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Summary 
Due to environmental regulations on navigation ships of the IMO 

(International Maritime Organization), demand for eco-ships and 

associated equipment is soaring. Eco-ship equipment includes 

BWTS (ballast water treatment system) and Sox scrubbers. The 

BWTS is a device for purifying ballast water, which is a major 

cause of marine pollution. This paper proposes a fault diagnosis 

system based on machine learning. The proposed system is a 

classification model that judges the status of BWTS faults through 

various sensor data sent to the BWTS. The operation data of the 

BWTS are times series data, and normal state or diverse faults are 

attached to the data as class. The operation data provided for an 

experiment in this paper were divided into learning data and 

evaluation data, and were analyzed through a SVM (Support 

Vector Machine). The accuracy of each fault cause on the 

evaluation data was 86.93% on average, and the false alarm rate 

was 5.9%, signifying room for improvement. Improvements will 

be made through sufficient collection of learning data, fault data 

augmentation, and imbalance learning.   
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1. Introduction 

As international interest in environmental pollution and 

climate change issues increases, greenhouse gases emission 

reduction policy and various environmental regulations are 

being consolidated. The environmental regulations are used 

as an invisible protective trade barrier to entering the 

countries concerned, and all industrial fields, such as 

electrical & electronics, machinery, automobiles, and 

chemical products including shipbuilding, are included in 

the scope of such regulations. In the shipbuilding and 

maritime affairs field, demand for eco-ships is sharply 

increasing due to environmental regulations of the IMO. 

Eco-ships have better fuel efficiency and have innovatively 

reduced marine pollutant emissions/discharges compared to 

existing ships. Eco-ships refer to ships that can meet EEDI 

(Energy Efficiency Design Index) of new ships discussed 

by IMO [1]. In addition, eco-ships refer to ships equipped 

with technologies suitable for environmental regulations, 

such as CO2, NOx, Sox, and ballast water discharge 

regulations [1].   

The techniques used for fault diagnosis of machines or 

equipment including eco-ship equipment can be divided 

into physical model-based diagnosis and data-driven 

diagnosis. In addition, the data-driven diagnosis can be 

classified into signal-based diagnosis and machine learning-

based diagnosis [2]. This paper proposes a fault diagnosis 

and prediction system of BWTS based on machine learning 

to prevent rejection of ship’s port entry caused by the fault 

of the BWTS in terms of eco-ship equipment. Ballast water 

is sea water supplied to maintain ship’s balance depending 

on cargo loading state, and it becomes a major cause 

disturbing the marine ecosystem through marine organisms’ 

migration. Major technologies to treat the ballast water 

include electrolytic method, ozone spray method, UV 

disinfection method, and chemical treatment method [3].  

In this paper, the machine learning-based fault diagnosis 

algorithms are proposed using the UV disinfection method 

of BWTS operation data. To detect or prevent faults of UV 

lamps (core of UV disinfection method of BWTS), machine 

learning is performed targeting five-sensor data, including 

pressure and temperature sensing the operation status of the 

UV lamp. The proposed system consists of four steps: The 

first step is pre-processing. Here the BWTS operation data 

received from a navigation ship are converted into real 

number values of 0 and 1. In a general machine system, if 

pressure data scale is not normalized, performance can 

decrease significantly. This is especially severe for SVMs 

[4]. The second step is feature generation, whereby time 

series data are generated as window-based (𝑛-gram). For 

time series data, if RNN (Recurrent Neural Network) [5] is 

used, all previous information can be used at the current 

point in time. This paper was performed to predict 

information using previous n number of information, rather 

than the neural network requiring lots of resources, in order 

to apply to industrial sites. The third step is learning, namely 

the machine learning model receiving BWTS operation data 

as learning data. As mentioned above, SVM [6] is used as a 

machine learning model. The fourth step is an experimental 

step, in other words, an application of the learned machine 

learning model to evaluation data. Through this step, system 

performance is evaluated.  

This paper consists of the following: Chapter 2 introduces 

existing studies on fault diagnosis and Chapter 3 describes 

the BWTS fault diagnosis system using machine learning. 

Chapter 4 describes the implementation and experiment of 

the algorithms, and Chapter 5 discusses conclusions and 

future paper tasks. 
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2. Related Works 

General fault diagnosis methods are introduced in this 

chapter. A fault diagnosis method, which is machine 

learning-based fault diagnosis, and anomaly detection are 

described in brief.  

2.1 Fault diagnosis  

Techniques used for fault diagnosis of machines or 

equipment can be divided into physical model-based 

diagnosis and data-driven diagnosis [2, 7]. The physical 

model-based fault diagnosis technique is a method judging 

faults by analyzing differences between the the values 

measured from various sensors that inspect machines or 

equipment and the values drawn by the mathematic physical 

model. However, this technique has a drawback in that 

generation of a physical model containing numerous input 

values, output values, and state variables is difficult [8-10].  

The data-driven fault diagnosis technique is a method of 

diagnosis that uses past data containing the status 

information of a machine or equipment, and it can be 

divided into signal-based method and machine learning-

based method. The signal-based diagnosis mainly uses a 

signal processing technique for vibration data processing of 

a rotary machine, and is a fault-detection technique 

comparing pre-defined threshold values and analyzed 

signals. The main techniques include time domain, 

frequency domain, and time-frequency domain. In time 

domain analysis, a signal’s statistical features in the time 

domain are extracted differently, and such features are 

analyzed as one-dimensional time domain or the time series 

signals are interpreted as images and analyzed as two-

dimensional time domain. In frequency domain analysis, 

spectrum analysis using FFT (Fast Fourier Transform) is the 

most widely used. However, methods based on FFT have a 

drawback in that transient features cannot be efficiently 

inspected. To supplement the demerit, the time-frequency 

domain analysis is used by mixing time and frequency 

information. It is a method that analyzes transient features 

by monitoring frequency spectrum in the time domain [11-

12].  

The fault diagnosis technique based on machine learning 

has recently gained attention. Machine learning-based 

diagnosis carries out a feature selection process in which 

dimensions are reduced for machine learning performance 

after feature extraction from the data measured through the 

sensors of machines or equipment or signal processing 

technologies. Methods including principal component 

analysis are mainly used for machine learning’s dimension 

reduction. And then learning is performed on the selected 

features using machine learning algorithms. Algorithms 

generally used for diagnosis techniques can be categorized 

into supervised learning and unsupervised learning. 

Supervised learning is divided into a classification model 

and a prediction model. The classification model is divided 

into kNN (k-Nearest Neighbor), SVM, and decision tree. 

For the prediction model, a regression analysis is typical. 

For the unsupervised model, a clustering model is a typical 

model. Clustering algorithms can be divided into 

partitioning methods and hierarchical methods [13]. For 

machine learning algorithms for fault diagnosis, SVM and 

an anomaly detection technique are generally used, and 

these methods are briefly described in the following 

chapters.  

2.2 Support Vector Machine  

SVM is an algorithm that identifies the optimum linear 

decision boundary that separates data linearly [8]. Decision 

boundary is a hyper-plane having maximum margin 

between training data. For example, let’s assume learning 

data as , where is the input 

variable at 𝑁 dimension, and is a class label or a category 

having . The hyper-plane separating the 

learning data into –1 class (category) and +1 class (category) 

is called the decision boundary, and it can be indicated as 

the set of dot (∙) x meeting Equation (1).  

                            (1) 

In Equation (1), ∙ is an inner product operator, w is the 

normal vector of the hyper-plane. The support vector refers 

to a set of learning data existing closest to the given hyper-

plane, and it can be divided into the case of  and the 

case of . Because no learning data should exist 

between the hyper-planes, Equation (2) should be 

established.  

              (2)  

In the hyper-plane margin, margin refers to the distance 

between each support vector and hyper-plane, and is 

defined as . As stated above, SVM is a method of 

identifying the hyper-plane, maximizing the hyper-plane’s 

margin. Namely, SVM’s learning process is looking for 

 maximizing the margin as defined in Equation (3).  

                  (3) 

Thus far, descriptions of the case in which learning data can 

be divided linearly have been made. If any given problem 

cannot be divided linearly, the nonlinear division problem 

can be converted into a linear-division problem using the 

kernel function.  

2.3 Anomaly Detection 

Anomaly detection scans for data beyond normal data [14]. 

In other words, it is tasked with finding anomalous data 

(erroneous data), abnormal events, and defective data. The 

anomaly detection technique can be classified as a statistical 

technique and machine learning technique, and the anomaly 

detection technique based on machine learning has been 
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mainly researched recently. The machine learning-based 

anomaly detection technique includes a classification-based 

error detection method [15], a NN (nearest neighbor)-based 

error detection method [16], and a clustering-based error 

detection method [17]. In this paper, SVM, which is a 

machine learning-based classification algorithm, is used for 

anomaly detection. In classification-based anomaly 

detection, as anomalous data are remarkably smaller than 

normal data, a problem of data imbalance occurs [18]. For 

data imbalance, studies on imbalance learning [19], learning 

data augmentation [20], and batch sampling [21] are being 

carried out.  

3. Fault-Diagnosis on BWTS 

This paper proposes a fault diagnosis system on the 

BWTS using a UV disinfection method. A UV lamp is a key 

for the UV disinfection method of BWTS. A system for 

detection of UV lamp faults has been developed in this 

paper. Machine learning that targets five sensors, including 

pressure- and temperature-sensing in the operation status of 

the UV lamp, is carried out. The proposed machine 

learning-based fault diagnosis system consists of four steps, 

as presented in Figure 1.  

 

 
 

Fig. 1  Work flow of the proposed system 

The first step is pre-processing, namely, converting BWTS 

operation data received from a navigation ship into real 

values of 0 and 1. The second step is extracting features 

necessary for machine learning. The third step is learning, 

whereby machine learning models are learned by receiving 

BWTS operation data as learning data. Fourth is the 

experimental step, whereby the learned machine learning 

models are applied to evaluation data. Each step is 

described in detail in the following chapters.   

Through all these steps, the system performance is 

evaluated. 

3.1 Data scaling 

Some pre-processing is necessary for input of machine 

learning without inputting the values measured by sensors. 

As most machine learning algorithms receive numbers in 

the pre-processing process, there are a conversion process 

into numbers and a measured data adjustment process to 

improve algorithm performance. In this paper, data scope is 

normalized as part of the measured data adjustment process. 

This process is called data scaling. Namely it is the step to 

convert BWTS operation data received from a navigation 

ship into real numbers like 0 and 1. As values specified in 

each sensor are different, data scaling is used to ease the 

difference. The data scaling method includes standard 

scaling and MinMax scaling [4]. This paper uses MinMax 

scaling, as shown in Equation (4).  

    (4) 

In Equation (4), 𝑥 is the sensor-measured value, namely, 

raw data value, and  and  are the maximum and 

minimum values of the measured values of each sensor.  

3.2 Feature generating 

Concerning time series data, if RNN (recurrent neural 

network) [5] is used, all previous information can be used 

at the current point in time. This paper was composed to 

predict information using previous n information, rather 

than the neural network requiring lots of resources, in order 

to apply to industrial sites.  

Input of machine learning algorithms generally consists of 

real number vector, . For time series data, ( , 

..., , ...) is given. Regarding time series data, as 

diagnosing faults with only currently measured data  is 

not a good method, mainly lots of previous data are used 

together. In this paper, the data belonging to windows, 

while moving the n-sized window, are reproduced with 

input of the machine learning algorithm. For example, if the 

window size is two, it is recomposed as [(  , ), (  , 

), (  , ), ...], and if the window size is three, it is 

recomposed as [(  , , ), (  , , ), (  , , 

), ...]. Therefore, as the window size is larger, the size of 

the machine learning algorithm becomes larger. The 

window size was set through an experiment that is described 

in more detail in Chapter 4.   

3.3 Model training  

As a machine learning algorithm, SVM is used in this paper. 

SVM finds data beyond the margin by regression method in 
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many cases, if SVM is used for anomaly detection [22]. 

This paper regards such a problem as a classification 

problem. As mentioned in Chapter 2, SVM classifies class 

or category using margin and decision boundary. SVM is 

suitable for binary classification. When SVM is applied to 

multi-class classification, the OvO (One versus One) and 

OvR (One versus the Rest) methods are used [23]. The OvO 

method solves the k (k-1)\/2binary classification problem 

by selecting two classes (categories) in case k classes 

(categories) exist. It is a method of producing the most-

obtained class (category) as the final outcome. In this 

method, if the number of categories increases, the number 

of binary classification increases. As for the OvR method, 

if 𝑘  classes exist, the binary problems of each class 

(category) and the rest of the classes (categories) are solved, 

and the most-obtained class (category) is produced. 

Although it is OK to solve only k binary classification 

problems in this method, categories having the same 

number occur, and so a method to solve this is needed. This 

paper uses the OvO method.  

3.4 Fault Labelling 

Category in this paper predicts causes of various faults, as 

well as the status of faults. Table 1 presents brief 

descriptions of class (category) according to a variety of 

causes of faults. Faults were classified into 10 fault types, 

causes of which are widely used on industrial sites at 

present.  

Table 1: Label description for faults 

Label 
Fault 

name 
Description 

0 normal Normal operation 

1 Flow 1 
Measuring of inlet pressure and DP, but not 
FLOW 

2 Flow 2 Abnormal fluctuation of FLOW 

3 Fin 1 Measuring of inlet pressure, but not FLOW  

4 Fin 2 Measuring of FLOW, but not inlet pressure 

5 Fin 3 Abnormal fluctuation of Inlet pressure 

6 DP 1 Continuous increase of DP while backflushing 

7 DP 2 
Measuring of FLOW and Inlet pressure, but not 
DP 

8 DOSE 1 Abnormal increase of UV DOSE 

9 DOSE 2 Abnormal fluctuation of UV DOSE 

10 TEMP Abnormal temperature 

%  DP: Differential pressure  

 DOSE: UV dose, energy dosage of ultraviolet radiation 

 FLOW: the amount of inflow in ballast water 

4. Experimental Results 

In this chapter, the experimental environment is briefly 

described, and performance based on evaluation data is 

analyzed. 

4.1 Experimental environment 

1) Data gathering 

Figure 2 shows GloEn-Patrol, a BWTS of Panasia Co., Ltd. 

This BWTS is an eco-BWTS that applies a filtering device 

using a filter and UV disinfection technology, and that 

effectively treats ballast water. An experiment was 

performed using the operation data of Panasia’s BWTS.  

 

 

 

 

 

 

 

Table 2 is part of raw data gathered from the BWTS, and 

the data are gathered from five types of sensors – FLOW, 

FLOW, F_IN, F_DP, DOSE, and TEMP. Flow means the 

amount of inflow in ballast water, F_IN refers to filter inlet 

pressure, and F_DP refers to pressure difference. DOSE 

refers to UV dose, and TEMP refers to temperature. As seen 

in Table 2, the values measured by each sensor have various 

scopes according to sensor type, and so there is a need to 

adjust the data scope.  
 

Table 2: Part of raw data collected from BWTS  

Time FLOW F_IN F_DP DOSE TEMP Label 

0 513.0 1.05 0.12 317.2 25.7 0 

1 493.5 1.22 0.13 324.5 25.8 0 

2 491.1 1.25 0.14 332.7 25.8 0 

3 487.5 1.26 0.15 334.3 25.8 0 

4 486.7 1.27 0.16 335.4 25.8 0 

5 484.8 1.27 0.18 335.1 25.7 0 

6 483.1 1.29 0.21 335.2 25.8 0 

7 480.2 1.30 0.22 337.6 25.8 0 

8 478.0 1.31 0.24 338.6 25.9 0 

9 479.9 1.33 0.26 339.9 25.8 0 

Figure 2. BWTS manufactured by Panasia in Busan 
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10 478.8 1.33 0.27 341.3 25.8 0 

11 477.9 1.34 0.28 341.7 25.9 0 

12 476.8 1.34 0.29 341.6 25.9 0 

13 475.7 1.35 0.31 344.1 25.9 0 

14 488.8 1.26 0.33 339.4 25.8 0 

15 490.9 1.24 0.34 334.5 25.8 0 

16 491.7 1.23 0.36 332.3 25.9 0 

17 1.1 1.29 0.45 335.7 25.9 1 

18 1.3 1.07 0.17 335.4 26.0 1 

19 1.6 1.00 0.08 328.4 25.9 1 

20 1.4 1.00 0.08 328.3 25.9 1 
 

 

The data gathered in the form as shown in Table 2 are 

47,435 in total, and the whole distribution is shown in Table 

3. Of the 47,435 data, 46,722 were used as learning data, 

and the remaining 713 data were used for evaluation (The 

evaluation data were provide by Panasia Co., Ltd. 

separately from the learning data). The ratio contained in 

parentheses in Table 3 refers to the ratio of learning data to 

evaluation data. Overall, the ratio of learning data (98.5%) 

and evaluation data (1.5%) shows a slight difference from 

general machine learning cases. The evaluation data were 

composed to examine how accurately faults are analyzed, 

rather than normal data. Although not expressed in Table 3, 

the ratio of normal state and faults is 97.9% to 2.1%, and it 

was 29.5% vs. 70% on the evaluation data. Through this, it 

can be understood that evaluation of this paper concentrates 

on faults.  
 

Table 3: Statistics of collected raw data 

Label Train Test Total 

0 45,725 (99.5%) 210 (0.5%) 45,935 

1 183 (71.2%) 74 (28.8%) 257 

2 98 (57.0%) 74 (43.0%) 172 

3 88 (72.7%) 33 (27.3%) 121 

4 75 (75.0%) 25 (25.0%) 100 

5 77 (52.7%) 69 (47.3%) 146 

6 45 (51.7%) 42 (48.3%) 87 

7 120 (61.5%) 75 (38.5%) 195 

8 86 (76.1%) 27 (23.9%) 113 

9 156 (67.5%) 75 (32.5%) 231 

10 69 (88.5%) 9 (11.5%) 78 

Total 46,722 (98.5%) 713 (1.5%) 47,435 
 

 

2) Hardware and software 

The software (SW) and hardware (HW) environment us

ed for the experiment is shown in Table 4. For hardware, a 

desktop PC embedded with GPU was used. Mainly Python 

was used for software, and the Pandas and Numpy modules

 were mainly used for data analysis. For learning, the Scikit-

learn module was used. The Python language cannot be sm

oothly executed if version numbers are different.  
 

Table 4: HW and SW as experimental environments 

H/W 

CPU Intel® CoreTM i5-6300HQ CPU @ 2.30GHz 

RAM 4GB 

HDD 128GB SSD, 1TB HDD 

GPU Geforce GTX 950M 

S/W 

Module Ver. 

Python 3.6 

Pandas 1.0.3 

Numpy 1.18.3 

Scikit-learn 0.22.2 
 

 

4.1 Evaluation of window size 

As described above in 3.2, window size needs to be 

decided to determine the feature set through time series data. 

Table 5 shows the fault diagnosis system’s performance 

depending on the size change of window targeting the 

evaluation data. However, the causes of faults were not 

found in the experiment. The total number of the data in 

Table 4 shows difference by one. The reason is because one 

piece of raw data is needed, as the window size increases by 

one. As Table 5 shows, the best outcome was shown when 

the window size was 2. This means that excessively dealing 

with previous information is not significantly helpful for 

deciding classes (categories).  

Table 5: Accuracy variations according to window size  

Window 

size 

No. of 

Correction 
No. of Error Total Accuracy 

1 486 226 713 68.30 

2 619 93 712 86.93 

3 612 99 711 86.07 

4 605 105 710 85.21 

5 595 114 709 83.92 

 

4.2 Performance evaluation  

1) Accuracy of faults 

Table 6 shows the proposed system’s performance that 

classifies all fault causes. The accuracy of fault diagnosis 

was 86.93%, and there is still room for improvement. In 

general, macro average is higher than micro average in terms 

of classification accuracy. However, the macro average is 

lower than the micro average in this case, for the reason of 

accuracy deviation being too severe depending on each fault 

cause (See Table 3).  
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Table 6: Accuracy of each fault  

Label 
No. of 

correction 
No. of error Total Accuracy 

0 183 2 185 98.91 

1 60 13 73 82.19 

2 62 12 74 83.78 

3 33 0 33 100.00 

4 21 4 25 84.00 

5 55 14 69 79.71 

6 13 29 42 30.95 

7 74 1 75 98.66 

8 27 0 27 100.00 

9 57 18 75 76.00 

10 34 0  34 100.00 

total 619 93  

Macro average 84.92 

Micro average 86.93 
 

 
2) False alarm rate and specificity 

To analyze false alarm rate, this paper analyzed problems 

using binary classification, classified by fault and normal 

state, instead of classifying each cause of fault. The result is 

revealed as a confusion matrix, as shown in Table 7. In 

Table 7, TP (true positive) is the frequency that a correct 

answer predicted faults as normal state, and FP (false 

positive) is the frequency that a correct answer predicted 

faults as normal state. Further, FN (false negative) is the 

frequency that a correct answer predicted normal state as 

faults, and TN (true negative) is the frequency that a correct 

answer predicted faults as faults.  
 

Table 7: Confusion matrix for faults 

 
Correct answer 

Normal  Fault Total 

Prediction 

Normal 152 (TP) 33 (FP) 185 

Fault 2 (FN) 525 (TN) 527 

Total 154 558 712 
 

  

The system performance can be examined from various 

aspects when Table 7 is used, and Table 8 reveals the results. 

Precision is the measurement indicating how precise it is to 

predict normal state, and the precision of the system is 

82.16%; this was high in terms of the ratio of judging 

normal state as an error. This measurement needs to be 

greatly improved. Recall (rate) is the measurement of how 

accurately normal state was predicted. The recall (rate) of 

the system was 98.7%, which was very high. This signifies 

that the ratio of judging normal state as faults is very low. 

F1 measurement (F1 score) is the harmonic mean of 

precision and recall (rate), and the F1 score of the system 

was 89.7%. False alarm rate is the ratio predicting faults as 

normal state, and the system’s false alarm rate was 5.9% 

which was very high. This part should be improved sharply. 

At this time, there will be some irrationality if the system is 

applied to industrial sites, as the system can judge faults as 

normal state. However, this result is caused by a sharp 

difference between learning data distribution and evaluation 

data distribution. Specificity is the ratio to predict faults as 

faults, which can be expressed as 1-FA. The system’s 

specificity was 94.0%. In conclusion, as there is room for 

improvement in terms of false alarm rate and specificity, 

improvements need to be made, rather than applying the 

system to the industrial sites right away. Significant 

improvements are conjectured by collecting more learning 

data and applying imbalance learning.  

Table 8: Metrics and its values 

Metric Formula Value 

Precision (P) TP / (TP + FP) 0.822 

Recall (R) TP / (TP + FN) 0.987 

F1 score (F1) 2 ☓ P ☓ R / (P + R) 0.897 

False Alarm rate (FA) FP / (FP + TN) 0.059 

Specificity (SP) TN / (FP + TN) 0.941 
 

4.3 Error analysis 

Table 9 shows the confusion matrix between classes 

(categories), and it reveals an analysis of Table 7 in detail. 

The values diagonally located are the accurately classified 

numbers. For example, if the value on the first column and 

0th row is 13, this means that the wrongly classified number 

of the class (category) 1 (Flow 1) as category 0 (normal state) 

is 13. Overall, there are many numbers that are not 0 on the 

0th row. This means the errors are classified as normal state, 

and it is dominant that most errors are classified as normal 

state, as mentioned in 4.3 above. This seems to be derived 

from data imbalance.  
 

 
Label 0 1 2 3 4 5 6 7 8 9 10 

0 183 0 1 0 0 1 0 0 0 0 0 

1 13 60 0 0 0 0 0 0 0 0 0 

2 12 0 62 0 0 0 0 0 0 0 0 

3 0 0 0 33 0 0 0 0 0 0 0 

4 4 0 0 0 21 0 0 0 0 0 0 

5 10 0 0 0 0 55 0 0 0 0 0 

6 29 0 0 0 0 0 13 0 0 0 0 

7 1 0 0 0 0 0 0 74 0 0 0 

8 0 0 0 0 0 0 0 0 27 0 0 

9 18 0 0 0 0 0 0 0 0 57 0 

10 0 0 0 0 0 0 0 0 0 0 34 
 

Table 9.  Confusion matrix for classes  
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5. Conclusions 

This paper proposed a fault diagnosis system of BWTS 

among eco-ship equipment using SVM. The proposed 

system judges the status of faults of the BWTS with 

information received from five types of sensors using the 

classification model. Through an experiment, the mean 

accuracy of each fault cause was 86.93%, and the system 

contains much room for improvement. The false alarm rate 

was 5.9%, and so the proposed diagnosis system is currently 

considered unsuitable for application on industrial sites. 

This paper shows the results of the very initial stages, and 

therefore great improvements can be made, if more learning 

data are gathered and the problem of imbalance between 

classes (categories) is solved. Further, improvement of the 

diagnosis system can be achieved through data 

augmentation and imbalance learning. Machine learning 

algorithms can also be improved by applying a neural 

network model, such as RNN, rather than SVM.  
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