most sense, substituting the training 
functions of the learning process by more-advanced 
metaheuristic algorithms may accelerate the ANN model and, 
in turn, better performance may be achieved by solving this 

drawback.  

Since, utilizing the advantage of metaheuristic in hybridization 
ANN with another metaheuristic may solve the 
abovementioned performance weakness of this algorithm, the 
first author of that study (i.e. [36]) is currently in the process 
of implementing this proposed algorithm, namely SLnO-MFP, 
as an alternative to the Back-Propagation (BP) function. By 
this inclusion and integration, the suggested algorithm works 
as an effective tool within the ANN's training. This may have 
a strong probability in raising the outcomes' efficiency and in 
reducing the maximum number of generations that are 
necessary for the elicitation process of the final solution which 
as an axiomatic in-line with reducing the time needed to 
implement them. Furthermore, this may theoretically make the 
probability of the optimal solution arrival even greater. For a 
more detailed explanation and illustration of this algorithm, 
the interested reader can refer to the mentioned paper. 

3.5 Artificial Bee Colony (ABC) 

The differentiation between honeybees’ behavior and computer 
also attracted hundreds of researchers in proposing some 
artificial intelligence algorithms used to solve many real-life 
problems. The researchers found these bees live in groups 
called colonies where each bee colony, also referred to as hive, 
has at least three well-known subgroups of bees: scout bees 
that responsible for searching for the new food sources (i.e. 
solutions) which are the flower nectar, onlooker bees which 
knew the amounts and determine the exact places of any food 
source by watching the dancing ways of the scout bees, and the 
employed bees which are responsible for gathering the food 
from the resources' places that are defined by the scouts. They 
also found the members of each group (i.e. colony), as well as 
the subgroups, have their own structure for the working tasks 
and dominance hierarchy. [31][29]  

By studying the behaviors of these colonies especially how all 
the bees contribute together in generating the optimal solution 
of the nectar harvest, the research work held by Saab et al. 
(2009) introduced a novel and valuable optimization algorithm 
based on using the Artificial Bee Colony (ABC) optimization. 
With the condition that the probability of choosing any 
candidate solutions (i.e. flower nectar as the food source) is 
directly connected with the fitness function (i.e. nectar's 
amount, nectar's quality, and the distance between the colony 
and the food’s source), the importance of their algorithm in the 
real-world is its ability to balance between the two searching 
phases exploration and exploitation in the searching iteration 
steps around finding and reaping the flower nectar. For a more 
detailed explanation and illustration of this algorithm, the 
interested reader can refer to the mentioned paper. According 
to the real implementations of the two scenarios of scouting 
and forging processes, this algorithm can be used to employ 
many real-life optimization problems that don't demand 
supervision which includes, but are not limited to, the 
following examples: combinatorial optimization problems, 
stochastic problems, multi-targets, data-mining-search-engine 
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crawling, parallel implementation, multi-targets, and parallel 
implementations. [31] 

3.6 Hyper-heuristic Framework 

A number of researches have been made in an effort to find 
solutions related to the optimization of the execution time 
issues. In this regard, the study by Welch and Miller (2014) 
offered a two-level model for optimization algorithms 
turnaround. The primary premise of this much-appreciated 
model is to separate the functionalities of the metaheuristic 
optimization algorithm from the functionalities of the problem 
itself. Broadly, this is the notion of the hyper-heuristic 
framework where a set of intelligent metaheuristics can be 
classified upon their shared common features into different 
types of hyper-heuristics and then combined together through 
the hybridization of the hyper-heuristics framework. Then, 
rather than exploring the search space of the candidate possible 
solutions for a given problem, the framework of the hyper-
heuristics automatically fabricates an algorithm that could 
professionally find a better solution by one or more of the 
already metaheuristics that have been classified and stored. 
Besides that this hybridization leads to new approaches to 
emerge, this combining of the positive capabilities of the 
different metaheuristics gives more chances for capturing 
better solutions. While two or more approaches that 
participated in this hybridization can be fused together to form 
one model, each one of them remains functioning as an 
individual one. [5][29] 

From a broader standpoint, hyper-heuristic frameworks can be 
understood in such a way as if there were two abstracted parts 
associated with each other and maintaining a high degree of 
correlations: a top-level frontend and a lower-level backend. 
While the metaheuristics themselves are encapsulated to form 
the backend, the frontend which involves different types of 
hyper-heuristics is the visible part that the optimization handler 
sees and interacts with. By this easy-to-implement way of 
using the hyper-heuristic frameworks, a higher level of 
abstraction is provided where the backend complexity is 
shielded from the frontend and so some unwanted details are 
eliminated or hidden. This architecture allows those handlers 
their selves to focus their effort on solving the problems rather 
than concentrating on the minutiae of the underlying details 
related to how the metaheuristics should be implemented for 
solving the considered problem. In all sincerity, hyper-heuristic 
does not revolutionize the field of metaheuristics, but it adds a 
new easier and quicker face in dealing with them.[5]  

3.7  The new-generation metaheuristics 

Finally, to conclude the discussion of this section, the study by 
Dokeroglu et al. (2019) introduced a considerable selective 
survey to compare the most popular metaheuristic algorithms 
that have been proposed in the last twenty years, namely 
between the years 2000 and 2020. This distinguishable survey 
reviewed and then analyzed the new-generation metaheuristics 
in such a way that it can be considered as an excellent 

benchmark for the metaheuristics comparison in the 
optimization area. On part of comparative performance 
measurement in that 20-year span, this prominent study drew 
an objective comparison between the metaheuristics according 
to the following five critical issues: [29]  

· How many setting parameters are required to go efficiently 
with the optimization task of the compared algorithm? 
Since setting every input parameter requests more time and 
effort to be adjusted and tuned to go with the problem 
nature, the algorithm with the lesser parameters is, without 
a doubt, the better choice to use. From a deeper viewpoint, 
the number of parameters in any metaheuristic is directly 
proportional to its complexity where the algorithm with 
fewer parameters needs slighter variations to work well in 
solving other problems and, as a result, to dominate over a 
larger variety of applications. 

· Which are the stages of the metaheuristic algorithm that 
have the ability to balance properly between the exploration 
and exploitation strategies? As a consequence of the 
metaheuristics' stochastic nature, optimal balancing 
between these two stages becomes unquestionably a 
challenge to meet.  

· Has the metaheuristic been used in developing other 
hybridized approaches? There is no question that the 
algorithm that is used much in other hybridized approaches 
is credible evidence of its well-built organized structure 
efficiency. 

· Does the metaheuristic algorithm contain some local-search 
mechanisms? Since local searches usually give the best 
chances to keep approaching the best solutions, the 
presence of this facility has a considerable influence on the 
candidate solutions improvement during the course of the 
successive iterations. 

· Does the metaheuristic algorithm search the solution space 
globally for catching the optimal solution or just within the 
local solution space? 

Granted, any metaheuristic algorithm satisfying the above 
features will have more stability to be staying used in the 
upcoming years. From another point of view, this analytical 
study could highlight some clues as to how to screen and select 
the most adequate metaheuristic for a given optimization 
problem. [29] 

Furthermore, this research study drew attention to two other 
important issues that may prevent some metaheuristics from 
being utilized. One is related to the lack of a solid analytical 
foundation for validating many metaheuristics in which their 
performance evaluations are measured only by carrying out the 
classical ad-hoc statistical analysis without being based on real 
theoretical or mathematical foundations. Then the said study 
also pointed out how it is difficult to find clear guidance or 
robust frameworks to recommend anyone interested in how to 
adapt many metaheuristics to the considered problems. [29] 
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Related to the previously mentioned setting parameters issue 
debated in [29], the authors in the study by Lam and Li (2010) 
emphasized that the adjustments of many metaheuristics are 
just relying on the experience and prioritize of the researchers 
themselves without applying clear conceptual structures and 
theoretical guidelines for how to set and tune their input 
parameters according to a problem domain [21]. 

4. Maximum Flow Problem (MFP) 

Since the efficient flow supplying should be guaranteed by a 
well-defined distribution system, MFP is one of the pillars of 
computer engineering, mathematics, and computer science that 
has been deeply studied [22]. From a conceptual standpoint, 
MFP as a research area is indeed classified as being based on 
the fusion of three-well-known-overlapped branches that are 
directly interrelated with both Artificial Intelligence (AI) and 
Operations Research (OR). First, Computational Complexity 
Analysis (CCA) which is pertaining to the cost of solving 
computational problems [22]. Second, Nature Inspired 
Computing (NIC) which is an emerging research area that 
mainly concentrates its focus on solving various global 
optimization problems based on exploiting efficiently 
Chemistry, Physics, and Biology approaches [3][20]. Third, 
Combinatorial Optimization Problem (COP) that tries to make 
every great effort into achieving an “optimal” solution among a 
set of possible candidate ones [34]. 

Before describing how the proposed algorithm solves the 
problem under consideration, it may be well to first consider 
the matters of some notations and fundamental features. First 
of all, any type of these problems (i.e. MFPs) considerably 
includes the following common components: 

·  = {, , , … , }  : This combination of variables is 
formally referred to as the set of the initialization 
parameters and so the problem dimension is represented by 
“n”. It also indicates the vector of variables that are used to 
frame the designed methodology of the proposed algorithm. 
For its time convergence and to explore a much broader 
diversity inside the candidate solutions, the impressive 
achieved results of any algorithm are highly interrelated 
with the choice of this set. 

·  = {, , , … , }  represents the vector of constraints 
(i.e. criterions or rules ) that are used to restrict the progress 
of the searching process. From another perspective, this 
vector is used for the purpose of limiting the various values 
that are assigned to the vector “X”. On the assumption that 
the total number of constraints is defined by “m”, all these 
constraints are so sacred not to be violated while 
discovering the optimized solution. It is vitally important 
for any solution to have complied with this vector of 
constraints. Prompted by this, a feasible solution is 
considered as a potential one if it certainly satisfies all the 
indicated constraints along. 

· “S” represents the solution space. This vector represents the 
set of all possible candidate solutions for a given problem. 
[5][4] 

· “s” indicates the set of values that are assigned to the vector 
“X” and restricted by the vector of constraints “C”.  

· “F” represents the objective function (i.e. objective 
criterion) that is used to assess the quality level of a stated 
solution. It represents the criteria used to pick out the 
optimal solution among the possible candidate ones. [4][7] 

Second, with the aim of using SLnO in solving the problem of 
interest, the input of the maximum flow problem (MFP) 
should be adapted into a layout format that can be understood 
by SLnO. Thus, the input should be converted into a graph. 
Broadly and from a mathematical modeling part, this can be 
understood in an abstracted aspect by using the following 
bullet points that represent the problem instance:  
· The shape of the flow network is called “network 

connectivity”. This network is a directed graph, “” that 
has a finite set of directed weighted arcs (i.e. edges), “”, 
and a non-empty finite set of vertices (i.e. nodes), “”. That 
is to say, the MFP can be defined as “G = (V, E)” where the 
following points clarify this: [40][7][8][44] 
- “  ” indicates the weighted directed network graph, 

called a digraph. 
- “” denotes the group of nodes, also named vertices, 

which are inside “”; their count is “n”. In an analogy 
with Fig. 1,  = {, , , , , , } and n=7. 

- In order to carry flow, nodes are combined together by 
the set of arcs “E”, also referred to as edges. The 
behavior of the network “G” is defined by the way that 
the set of nodes “V” are connected via this set “E” and 
by the strength of these connections, called weights or 
capacities (i.e. flow). All edges' weights are assumed to 
have strictly positive values and, conventionally, these 
weights are set to be small numbers [29][2]. 

- A variable for each edge of the graph is introduced in 
the graph of MFPs. For instance, the edge between the 
two nodes “” and “” of Fig. 1 is represented by using 
the variable “” where “ ∈ ”. 

- The representation of the weights inside the set “E” is 
used to represent the search agents. Every edge “ ∈ ” 
that is directed from a given node “i” towards another 
node “j” has a maximum of non-negative capacity “cij”. 
The total number of edges inside the network “G” is 
“m”. By looking at Fig. 1, the total number of edges is 
10, hence m=10. 

· Two special nodes in “G” are distinguishable and 
designated in advance as follows: [44] 

- A source or a start node “s” in which flow is arriving. 
Unlike the other nodes, the node distributes flow to the 
other nodes. It has only an incoming flow without 
outgoing flow.  
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· Related to the network graph, it is easy to see that Equation 
2 holds: [44]  (,)∈ =  (,)∈                                        (2) 

That is the flow value of a network “” is the sum of all 
flows that get formed in the source node, “s”, or 
equivalently of the flows that are used up in the sink node, 
“t” [44]. By looking at Fig. 1, for instance, it can be seen 
that both the incoming flow at the target node “t” and the 
leaving flow at the starting node, “s” are equal to fifteen. 

· Augmenting path: The set of all the arcs emanating from 
node “i” is denoted by “E(i)”. From another standpoint, 
“E(i)” refers to the all edges that are connected with “i”. In 
relevant to this, a track (i.e. a path or a route) with available 
capacity is referred to as an augmenting path. 

· The conservation constraint: Assume that there are many 
routes joining between the beginning node, “s”, and the 
corresponding destination sink node, “t”, the maximum 
flow capacity is defined as the maximum total value of 
flow that can be moved where satisfying the following 
constraints is definitely a must by any possible candidate 
solution [7][8]: 

- Every arc “ ∈ ” must satisfy all the mass balanced 
constraints along. 

- Since the graph of interest can be represented and used 
as a basis to generate the flow, the total arriving flow 
and the total leaving flow for every node “i”, other than 
“s” and “t”, should be absolutely equal to each other. 
This can be mathematically expressed as it can be 
shown in Equation 3:   =    {    (, )   }                         (3) 

In other words, for every other node “i”, other than the 
source or a start node “s” and the sink or a target node 
“t”, both values of the incoming (i.e. arriving) flow and 
the departing (i.e. leaving) flow must be equal. 
Otherwise, the network “G” couldn't accurately map 
the input flow into the output flow which means that 
some given capacities values, “uij” are possibly missed 
or incorrect.  

- The total entire flow leaving “s” is equal to the total 
incoming flow arriving in “t”. The value of the flow is 
defined by using the formulas described in Equation 4 
and Equation 5: 

           |f| = ∑ ∈ (s, v) = ∑ ∈ (v, t)                   (4) 
    That is,  

               () = ∑                              (,) ()             (5) 

            Where it is easy to see that the followings hold:                       ∑  − ∑  = 0;       {, }{:(,){:(,) )      (6) 

                            0 ≤  ≤                                           (7) 

                        ⃗ =   ⃗   .   ⃗ () −   ⃗ ()                             (8) 
  

5. Sea Lion Optimization (SLnO) Algorithm  

The term flock or flocking can be used to refer in particular to 
the group of birds. On the other hand, swarm behavior or 
swarming, as a term, is originally applied to insects but it can 
also be used interchangeably to refer to any other collection of 
interacting creatures or entities that in their normal lives 
aggregate together in swarms and interact harmoniously with 
each other according to two norms of interaction that are 
mainly governed by laws of nature. The first norm is related to 
the local interaction between each other, and the second one is 
their collective interaction with their environment in which 
joint hunting is the most distinguishable one among these core 
activities. This collective behavior or as called collective 
intelligence or global behavior, of these groups of creatures has 
recently gained significant attention from scientists and 
researchers from different research institutes and universities 
around the world and, for that, a new science called swarm 
intelligence based (SIB) has been coined as shared knowledge 
and collective concepts of a sequence of algorithms and models. 
On the grounds of this, this science is based mainly on the 
natural social behavior of the biological populations. 
[26][45][31] 

Motivated by the above-stated inspirations, scientists try to 
come up with new goal-oriented techniques to tackle various 
real-world optimization problems. And, thus, the so-called 
“nature-inspired computing” is evolved out as a field of 
computer science that is targeted directly toward making 
computers imitate the intelligence of the swarms (i.e. SIB). 
Broadly speaking, solving optimization problems, particularly 
the complex ones, and operating numerous complicated 
systems can be drawn out by this field of science, namely SI. 
[13][18] 

In view of this, many metaheuristic algorithms have been 
proposed that take direct inspiration by the collective 
intelligence and the ways of exchanging in-depth information 
among each other [31]. These algorithms are used expansively 
not only in resolving optimization problems but also with many 
other real-world automation fields like healthcare, 
manufacturing, military, and other related domains [3].  

The sea lions are amphibians and aggregate inside swarms 
called colonies where each colony has a massive number of 
members that are grouped into subgroups. While the whole 
group has a leader, each subgroup has a leader, as well. The 
important point is that each colony can be considered as a 
hierarchical paradigm where all the low-level components (i.e. 
subgroups) inside this hierarchy work together to form a higher 
level-hierarch. The whole system behavior is determined by 
aggregating and integrating together all the lower components 
of this hierarchy to form a higher collective behavior or as so 
named global behavior. Based on the commanding orders, the 
joined members of any subgroup can be moved to another 
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subgroup inside this hierarchy according to their age, gender, 
and the tasks that are entrusted to them. However, each 
member may be subject to this moving over and over through 
their lifetimes. The whole group or some of its subgroups may 
hunt together which increases their chances of gaining more 
feeding prey. From this, a self-organized teamwork system is 
formed by grouping together and coordinating all the different 
interactions within the lower level of the hierarchy.  

Compared to the other creatures feeding on the relatively 
species-rich seawater, each colony has a very strict coherent 
strategy in their fishing together. In the subject of the 
optimization literature, Sea Lion Optimization (SLnO) 
algorithm is relatively one of the best-known dominant 
examples of this category which is based mainly on imitating 
both the hunting manners and associated direct communication 
channels among any swarm of sea lions during their chase for 
the preys [2][26].  

There is a continued need for all the swarm members to 
interact with each other by direct communication channels 
upon seeing prey. Chasing and catching the detected prey is the 
joint venture of all the related swarm members. In accordance 
with their social hunting nature, moving towards an optimal 
target implicitly exists in their primitiveness and all the 
associated activities are parts of their nature. Since it is a joint 
hunting process, it is clear that the primary responsibility for 
hunting implementation and success rests with all the agents 
themselves. 

As do all the other nature-inspired paradigms, SLnO is a 
population-based algorithm that is based on using the fitness 
concepts to determine the quality of the solution. By this means, 
the proposed algorithm starts by generating a population 
containing multiple search agents. To assess these search 
agents, the fitness function of an efficient solution which is 
based on the maximum value is computed for every search 
agent. At that instant, the best search agent “⃑ ” who has the 
best fitness among the group of candidate solutions is defined 
and all the related locations belonging to the other search 
agents should be modified directly in-keeping-with this 
modification. 

Out of all of this, there is a pressing need to address the 
following appealing concerns related to the organizational 
structure of their social behavior: [46][2][31]  

· Solution search space: What are their feasible regions, 
namely their solution search space? How are sea lions 
responding to any vital action in the hope of finding more 
superior solutions? Is it an on-demand and self-adaptive 
strategy? How are these animals moving in the direction of 
the optimum goal or near-optimum one? 

· Hunting process: Do the sea lions have a strategy for 
feeding or it is a trivial-usual process and a sudden 
inspiration? If there is a hunting strategy, is it a hunting-for-
together strategy? How does the hunting process work? Is 
there a to-do list of basic tasks that should be initiated? Is 

this foraging process behavioral, evolutionary, or both? Is 
the hunting process a one-team concerted effort?  

· Collective behavior: Is the collective behavior of the sea 
lions centralized or decentralized? In other words, does the 
collective behavior of the sea lions rely on only one sea lion 
that is responsible for making every single decision related 
to the whole swarm, and so it is a centralized system, or 
several sea lions are responsible for making decisions, and 
so it is a decentralized system or as so-called self-organized. 

· Communication process: How are sea lions 
communicating with each other? What are the guidelines 
for managing this communication process in the followed 
direction? How do they communicate to update their 
locations to be turned towards the new target position of the 
prey after any movement? 

Along the way of revealing these research concerns, the SIB, in 
particular the sea lions which are considered the major 
inspiration of this technique, is systemically the collective 
behavior of the following attractive notions and patterns of 
behaviors: [46][2][13][31] 

· Solution search space: The theater of the events depends 
on the environment. It is the sea beach in the case of sea 
lions. The whole graph is the search space (i.e. search 
agents) and the prey is the target node that these animals 
are looking to reach and catch.  

· Collective knowledge: Given that the teamwork of the sea 
lions is greatly self-organized, global behavior is essentially 
derived from and based on the authority of self-organized 
agents and their tendency in reaching the goal. Therefore, 
the emergence of collective behavior is achieved by 
collecting all the local communications between all 
individuals. This leads to having a coin with two faces: the 
formation of the tuned-global-collective knowledge arises 
from the exchange of the different information among the 
sea lions and, on the other side, the different rhythmic 
interactions and communications among individuals in the 
system lead to global-collective coordination. And so, the 
depth of collective knowledge is based on this teamwork 
communication. 
It is worth mentioning that a successful solution is 
constructed by a subscription of all agents and a single sea 
lion, on his own, has a lower possibility to efficiently solve 
a problem. On the other hand, it is an undeniable fact that 
the collection of the sea lions composing the team has an 
overall stronger possibility of getting closer productive 
results and better markedly solutions. 

· Natural laws: Behind the scenes, functions and operations 
of the wholly-embedded components are regulated 
according to natural laws. For this well-defined reason, 
these high-level systems activate repetitively forever 
without any troubles. 
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· Hunting stages: To track and hunt the prey in case of the 
sea lions, the chronological framework for the hunting 
events goes through five stages: 

- Detecting and tracking phase: The sea lions have faces 
with elliptical cross-sections that are different than the 
other mammals which have faces with circular cross-
sections. In addition to that, they have the longest 
whiskers among all the mammals which can be moved 
in all directions. Depending on the feeling of these 
whiskers, these animals track and determine precisely 
all the related information concerning the prey such as 
location, shape, and size. [2][47] 
Furthermore, sea lions habitually swimming randomly 
in a zigzag course during their searching for prey across 
the sea. As well, they utilize their whiskers to get a keen 
sense of the prey. [47] 

- Searching for prey (Exploration phase): When the prey 
is composed of few fish, sea lions hunt individually. 
Otherwise, when the prey is composed of plenty of fish, 
they are chasing down together and hunting together as 
groups. The sea lion (search agent) who successfully 
detects the position of the prey is considered as the best 
search agent and, in turn, this lion is assigned as the 
leader that commands the hunting process. This leader 
starts the process of hunting by telling and guiding the 
other members about the prey which is considered as 
the current best candidate solution [2][47]. Whenever 
the best search agent is determined as a leader among 
the other ones, all the other search agents should 
arrange and update their current locations accordingly.  
Nevertheless, if a better prey is detected by another 
search agent, then this new prey is considered as the 
new best candidate solution. In view of that new 
situation, the leader, as well as the current best 
candidate solution is replaced. 

- Vocalization phase: many sea lions from a variety of 
swarms begin to group together (i.e. forming a cluster) 
around the prey and so the cooperative clusters are 
formulated. The key significant factor of this stage is 
how fast their immediate reactions to the prey 
movement as soon as the prey position is determined. 
On the basis of that, the sea lions are chasing down 
together to force the prey headed for narrow balls at the 
shallow water near the ocean's surface and the beach.  

- Attacking phase (Exploitation phase): the encircling 
process which is related to the process of getting 
around the target prey after determining its position. 
This process is directed by the leader of the sea lions 
and requires updating the search agents' positions 
according to these new circumstances. 

- The actual feeding process: When the prey becomes 
close to the surface of the ocean, the feeding process is 
started.  

· The distance function: The best candidate solution for the 
sea lions is represented by the current best location that has 
the minimum distance from the target prey which the 
swarm has obtained yet. All the joined members should 
keep track of this location and update their locations 
accordingly. Equation 9 is used here to mathematically 
model this behavior which is the most significant 
characteristic of this technique [2]: ⃑ =   ⃑ . ()⃑  −   ()⃑                     (9) 

Where “⃑ ”, “⃑ ”, “t”, “()⃑ ”, and “()⃑ ” represent the 
distance vector between the sea lion and the target prey, a 
random vector in [0, 1], the current iteration, the position 
vector of the target prey, and the position vector of the sea 
lion, respectively. It is important to draw attention that the 
vector “ ⃑ ” is duplicated when it is multiplied by the 
number two in order to give the search space a closer 
opportunity to explore a more optimal solution. 

· The positions vectors: The vectors of the sea lions' 
positions in any subsequent iteration “t + 1” are depending 
on the preceding iteration which is denoted by “t”. This is 
mathematically modeled by using Equation 10 [2]:  ( + )⃑ = ()⃑ − ⃑  . ⃑                        (10) 

Where the vector “()” points to the position of the target 
prey and the vector “⃑ ” is as it has already indicated in 
Equation 9. The vector “⃑ ” in this equation is reduced 
linearly from “2” to “0” throughout the expanse of iteration 
steps for the reason that this reduction drives the leader of 
the sea lions into moving in the direction of the current 
target prey and encircle them. Conversely, an increase in 
this vector means that the sea lion leader is moving away 
from the current prey. Thus, the aptitude of the current 
position of the leader leads to the following three cases: 
- If the value of “⃑ ” is less than one, then the search 

agent is moving in the direction of the prey and the 
other search agents should adjust their locations 
according to that. 

- If the value of “⃑ ” is greater than one, then the search 
agent is moving away from the prey.  

- If the value of “⃑ ” is equal to zero, then the optimal 
solution has attained which means that the algorithm 
terminates at this point. 

However, if the value of (|⃑|) is greater than one or less 
than a negative one, the search agents will move obliquely 
away and search for a new cluster to join it. 

· The Shrinking encircling mechanism: This mechanism 
relies basically on utilizing Equation 10 that has already 
been mentioned in the previous point.  

· The collective communication: Since there is a need for 
the sea lions (i.e. agents) to contact each other and to bring 
all of them closer together particularly when they are 
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tracing and hunting as subgroups, much of the success of 
the SLnO algorithm lies in the collective intelligence that is 
based on the collective communication. The more 
collective communication and interaction between agents' 
population, the more effective collective intelligence and, 
in turn, the system will be more efficient in solving the 
problems.  

The sound as the communication language is formed by 
using several vocalizations. Despite the smallness of their 
ears compared to their bodies, sea lions have got the ability 
to clearly detect both the sounds that are in the air as well 
as that are underwater. Sea lions use this communication 
behavior to call up other joined members who are currently 
presenting on the beach to join the team immediately and 
to manage the different hunting activities like tracking and 
encircling prey. In this regard, Equation 11 is fabricated as 
[2]: ⃑  =         ⃑   ⃑        ⃑                        (11) 

Where the three vectors “⃑  ” , “    ⃑ ”, and “   ⃑ ” 
represent the speed of sound of the leader of the sea lions, 
the speed of sound in the water medium, and the speed of 
sound in the air medium, respectively.  
Normally, sound travels faster in solids than liquids and 
slower in gases than liquids [48]. Under normal conditions, 
sound travels in water nearly 4.3 times as fast as in air 
[48]. Otherwise speaking, the sound of the leader needs to 
be reflected in the two mediums: water and air that are 
determined by “    ⃑ ” and “  ⃑ ”, respectively. This 
sound reflection of the leader of these animals is behind 
calling the other joined members that are inside the water 
or at the sea beach. 

· The circular updating of positions: this behavior is 
mathematically formulated by using Equation 12:  ⃑ ( + ) =   ⃑ () − ⃑ ().  () +  ⃑ ()       (12) 

Taking into account the fact that the target fishes are the 
best optimal solution, the following points analyze the 
elements of this equation:  

- The term “ ⃑ () − ⃑ ()” represents the absolute 
distance value between the search agent which is the 
sea lion and the best optimal solution which is the 
target prey. 

- “” is a real random number between “-1” and “+1”. 

- The term “ ()” is mathematically expressed to 
indicate that the sea lion (i.e. the search agent) starts 
the eating process by swallowing the target fishes that 
are existing at the bait ball (i.e. prey) edges. Thus, it 
moves in a circular shape around the best optimal 
solution (i.e. target prey). 

· The global optimizer: In order to solve the MFP problem, 
the proposed SLnO algorithm involves two activates: 

exploration and exploitation. In the exploitation phase, the 
joined members modify their locations in light of the best 
search agent's position. In the exploration phase, on the 
other hand, the locations of the joined members (search 
agents) are updated in accordance with the position of the 
selected sea lion that has been chosen randomly. Therefore, 
the generalized mathematical formulation of this phase is 
formulated by using both Equation 13 and Equation 14:  ⃑  =    ⃑ . ⃑  ()  −  ()⃑                (13)  ⃑ ( + )  =  ⃑  ()  −  ⃑  . ⃑           (14) 
Where “⃑  ()” is used here to point to a sea lion that is 
selected randomly from the present population. It should 
be stressed that when the vector “⃑ ” is bigger than one, 
this equation is used for detecting the global optimal 
solution. Because of that, this algorithm is considered as 
being a global optimizer. 
At the early phase of the iteration steps, Equation 14 
demands sea lions to randomly proceed around each other. 
On the other hand, Equation 12 permits other sea lions to 
reposition themselves or move in a circular shape in the 
direction of the best search agent which draws the reason 
behind that this proposed algorithm has high exploitation. 
In addition to this high exploitation, this algorithm has also 
a high exploration and the capability to go beyond local-
optima traps. 

· Related to the graph theory, the sea lions are represented by 
agents and, in turn, this algorithm is a multi-agent 
algorithm. The followings are beyond this point: 

- The maximum flow problem is considered as one of 
the various well known basic problems of optimization 
in weighted directed graphs. It is a type of network 
optimization problem in the flow graph theory. 

- The SLnO graph-based for sea lions is usually 
bidirectional.  

- The weight at each edge (arc) interconnects two 
vertices (nodes) representing the flow capacity of this 
arc.  

- The inputs should be converted to a graph with nodes 
and weighted edges 

· All the operations and data-processing activities are 
ordinarily goal-oriented and real-time functions. 

· All the team members (i.e. agents) are accelerating toward 
discovering better solutions. Much, if not all, of the success 
of the team, seems to lay upon the tendency of all team 
members to hurtle past their target. 

· Since the supervision of SIB is a self-organized natural 
system, it is a decentralized system which means that 
making decisions at the different hunting levels is rooted in 
the team-environment not only in their leaders. In other 
words, the fine-tuned vision comes from the fact that all the 
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6.1 Initialization Stage 

The main algorithm that contains the population initialization 
of the search agents (sea lions) is depicted in Fig. 10. In this 
algorithm, a bunch of initial candidate solutions is generated 
randomly. Overall, this set is so-named as a swarm. Next, two 
of these search agents are selected randomly, one to refer to the 
source and the other to refer to the destination which is actually 
the prey itself. Then, the fitness function for every search agent 
of the population is computed. For the sake of that, the distance 
between each sea lion and “⃑  ” is computed. According to 
the nearest “⃑  ”, the sea lion will be assigned to the nearest 
group (i.e. cluster).  

On the other hand, the issue of enhancement to find the best 
solution for this norm of optimization problems is 
considered the most worthy of this algorithm. In order to avoid 
falling in the local optima and to converge to the best solution 
within the predefined time, this algorithm also addresses the 
case where these lions may make a random search moving 
towards finding other better positions instead of remaining 
stuck with one of the current search solutions (i.e. one of the 
local optimas); this what is known as “exploration”. In this 
feature, as soon as the best solution has been determined 
among the other ones, all the other search agents should 
rearrange their current locations accordingly. 

6.2 Fitness Function 

The goodness of the overall solution is evaluated thoroughly by 
the quality of each possible position which is determined by 
using the fitness function. The perfect choice of the fitness 
function has, therefore, a great impact on the selection of the 
candidate solutions and in the direct evaluation process for 
identifying the solutions' qualities based on the degree of 
efficiency. Based on that, there is a need to re-compute the 
fitness function for each one of the search agents in any new 
trial. Thus, the best search agent “⃑ ” is chosen and all the 
locations of the other search agents should be updated 
accordingly.  

By using its special vocalization to tell them about the prey, 
“⃑  ”, as a leader, send a vocal message to other sea lions 
that exist on the shore or under the water. In accordance with 
that, all the sea lions that have heard the vocalization of their 
leader will join the cluster and then update their locations 
toward the “⃑  ” position depending on the value of (|⃑ |). 
Hence, the general steps for updating the positions of these 
animals are clearly depicted in both of the figures Fig. 11 and 
Fig. 12.  

6.3 Clustering 

The philosophy behind clustering is the decomposing of the 
original flow problem into a number of tractable subproblems 
(i.e. local MFs). Then, a range of near-optimal solutions to 
each one of these smaller subproblems is calculated. After that, 
the collection of solutions for these subproblems is combined 
altogether to create a global solution, namely global MF. 

After the initialization stage and determining the fitness 
function, the proposed algorithm can proceed forward to the 
clustering of the network graph. This clustering is used for the 
purpose of finding the overall solution for a given network 
graph where the global search space (global MF) is broken 
down into a set of local search spaces (local MFs), each is 
referred to as a cluster. Each cluster contains a number of 
separated subnetworks and each subnetwork is composed of a 
group of nodes and their edges.  

For satisfactory, “⃑  ” is selected randomly for each cluster. 
Then the fitness function for each search agent is computed to 
check whether it should join any cluster or not. More 
precisely, each particular agent (sea lion) is managed in the 
sense that it is identified to which cluster it belongs. So, 
according to the value of the fitness function, each sea lion is 
identified whether it will join this group or another.  

In order to get the overall global maximum flow 
(   ), the local maximum flow (   ) is 
computed for each specific cluster and then the overall 
summation of them is computed. This is illustrated in Fig. 13. 

6.4 Maximum Flow Function 

As mentioned in the preceding subsection, the local MFP is 
calculated for each cluster by calling MFP function which is 
introduced by Ford Fulkerson (FF). MFP function relies on 
augmentation paths in residual graphs to find the maximum 
flow from the source to the destination (i.e. source-to-sink 
path).  

The local MFP is computed for each cluster using the FF 
technique that returns the local MFP for each specific one. 
Then, the global Maximum Flow (  ) of the network is 
calculated using Equation 15:        maxFlow =  ∑ (maxFlow )                 (15) 
Where “   ”, and “N” represent the maximum flow 
for ith cluster and the count of the clusters, respectively. On this 
point, the algorithm shown in Fig. 14 is used to calculate the 
Local Maximum Flow (i.e.    ) for each cluster.  
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Fig. 11. The flowchart of the proposed framework  
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As shown in Table V, the average speedup (Speedup ) of 
execution is calculated by finding the row-wise summation of 
the numeric values of the speedup (i.e. last column) multiplied 
by the network size (i.e. second column) of every experiment, 
and then dividing by the total number of the network sizes (i.e. 
summation of the second column). This is expressed in 
Equation 17: 

RSpeedup  =   ∑  speedup ∗     ∑                 (17) 

Where “  ”, “M”, and “  ” represent the jth size of 
the network, the count of the elements in the data set, and the 
speedup of the jth dataset’s size which was computed as 
indicated by Equation 16, respectively. It is to be noted that the 
reported average speedup of the processing is comparatively 
recorded to be (7.4902) faster than FF. Hence, this result 
proves that this proposed algorithm is highly comparable in 
terms of the execution time. 

Table V. An execution time comparison between SLnO-MFP and FF 

j    
Average run-

time of FF  
(per seconds) 

Average run-time 
of SLnO-MFP 
(per seconds) 

Relative Speedup 
 SLnO-MFP is 

faster than FF by: 

1 100 0.159 0.051 3.1176 

2 200 0.312 0.072 4.3333 

3 300 0.485 0.082 5.9146 

4 400 0.698 0.091 7.6703 

5 500 0.749 0.116 6.4569 

6 600 0.913 0.125 7.3040 

7 700 1.216 0.142 8.5634 

8 800 1.549 0.212 7.3066 

9 900 2.260 0.255 8.8627 

10 1000 2.402 0.310 7.7484 

The average speedup 7.4902 

In a nutshell, it is clearly observed from this comparison that 
the proposed model SLnO-MFP performs best and gives better 
performance results than FF in terms of speed and time 
efficiency; it is faster than FF by an average of (7.4902) times. 
Furthermore, there is a dramatic increase in the difference in 
speed between the two algorithms when large-sized network 
instances are used. It would be important to know that the 
perceived complexity is remarkably behind this speedup and 
has a strong influence on the implementation of any 
metaheuristic algorithms. As reflected in the plot of Fig. 15, the 
execution complexity is a quadratic polynomial. More 
precisely, it begins to mount when the number of nodes 
increases.  

To make a further comparison and evaluation, the impact of the 
network sizes on the speedup of both algorithms where both 
the first and last columns of Table V are graphically depicted in 
Fig. 16 for both of the two algorithms. 

 

Fig. 15. The average CPU's computational run time for FF versus SLnO-MFP 

 
Fig. 16. The relative speedup of SLnO-MFP in comparison with FF algorithm 

7.2 Relative Estimation Error Rate 

Table VI illustrates the estimated-theoretical (T   ) and 
the actual-experimental ( T  ) run time of SLnO-MFP 
algorithm with a Relative Estimation Error rate (REE) which is 
calculated by using Equation 18: REE =    (           –       )              (18) 
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Since the “analysis run time” represents “the estimated 
theoretical run time”, Equation 18 can be redrafted as 
expressed in Equation 19:  

 =    (        –  ℎ      )   ℎ       

             =           –                                                 (19) 

According to the statistical analysis of the sixth column of 
Table VI, it is seen that the proposed algorithm has low error 
rates compared to the FF algorithm.  

Like the notion of Equation 17, the Mean Relative Estimation 
Error (MREE) is calculated and viewed in this table by 
summing up products between each element of the last column 
and the second column; then dividing this summation over the 
summation of the second column. This is expressed by using 
Equation 20: 

         MREE =      ∑     ∗         ∑                                      (20) 

Where “”, “  ”, and “M” represent the relative error 
of the jth dataset’s size which was computed as indicated by 
Equation 18, the jth dataset’s size of the network, and the count 
of the elements in the data set, respectively. 

Table VI. Theoretical versus experimental Run-Time error of SLnO-MFP algorithm 

j    Estimated theoretical 
run time (T) 

Estimated experimental 
run time (E) Error=abs(T-E) REEj=abs(T-E)/T  ∗     () ∗    

1 100 0.0929 0.0621 0.0308 0.3315 33.1500 10.9892 

2 200 0.4785 0.0759 0.4026 0.8414 168.2800 141.5908 

3 300 0.2762 0.0846 0.1916 0.6937 208.1100 144.3659 

4 400 0.5998 0.9001 0.3003 0.5007 200.2800 100.2802 

5 500 0.8672 0.9975 0.1303 0.1503 75.1500 11.2950 

6 600 1.5341 0.1167 1.4174 0.9239 554.3400 512.1547 

7 700 3.0921 0.1627 2.9294 0.9474 663.1800 628.2967 

8 800 4.2753 0.1998 4.0755 0.9533 762.6400 727.0247 

9 900 6.3782 0.2274 6.1508 0.9643 867.8700 836.8870 

10 1000 8.3462 0.2681 8.0781 0.9679 967.9000 936.8304 
 

 MREE=0.8183 
MSE    = 0.7363  
DMSE = 0.8581 

 

The result of this equation, namely Equation 20, was calculated 
using the seventh column of Table VI and then viewed in the 
last cell of the same column and table. Here again, it is 
noteworthy that the proposed algorithm is able to reduce the 
error rate to be (0.8183). Hence, this result proves that this 
proposed algorithm is highly comparable in terms of the error 
rate. 

In an analogy with Equation 19, the average of the squared 
errors for all network sizes, which is referred to as the value of 
the Mean Square Error (MSE), was also selected to be an 
authentic validation measurement as shown in Equation 21: MSE =     ∑  ∗       ∑                                      (21) 

The result of this equation was calculated using the last column 
of Table VI and then viewed in the last cell of the same column 
and table. By analyzing this calculated value, it is easily seen 
that the proposed model has achieved a very worthy result 
where the recorded MSE value is (0.7363). Remarkably, this 

slight difference occurs due to randomness inside the equations 
that are used in building the algorithm, like the ninth and the 
fourteenth equations. Yet again, this result also ensures that 
SLnO-MFP is highly comparable in terms of the MSE. 

Furthermore, the last cell of Table VI is related to the deviation 
of the MSE, termed as (DMSE), which is calculated by taking 
the square root of the MSE. It should be noted that MSE and 
DMSE are calculated in the same way as the variance and 
standard deviation are usually computed, respectively. So, they 
have obviously the same unit type of measurement as in the 
case of the estimated quantities of variance and standard 
deviation.  

Additionally, Fig. 17 exhibits a visualization of the 
enhancement that is accomplished in this work compared to the 
FF technique in terms of execution time. In view of this, it is 
relatively clear that the proposed technique has accomplished 
better performance especially for resolving the networks of 
large-sized instances. 
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7.3 Results Accuracy and Discussion 

In order to examine the obtained results and to make a 
comparative analysis between the maximum flow value of the 
proposed algorithm SLnO-MFP and the FF algorithm, two 
major factors related to the overall performance evaluation are 
taken into consideration: the average execution time and the 
accuracy of the results. While the first evaluation of 
performance has been mentioned in the first subsection, the 
second evaluation is described here in this subsection.  

As clearly viewed in the comparison of Table VII, the 
maximum flow values were calculated for both techniques 
using ten experiments, each has a different network size. After 
those experiments were conducted, the accuracy comparison 
for both techniques was calculated by using Equation 22 as a 
measure of accuracy (Acc):  = 1 –   (    –       )          ∗ 100%    (22) 
Where “    ” represents the maximum value using the 
FF technique and “ −      ” indicates the maximum 
value using the suggested algorithm (SLnO-MFP).  

In order to compute the overall validation accuracy of SLnO-
MFP algorithm, the average accuracy of all the network sizes 
in the dataset was calculated by utilizing Equation 23:  The Overall accuracy =    ∑   ∗      ∑                    (23) 

Where “  ” represents the jth the dataset’s size, and the 
“ ” is computed as indicated by Equation 22. The result of 
this equation was calculated and then viewed in the last row of 
Table VII. As represented in this comparative analysis, the 
proposed algorithm is able to attain a high accuracy percentage 
of (94.3205%). It is observed that the main intuition behind the 
overall accuracy relates to the difference between the 
maximum value for the proposed algorithm and the maximum 
value for FF technique which comes from the way of catching 

the network graph in the search space where the SLnO-MFP 
technique divides the network graph into a number of 
subgraphs.  

These outstanding findings prove that the algorithm has 
superior performance and it is a viable alternative algorithm 
that can be efficiently used to solve many optimization 
problems of large-scale sizes, as in the case of this underlying 
problem (MFP).  

As a final point, the empirical evidence substantiates that this 
proposed algorithm is proportionally scaling with the problem 
size, in both memory and time. The interesting interpretation 
behind this issue is highly associated with network complicity. 
Anyway, this solution can be applied successfully to other 
styles of optimization problems, and the outcomes presented 
here have far-reaching consequences in many other domains.  

 

Fig. 17. FF versus SLnO-MFP in terms of execution time  
 

Table VII. The accuracy results of SLnO-MFP compared with FF algorithm  

j    FF-MFP 
(E) 

SLnO-MFP 
(F) abs(E- F) abs(E – F) / E Accuracy= 

1- abs(E – F) / E 
Accuracy percentage= 

(1- (abs(E – F) / E) * 100% 

1 100 718 758 40 0.0557 0.9443 94.4290% 

2 200 889 899 10 0.0112 0.9888 98.8751% 

3 300 1873 1985 112 0.0598 0.9402 94.0203% 

4 400 2465 2625 160 0.0649 0.9351 93.5091% 

5 500 3167 3347 180 0.0568 0.9432 94.3164% 

6 600 3708 4106 398 0.1073 0.8927 89.2665% 

7 700 4568 4872 304 0.0665 0.9335 93.3450% 

8 800 5097 5179 82 0.0161 0.9839 98.3912% 

9 900 5826 6506 680 0.1167 0.8833 88.3282% 

10 1000 6325 6346 21 0.0033 0.9967 99.6680% 

The Overall accuracy 0.9432 94.3205% 
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8. Conclusions 

Evidently, the intuition behind optimization is born out of the 
necessity for finding the best available solution among a set of 
candidate ones. When scientists make an insightful look behind 
the scenes of many creatures, they every day find numerous 
thought-provoking blips that can be used in overcoming a great 
portion of real-life optimization problems. Nowadays, swarm-
intelligence-based (SIB) algorithms are one of the most 
Artificial Intelligence (AI) prevalent pillars which due to its 
remarkable advantages become an essential part of modern 
global optimization algorithms as well as the most widely 
implemented.  

At its broadest, it is important to realize that optimization 
algorithms have their radical significance in the context of 
solving the Maximum Flow Problem (MFP). Besides that this 
added-value research paper covers and outlines the theoretical 
vision and the practical aspects of the metaheuristics, it 
introduces a population-based and nature-inspired 
metaheuristic algorithm to solve the Maximum Flow Problem 
(MFP) based on drawing inspiration from one of the core 
activities of the sea lions (SLn) which is the joint hunting 
behavior. As well, this paper can be used as a platform for 
selecting whichever approach is the best one out of the 
metaheuristics community. 

After the research work reported in this paper, namely SLnO-
MFP, has been applied, tested, and evaluated on various-scales 
datasets, the overall outcomes of have both theoretical and 
applied implications and the empirically-based results 
demonstrate that this algorithm is a highly-efficient in the long 
run and has a superior performance and competitive findings 
when compared with the other available optimization 
algorithms. Moreover, it is relatively clear that these viable 
outcomes in a way or another reinforce the algorithm's power 
to impose itself on solving the MFP. 

According to the empirical analysis of the experiments, the 
overall performance of the proposed algorithm was compared 
with the Ford-Fulkerson (FF) algorithm. The worthy findings 
which have arrived with have shown that the proposed 
algorithm performs better compared to other similar research 
methods; it has attained a high accuracy percentage of 
(94.3205%) with an acceptable Mean Relative Estimation 
Error (MRE) rate of (0.8183), a Mean Square Error (MSE) of 
(0.7363), and an average speedup of (7.4902). Armed with 
these facts, these impressive experimental results give 
sufficient sound evidence and reinforce the conclusion that this 
proposed metaheuristic algorithm has far-reaching 
consequences in solving various real-world applications 
including the considered problem. 

9. Future Work and Outlook 

As the chronological progress poses new challenges and on the 
basis of the structure of the problem in hand, here are six vital 

pivots which need to be significantly addressed in the next few 
years as inspiring directions for further research and 
experimentation: 

· Parallel implementation: From a purely practical 
standpoint, it will be more effective if the search time is 
reduced by applying the algorithm presented in this 
research work in a distributed parallel execution 
environment with an efficient dynamic clustering algorithm. 
Rather than implementing the whole MFP graph on a single 
processor, the graph is segmented into a number of 
independent partitions; each one is computed on a single 
processor. Then, the optimal maximum flow of these 
partitions is selected. [12][43][20] 

· Adaptive intelligent metaheuristics: It is a timely stage 
where the other interested researchers can work to modify 
the proposed algorithm, SLnO-MFP, such that the 
parameters are more self-tuned during the running time 
according to the objective function values.  

· Optimization and performance metrics: Rather than 
using a number of the classical ad-hoc statistical 
measurements that are utilized as assessment and 
comparison criteria for making performance measurements, 
improvement percentages, and function evaluations such as 
standard deviation, variance, correlation, skewness, and the 
simple mean, it is strongly recommended without 
reservation to establish a well-defined quantitative 
measuring framework that will be used as an in-depth 
assessment tool and an authentic criterion for efficiency 
validating of most metaheuristics [6][20].  
On the other hand, since most researchers, use the 
computational run-time of the CPU as their only primary 
resource for comparing the performance values of their 
algorithms, their perceptions should be extended to tackle 
other vital resources measurements that cannot be neglected 
or relegated, such that memory, and network bandwidth 
and other parameters that are used to measure the resources' 
efficiencies. 
Since the success of any optimization algorithm is topped 
by the active balancing between exploration and 
exploitation, there is also a need to establish a smart agreed 
criterion that guarantees this balancing ratio over the 
SLnO-MFP.  

· Convergence' acceleration and analysis: Accelerating the 
objective function convergence has a great effect in raising 
the outcome efficiency and shrinking the needed number of 
generations necessary in arriving at the ultimate solution. 
Likewise, this might make the chance of arriving at the 
most-fit solution tend to be greater. Metaheuristics' 
convergence analysis of the objective functions has not still 
been fully addressed to reach a maturity level. Thus, 
another potential-open research area could be raised for 
further literature. [20]  
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· Cloud Computing (CC): Due to the voluminous amounts 
of today's data and on behalf of the Internet advances, CC 
applications are nowadays becoming more prevalent than it 
was a few years ago and, in turn, the most endurable place 
for hosting and activating optimization community. Since 
each cloud-based application should be premised on the 
faith that a large-pool of scalable, parallel, and distributed 
computing resources is granted to thousands and even 
millions of customers by the cloud vendor, it's time to go an 
important step forward to devote the efforts in integrating 
the metaphors of the metaheuristics to fully cope within the 
CC platform. This is particularly relevant to the case of 
hosting this presented algorithm. [12][43][51]  

· Hybridization: Since it turns out that things work 
differently with hybridization of two or more exact, 
heuristic, or metaheuristic techniques, many promising 
outlets and opportunities for further research could be 
opened by using adaptive hybridization. From another 
direction, the degree of this adaptively should be used as a 
crucial tool that goes with the problem complexity. [20]  
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