
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

164

Manuscript received August 5, 2020

Manuscript revised August 20, 2020

An Analysis on the Generalization Error of the Constraint

Acquisition Problem

Eisa Alanazi

Department of Computer Science, Umm Al-Qura University, Makkah, Saudi Arabia

Summary
In this work, we analyze the generalization error for learning a

constrained problem, also known as a constraint acquisition

problem. We consider the problem of learning constraints over

finite and discrete domains (of variables) analyze the

generalization error of the well-known version space learning

algorithm. We show that a consistent learner would errs at most

m(m−1)/2 times for a discrete network with variables having m

domain values. Furthermore, we empirically demonstrate the

feasibility of building version space learner which outputs a

consistent hypothesis of small size even in large constraint

networks. This holds true even if the examples were

noisy/inconsistent with the given hypothesis.

Key words:
Constraints, Learning, Acquisition, Decision Making

1. Introduction

Constraint Programming (CP) is a powerful paradigm to

solve a wide variety of combinatorial search problems. It

usually involves specifying a set of relations (called

constraints) over a set of decision variables. This

specification is then submitted to a special software to

search for one or more assignments satisfying the relations.

Modeling the problem as a Constraint Satisfaction Problem

(CSP) requires an expert in the field. This is due to two main

reasons. First, formulating the problem as a CSP requires

technical specialty that most of the users lack. The second

reason stems from the fact that modeling is tightly

correlated with the solving part in CSPs. In other words,

even if the user was able to model the problem as a CSP,

the modelled problem may not be the best possible

modeling for the solving phase. Of course, there might be

more than one model of the given problem and choosing the

right one depends heavily on the expert choice and the

problem tackled. This said, hiring an expert to model the

problem seems unrealistic in many situations. For instance,

when the modelled CSP represents a possible recommended

item of an internet user or compatibility constraints for a

personalized matchmaking agent.

As the CSP solving methods are mature enough and

generally acceptable by the CP community, the modeling

part remains to be one of the main bottlenecks when it

comes to adopting CP techniques. For CSPs to be applicable

to a wider range of applications, there must be some sort of

automation in the modeling part. This automation usually

assumes having access to the user data (i.e., past activities)

and the goal is to utilize the user profile in order to learn a

given CSP. Therefore, learning the constraints from data is

an important step towards making CSPs, and CP tools in

general, possible candidates in domains where hiring CP

experts is unexpected.

In this report, we are interested in inducing a CSP that

reflects the user constraints given his past activities. Usually

this can be done either by interacting with the user and

asking him for labels of carefully chosen instances (active

learning) or by assuming a set of labelled instances is given

(passive learning). In either case, our goal is clearly

different from the concept of constraint reformulation

where in the latter the constraints are assumed to be existed

but for some reasons, we need to reformulate them in

another more efficient way. In our case, there are no

constraints in the first place.

The next section provides the necessary background

information. Section 3 discusses different methods for

constraints acquisition. Section 4 presents a theoretical

analysis for the generalization error of constraint

acquisition. Empirical evaluation of version space learner is

demonstrated in Section 5. Results discussion and some

interesting bias in the literature is discussed in Section 6. A

conclusion remark and future work is presented in Section

7.

2. Preliminaries

We adopt the notations and the settings as presented in the

literature [1,2]. We assume a set of n variables X = {x1,

x2, . . ., xn} with the same domain of natural numbers D =

{0, 1, 2, . . ., m}. Furthermore, there is a set of

relations {r1, r2, . . . rt} constituting our language Γ. The

language is of fixed arity k. That is, the scope of any relation

ri ∈ Γ is bounded by a constant k ≥ 2.

The bias 𝐵Γ is the set of all possible constraints

constructed from Γ. That is, a constraint ci ∈ 𝐵Γ if and

only if ci can be represented as a combination of

t relations in Γ. Notice that by bounding the relations arity,

the size of 𝐵Γ is polynomial in n. In particular, for every k

subset of the n variables, there is

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

165

k!|Γ| possible relations. Thus, | 𝐵Γ | = k! (𝑛
𝑘

) t which is

polynomial in n. For the easiness of notation, we use rij in

short for the relation r(xi,xj) for any relation r in Γ when k

= 2.

Example 1 (Bias). Assume X = {x1,x2,x3}, D = {0,1} and Γ

= {=,≠}. Then BΓ = {=12, =13, =23, ≠12, ≠13, ≠23}.

A concept f is a mapping from Dn to {0,1}. Let us denote

the map of f(x) to 0 as x being a solution and to 1 by x being

a non-solution. We refer to the set of solutions D’⊆ Dn in f

by 𝑓−1(0)

Example 2 (Concept). Consider the previous example and

the constraint network C = {=ij}∀i < j ≤ n. The network has

only two solutions: s0 = (0,0,...,0) and s1 = (1,1,...,1). A

concept f for such network is the one that assigns f(s0) and

f(s1) to 0 and the rest to 1.

A representation of a concept f is a constraint network C

such that f−1(0) = sol(C) where sol(C) is the set of solutions

for C. A concept f is representable by a bias BΓ if there is a

constraint network C = {c1,c2,...,cy} such that ci ∈ BΓ for all

i ∈ {1,2,...,y} and sol(C) = f−1(0). For instance, Consider the

previous example, it is obvious that f−1(0) = {s0,s1}. The

class concept CBΓ is the set of all concepts representable in

BΓ. Note that, for every concept f ∈ CBΓ , there could be

many representations of f .

Example 3. Recall the previous example. There are many

representations of f. In particular, any constraint network C

such that sol(C) = {s0,s1} is a representation of f. Two

possible networks are =12,=23 and =12, =13.

As one may expect, the size of CBΓ is usually very small

compared to the number of possible constraint networks.

For example, all over-constrained networks are represented

by a single concept which maps every element in Dn to 1. In

this work, we fix Γ to {≠,≥,≤} and k to 2. In other words,

we are interested in the learnability of binary constraint

networks. For simplicity, we use C instead of CBΓ and B

instead of BΓ if it is clear from the context.

3. Related Work

Recently, Constraint Acquisition has received a

considerable attention from the Constraint Programming

(CP) community [3, 4, 5, 1, 2]. We classify the existed work

into two classes: active and passive acquisition methods. In

contrast to the active methods, the passive ones assume no

interaction between the learner and the user. In passive

methods, the learner has access to a set of training examples.

Those examples are fixed apriori and classified into positive

(solutions to the target network) and negative examples

(non-solutions). Interestingly, the prominent approach for

passively learning constraints is through searching the

version space [2, 6, 7]. In other words, the learning problem

is searching the hypothesis space for a hypothesis (i.e. a

constraint networks) that accepts all positive examples and

none of the negative ones. Clearly, the number of all

consistent constraint networks is very large which urges

people in the community to look for efficient ways to

represent it. Almost all these attempts adopt the concept of

most specific or most general hypotheses or both of them to

implicitly maintain the version space. Moreover, as the

learning process goes incrementally from most specific to

most general, an ordering over the hypothesis space is

usually defined. Notably, most of the attempts take the

solution set of a given constraint network as a base line of

this ordering. That is, a constraint network (or a hypothesis)

C1 is more general than another one C2 if and only if the

solution set of C2 is a subset of the solution set of C1. This

gives arise to a partial order over the version space. Next,

we give more details to the relevant passive methods.

Formulating the problem as a version space learning

problem was first described in [6] where an algorithm

(called ConAcq) based on implicit representation of the

version space was given. In [7], ConAcq was extended to

handle redundant constraints in order to solve the problem

efficiently. A constraint ci is redundant with regard to a

network C if the removal of ci eliminates no solution in C.

In [2], both attempts have been extended to show how to

solve the version space learning through SAT. The main

idea of the conacq algorithm is to model the problem of

updating the hypothesis space (i.e. current version space) as

a satisfiability problem. Therefore, the work developed a

clausal theory where consistent hypotheses correspond to

the models of the theory. By doing this, any typical

operation on the versions space has an equiv- alent

operation in the underlying theory. For instance, checking

whether the version space is empty corresponds to testing

whether the underlying problem is unsatisfiable. The work

assumes binary constraints and a set of constraints called

library is given. The library works as a bias to the learner

(any hypothesis is a combination of the library elements).

More precisely: a set of variables X = {x1,x2,...,xn} and their

domains D(x1), D(x2), . . . , D(xn) are known to the learner

(called vocabulary). The learner also has an access to a

library of binary constraints B. It is assumed implicitly that

any constraint of a possible target network is simply a

combination of the relations in the library. This is due to the

admissibility condition in ConAcq. A constraint ci is

admissible with regard to a library B, if ci can be represented

as conjunction of the constraints in B. A constraint network

C is admissible with regard to B if every contraint ci ∈ C is

admissible.

Example 5 (Admissiblity). Assume X = {x1, x2, x3} each

with D(xi) = {1,2,3} ∀i ∈ {1,2,3} a possible library B is {x1

> x3,x3 > x2,x1 = x3}. A possible admissible network in this

example is x1 ≥ x3.

Therefore, the problem is: given a library B and a training

set E, find a constraint network that is admissible to B and

consistent with E. The work in [4] extend the conacq

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

166

algorithm by incorporating arguments. Arguments can be

viewed as an additional knowledge to the learner given by

an expert. In that work, an argument is a set of constraints

provided with each example. The work showed that

incorporating arguments has reduced the size of the version

space to roughly 50% to 75%.

4. Theoretical Analysis on The Generalization

Error of Constraint Acquisition

In this section, we investigate the generalization error of the

ConAcq algorithm. We first discuss the generalization error

of learning a binary constraint between two variables xi,xj ∈

X. Then, we extend the discussion to the binary CSPs case.
Definition 1 (Generalization Error). The generalization

error of a concept c, denoted as err(c), with respect to the

target c∗ is ∑ 𝑐(𝑥) ≠ 𝑐∗(𝑥)𝑥∈𝐷𝑛

Consider the case where we have two variables xi and xj.

The question is: what is the maximum error we could have?

Let |rij| be the number of allowed tuples for a relation rij ∈

BΓ. Then we have

• |=ij |=|D|=m

• |>ij |=|<ij |=m(m-1)/2

• |≥ij |=|≤ij |=m+
𝑚(𝑚−1)

2

•|≠ ij|=m(m−1)

The problem is trivial: the error is at most m(m − 1)/2. This

happens when for example the learner outputs >ij or <ij

where the target is actually ≠ ij. Therefore, the learner

would misclassifies
1

2
m(m − 1) instances at most.

Proposition 1 (Error of learning a binary constraint).

Given two variables xi and xj with the same domain, a

language Γ = {≠, ≥, ≤} and a bias BΓ , ConAcq will learn

any binary constraint over xi and xj with generalization error

at most
1

2
m(m − 1)

The VapnikChervonenkis (VC) dimension is an important

measure in learning theory. In principle, it gives a way to

express the flexibility of a given concept class C. A set of

instances I ⊆ Dn is shattered with respect to a concept class

C if and only if C shows all the possible labels of I. A class

C is called to have a VC dimension of size d (denoted as

VCD(C) = d) iff there exists ashattered set of size d but no

shattered set of size d + 1. Notice that for any class VCD(C)

≤ log2|C|. To see this: shattering any set of size d, requires

at least 2𝑛 distinct concepts to realize the labellings {0, 1} .
The VC dimension is trivially 2 for the class of binary

constraints over two variables xi,xj ∈ X. In the case of |X| =

2, |C| = 6 which makes 22 a possible value where 23 > |C| is

not. Consider two instances (y1, y2), (y3, y4) such that y1 =

y2 and y1 = y3 but y2 ≠y4 for any domain values y1,y2,y3,y4 ∈

D. As y2 ≠y4 it is either y2 > y4 or y2 < y4. Let’s assume y2 <

y4. Then:

• {0,0} is realized by ≤ij.

• {1,1} is realized by >ij.

• {1,0} is realized by ̸=ij.

• {0,1} is realized by =ij.

Proposition 2 (VC Dimension of a binary Constraint).

The VC dimension of learning a binary constraint based on

bias B is 2.

5. Applied Analysis on The Generalization

Error of Constraint Acquisition

We have implemented a Java-based tool for the version

space learning. In our tool, we rely on explicit

representation for small concept classes (up to four

variables with three domain values). In the case of larger

CSPs, we represent the concept class implicitly by the most

specific and general concepts.

Generating the concept class: We create the concept class C

of n variables as follows:

1. Generate all possible undirected graphs over n

vertices. There are 2n(n−1)/2 such graphs.

2. For every undirected graph G(V,E), generate all

possible constraint networks. There are |E||Γ| such

networks.

3. For every network, maps it to its corresponding

concept f.

4. If f ∈C then C=C∪{f}.

The concepts in C represents all possible concepts arising

from binary CSPs over language Γ.

Sampling from the version space: Given an integer r > 0, we

sample from the version space as follows:

1. Generate all undirected graphs with n vertices and

r edges. There are (𝑛
𝑟
)such graphs.

2. Look for a consistent concept in those graphs.

3. If no concept is found, increase the value of r by

one and Repeat (1) to (3).

4. If r > n(n − 1)/2, report collapsing.

As the number of networks is exponential in n, r acts like a

bias parameter for the type of consistent concepts we are

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

167

looking for. For instance, if we are interested in consistent

concepts represented by simplest networks, we can set r to

a small value. Indeed, in the worst case scenario we may

generate exponentially many inconsistent networks before

reaching a consistent one. To simplify this process we

implemented three methods that trying to return

simplest,complete or average consistent networks

corresponds to initializing r to 1, n(n − 1)/2 or n(n − 1)/4

respectively.

In this section, we present an experiment over the number

of examples a consistent algorithm needs before converging.

Our approach is as follow:

1. Fix a tolerance constant ε to 0.05 and create a

random hidden target f∗ which represents a

constrained network with the following

parameters: n=6,m=3,Γ∈{Γ1,Γ2}whereΓ1

={= ̸,=,≥,≤,>,<}andΓ2 ={≠, =} and density d ∈

[0.1, 1) with 0.1 increment value for each

iteration.

2. Each time we select randomly 10 ≤ i ≤ 500

instances and label them according to f∗ with

increment value of 10 in each iteration.

3. Randomly sample a concept f’ from the current

version space and check its generalization error.

4. We stop when either i exceeds 500 or when f’

converges, err(f’) ≤ 0.05 × 36 ≈ 36.

We vary the density of the target network and get the

average of examples needed before converging for 10 target

networks. Figure 1 shows the average number of examples

needed to output a concept f* within ε error from the target

f* . In this experiment, we never reached i > 100 which

means we always get an ε−approximation of the target

without revealing 95% of the possible labels. Furthermore,

we look for the simplest consistent networks (initializing r

to 1 in the previous section). This due to the fact that

simplest explanations are more preferred to complex ones

in machine learning (a.k.a Occam’s Razon principle).

Fig. 1 The average number of examples needed to converge for two

languages Γ1 and Γ2.

6. Discussion

Perhaps the first thing that a machine learning practitioner

would spot on the literature is the usual bias assumption.

Clearly, the goal of the bias is make sure the learner output

something sensible to the domain and to escape from the

exponential growth when blindly searching for the target

network. For instance, in graph coloring problems, a bias

would assure that every possible connected variables has

distinct colors. Without bias the problem of learning

constraints can be viewed as a learning relation problem. In

its most general form: the solution set of the target could be

any subset of Dn and the constraint networks could be any

undirected graph where each constraint is defined as a set

of allowed tuples. The bias in the literature is usually

defined as a set of arithmetic relations (<, >, =). However,

one could define his own bias as set of tuples that any k

variables could have. We do not know any class of CSPs

that can be describes with the latter bias and finding one

class of CSPs with such bias would be interesting. But even

with the bias assumption, the experimental results presented

in the literature are usually limited to small number of

variables (5 to 15)[8, 2]. The target networks gets bigger as

we assume further capabilities of the user as in the case of

QuiAcq where the problem with over 80 variables were

experimented [1, 5].
The assumption of partial queries, i.e., that the user is able

to classify a subset of variables values as positive or

negative, is too strong. Usually, users do not have the

cognitive nor the patience to be able to do this. Moreover,

the complexity analysis of QuAcq assumed the example

with the most violated constraints has been chosen. In

reality, it could be difficult to know which example

violating most of the constraints. Although the bias is

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

168

polynomial, there could be exponentially many such

examples [9].

7. Conclusion

In this work, we discussed different methods in the

literature aimed at learning the constraints. We classified

the methods based on the interaction nature: passive or

active. We then studied the problem of learning binary

constraints and showed the generalization error of the

version space learner assuming an adversary setting. Future

work includes investigating the learnability and the

generalization error of actively learning constraints.

References
[1] Robin Arcangioli and Nadjib Lazaar. Multiple constraint

acquisition. In Workshop on Intelligent Personalization (at

IJCAI), 2015.

[2] Christian Bessiere, Remi Coletta, Frdric Koriche, and Barry

OSullivan. A sat-based version space algorithm for acquiring

constraint satisfaction problems. In Joo Gama, Rui Camacho,

PavelB. Brazdil, AlpioMrio Jorge, and Lus Torgo, editors,

Machine Learning: ECML 2005, volume 3720 of Lecture

Notes in Computer Science, pages 23– 34. Springer Berlin

Heidelberg, 2005.

[3] Srinivas Padmanabhuni, Jia-Huai You, and Aditya Ghose. A

framework for learning constraints: Preliminary report. In

Grigoris Antoniou, AdityaK. Ghose, and Mirosaw

Truszczyski, editors, Learning and Reasoning with Complex

Representations, volume 1359 of Lecture Notes in Computer

Science, pages 133–147. Springer Berlin Heidelberg, 1998.

[4] K. Shchekotykhin and G. Friedrich. Argumentation based

constraint acquisition. In Data Mining, 2009. ICDM ’09.

Ninth IEEE International Conference on, pages 476–482,

Dec 2009.

[5] Christian Bessiere, Remi Coletta, Emmanuel Hebrard,

George Katsirelos, Nadjib Lazaar, Nina Narodytska, Claude-

Guy Quimper, and Toby Walsh. Constraint acquisition via

partial queries. In Proceedings of the Twenty-Third

International Joint Conference on Artifi- cial Intelligence,

IJCAI ’13, pages 475–481. AAAI Press, 2013.

[6] Remi Coletta, Christian Bessi`ere, Barry O’Sullivan, Eugene

C. Freuder, Sarah O’Connell, and Jo ̈el Quinqueton. Semi-

automatic modeling by constraint acquisition. In Principles

and Practice of Constraint Programming - CP 2003, 9th

International Conference, CP 2003, Kinsale, Ireland,

September 29 - October 3, 2003, Proceedings, pages 812–816,

2003.

[7] Christian Bessiere, Remi Coletta, EugeneC. Freuder, and

Barry OSullivan. Leveraging the learning power of examples

in automated constraint acquisition. In Mark Wallace, editor,

Principles and Practice of Constraint Programming CP 2004,

volume 3258 of Lecture Notes in Computer Science, pages

123–137. Springer Berlin Heidel- berg, 2004.

[8] Christian Bessi`ere, Remi Coletta, Barry O’Sullivan, and

Mathias Paulin. Query-driven constraint acquisition. In

IJCAI 2007, Proceedings of the 20th International Joint

Conference on Artificial Intelligence, Hyderabad,

[9] Christian Bessiere, Remi Coletta, and Nadjib Lazaar. Solve a

constraint problem without modeling it. In 26th IEEE

International Conference on Tools with Artificial Intelligence,

ICTAI 2014, Limassol, Cyprus, November 10-12, 2014,

pages 1–7, 2014.

 Eisa Alanazi received his B.Sc. degree in

Information Systems from King Saud

University, in 2007, and the MSc and PhD

degree from the University of Regina,

Canada in 2011 and 2017 respectively. He is

currently an Assistant Professor at the

Department of Computer Science, College of

Computers and Information Systems in

Umm Al-Qura University in Saudi Arabia.

His research interests include preference learning and reasoning.

