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Summary 
In this work, we analyze the generalization error for learning a 

constrained problem, also known as a constraint acquisition 

problem. We consider the problem of learning constraints over 

finite and discrete domains (of variables) analyze the 

generalization error of the well-known version space learning 

algorithm. We show that a consistent learner would errs at most 

m(m−1)/2 times for a discrete network with variables having m 

domain values.  Furthermore, we empirically demonstrate the 

feasibility of building version space learner which outputs a 

consistent hypothesis of small size even in large constraint 

networks. This holds true even if the examples were 

noisy/inconsistent with the given hypothesis.  
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1. Introduction 

Constraint Programming (CP) is a powerful paradigm to 

solve a wide variety of combinatorial search problems. It 

usually involves specifying a set of relations (called 

constraints) over a set of decision variables. This 

specification is then submitted to a special software to 

search for one or more assignments satisfying the relations. 

Modeling the problem as a Constraint Satisfaction Problem 

(CSP) requires an expert in the field. This is due to two main 

reasons. First, formulating the problem as a CSP requires 

technical specialty that most of the users lack. The second 

reason stems from the fact that modeling is tightly 

correlated with the solving part in CSPs. In other words, 

even if the user was able to model the problem as a CSP, 

the modelled problem may not be the best possible 

modeling for the solving phase. Of course, there might be 

more than one model of the given problem and choosing the 

right one depends heavily on the expert choice and the 

problem tackled. This said, hiring an expert to model the 

problem seems unrealistic in many situations. For instance, 

when the modelled CSP represents a possible recommended 

item of an internet user or compatibility constraints for a 

personalized matchmaking agent. 

As the CSP solving methods are mature enough and 

generally acceptable by the CP community, the modeling 

part remains to be one of the main bottlenecks when it 

comes to adopting CP techniques. For CSPs to be applicable 

to a wider range of applications, there must be some sort of 

automation in the modeling part. This automation usually 

assumes having access to the user data (i.e., past activities) 

and the goal is to utilize the user profile in order to learn a 

given CSP. Therefore, learning the constraints from data is 

an important step towards making CSPs, and CP tools in 

general, possible candidates in domains where hiring CP 

experts is unexpected. 

In this report, we are interested in inducing a CSP that 

reflects the user constraints given his past activities. Usually 

this can be done either by interacting with the user and 

asking him for labels of carefully chosen instances (active 

learning) or by assuming a set of labelled instances is given 

(passive learning). In either case, our goal is clearly 

different from the concept of constraint reformulation 

where in the latter the constraints are assumed to be existed 

but for some reasons, we need to reformulate them in 

another more efficient way. In our case, there are no 

constraints in the first place. 

The next section provides the necessary background 

information. Section 3 discusses different methods for 

constraints acquisition. Section 4 presents a theoretical 

analysis for the generalization error of constraint 

acquisition. Empirical evaluation of version space learner is 

demonstrated in Section 5. Results discussion and some 

interesting bias in the literature is discussed in Section 6. A 

conclusion remark and future work is presented in Section 

7. 

2. Preliminaries 

We adopt the notations and the settings as presented in the 

literature [1,2]. We assume a set of n variables X = {x1, 

x2, . . ., xn} with the same domain of natural numbers D = 

{0, 1, 2, . . ., m}. Furthermore, there is a set of 

relations {r1, r2, . . . rt} constituting our language Γ. The 

language is of fixed arity k. That is, the scope of any relation 

ri ∈ Γ is bounded by a constant k ≥ 2. 

The bias 𝐵Γ  is the set of all possible constraints 

constructed from Γ. That is, a constraint ci ∈ 𝐵Γ  if and 

only if ci can be represented as a combination of 

t relations in Γ. Notice that by bounding the relations arity, 

the size of 𝐵Γ is polynomial in n. In particular, for every k 

subset of the n variables, there is 
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k!|Γ| possible relations. Thus, | 𝐵Γ | = k! (𝑛
𝑘

) t which is 

polynomial in n. For the easiness of notation, we use rij in 

short for the relation r(xi,xj) for any relation r in Γ when k 

= 2.  

Example 1 (Bias). Assume X = {x1,x2,x3}, D = {0,1} and Γ 

= {=,≠}. Then BΓ = {=12, =13, =23, ≠12, ≠13, ≠23}.  

A concept f is a mapping from Dn to {0,1}. Let us denote 

the map of f(x) to 0 as x being a solution and to 1 by x being 

a non-solution. We refer to the set of solutions D’⊆ Dn in f 

by 𝑓−1(0)  

Example 2 (Concept). Consider the previous example and 

the constraint network C = {=ij}∀i < j ≤ n. The network has 

only two solutions: s0 = (0,0,...,0) and s1 = (1,1,...,1). A 

concept f for such network is the one that assigns f(s0) and 

f(s1) to 0 and the rest to 1.  

A representation of a concept f is a constraint network C 

such that f−1(0) = sol(C) where sol(C) is the set of solutions 

for C. A concept f is representable by a bias BΓ if there is a 

constraint network C = {c1,c2,...,cy} such that ci ∈ BΓ for all 

i ∈ {1,2,...,y} and sol(C) = f−1(0). For instance, Consider the 

previous example, it is obvious that f−1(0) = {s0,s1}. The 

class concept CBΓ is the set of all concepts representable in 

BΓ. Note that, for every concept f ∈ CBΓ , there could be 

many representations of f .  

Example 3. Recall the previous example. There are many 

representations of f. In particular, any constraint network C 

such that sol(C) = {s0,s1} is a representation of f. Two 

possible networks are =12,=23 and =12, =13.  

As one may expect, the size of CBΓ is usually very small 

compared to the number of possible constraint networks. 

For example, all over-constrained networks are represented 

by a single concept which maps every element in Dn to 1. In 

this work, we fix Γ to {≠,≥,≤} and k to 2. In other words, 

we are interested in the learnability of binary constraint 

networks. For simplicity, we use C instead of CBΓ and B 

instead of BΓ if it is clear from the context. 

3. Related Work   

Recently, Constraint Acquisition has received a 

considerable attention from the Constraint Programming 

(CP) community [3, 4, 5, 1, 2]. We classify the existed work 

into two classes: active and passive acquisition methods. In 

contrast to the active methods, the passive ones assume no 

interaction between the learner and the user. In passive 

methods, the learner has access to a set of training examples. 

Those examples are fixed apriori and classified into positive 

(solutions to the target network) and negative examples 

(non-solutions). Interestingly, the prominent approach for 

passively learning constraints is through searching the 

version space [2, 6, 7]. In other words, the learning problem 

is searching the hypothesis space for a hypothesis (i.e. a 

constraint networks) that accepts all positive examples and 

none of the negative ones. Clearly, the number of all 

consistent constraint networks is very large which urges 

people in the community to look for efficient ways to 

represent it. Almost all these attempts adopt the concept of 

most specific or most general hypotheses or both of them to 

implicitly maintain the version space. Moreover, as the 

learning process goes incrementally from most specific to 

most general, an ordering over the hypothesis space is 

usually defined. Notably, most of the attempts take the 

solution set of a given constraint network as a base line of 

this ordering. That is, a constraint network (or a hypothesis) 

C1 is more general than another one C2 if and only if the 

solution set of C2 is a subset of the solution set of C1. This 

gives arise to a partial order over the version space. Next, 

we give more details to the relevant passive methods.  

Formulating the problem as a version space learning 

problem was first described in [6] where an algorithm 

(called ConAcq ) based on implicit representation of the 

version space was given. In [7], ConAcq was extended to 

handle redundant constraints in order to solve the problem 

efficiently. A constraint ci is redundant with regard to a 

network C if the removal of ci eliminates no solution in C. 

In [2], both attempts have been extended to show how to 

solve the version space learning through SAT. The main 

idea of the conacq algorithm is to model the problem of 

updating the hypothesis space (i.e. current version space) as 

a satisfiability problem. Therefore, the work developed a 

clausal theory where consistent hypotheses correspond to 

the models of the theory. By doing this, any typical 

operation on the versions space has an equiv- alent 

operation in the underlying theory. For instance, checking 

whether the version space is empty corresponds to testing 

whether the underlying problem is unsatisfiable. The work 

assumes binary constraints and a set of constraints called 

library is given. The library works as a bias to the learner 

(any hypothesis is a combination of the library elements).  

More precisely: a set of variables X = {x1,x2,...,xn} and their 

domains D(x1), D(x2), . . . , D(xn) are known to the learner 

(called vocabulary). The learner also has an access to a 

library of binary constraints B. It is assumed implicitly that 

any constraint of a possible target network is simply a 

combination of the relations in the library. This is due to the 

admissibility condition in ConAcq. A constraint ci is 

admissible with regard to a library B, if ci can be represented 

as conjunction of the constraints in B. A constraint network 

C is admissible with regard to B if every contraint ci ∈ C is 

admissible.  

Example 5 (Admissiblity). Assume X = {x1, x2, x3} each 

with D(xi) = {1,2,3} ∀i ∈ {1,2,3} a possible library B is {x1 

> x3,x3 > x2,x1 = x3}. A possible admissible network in this 

example is x1 ≥ x3.  

Therefore, the problem is: given a library B and a training 

set E, find a constraint network that is admissible to B and 

consistent with E. The work in [4] extend the conacq 
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algorithm by incorporating arguments. Arguments can be 

viewed as an additional knowledge to the learner given by 

an expert. In that work, an argument is a set of constraints 

provided with each example. The work showed that 

incorporating arguments has reduced the size of the version 

space to roughly 50% to 75%.  

4. Theoretical Analysis on The Generalization 

Error of Constraint Acquisition 

In this section, we investigate the generalization error of the 

ConAcq algorithm. We first discuss the generalization error 

of learning a binary constraint between two variables xi,xj ∈ 

X. Then, we extend the discussion to the binary CSPs case.  
Definition 1 (Generalization Error). The generalization 

error of a concept c, denoted as err(c), with respect to the 

target c∗ is ∑ 𝑐(𝑥) ≠ 𝑐∗(𝑥)𝑥∈𝐷𝑛  

Consider the case where we have two variables xi and xj. 

The question is: what is the maximum error we could have? 

Let |rij| be the number of allowed tuples for a relation rij ∈ 

BΓ. Then we have  

• |=ij |=|D|=m 

• |>ij |=|<ij |=m(m-1)/2 

• |≥ij |=|≤ij |=m+
𝑚(𝑚−1)

2
 

•|≠ ij|=m(m−1)  

The problem is trivial: the error is at most  m(m − 1)/2. This 

happens when for example the learner outputs >ij or <ij 

where the target is actually ≠ ij. Therefore, the learner 

would misclassifies 
1

2
m(m − 1) instances at most.  

Proposition 1 (Error of learning a binary constraint). 

Given two variables xi and xj with the same domain, a 

language Γ = {≠, ≥, ≤} and a bias BΓ , ConAcq will learn 

any binary constraint over xi and xj with generalization error 

at most 
1

2
m(m − 1) 

The VapnikChervonenkis (VC) dimension is an important 

measure in learning theory. In principle, it gives a way to 

express the flexibility of a given concept class C. A set of 

instances I ⊆ Dn is shattered with respect to a concept class 

C if and only if C shows all the possible labels of I. A class 

C is called to have a VC dimension of size d (denoted as 

VCD(C) = d ) iff there exists ashattered set of size d but no 

shattered set of size d + 1. Notice that for any class VCD(C) 

≤ log2|C|. To see this: shattering any set of size d, requires 

at least 2𝑛 distinct concepts to realize the labellings {0, 1} .  
The VC dimension is trivially 2 for the class of binary 

constraints over two variables xi,xj ∈ X. In the case of |X| = 

2, |C| = 6 which makes 22 a possible value where 23 > |C| is 

not. Consider two instances (y1, y2), (y3, y4) such that y1 = 

y2 and y1 = y3 but y2 ≠y4 for any domain values y1,y2,y3,y4 ∈ 

D. As y2 ≠y4 it is either y2 > y4 or y2 < y4. Let’s assume y2 < 

y4. Then:  

• {0,0} is realized by ≤ij.  

• {1,1} is realized by >ij.  

• {1,0} is realized by ̸=ij.  

• {0,1} is realized by =ij.  

Proposition 2 (VC Dimension of a binary Constraint). 

The VC dimension of learning a binary constraint based on 

bias B is 2.  

5. Applied Analysis on The Generalization 

Error of Constraint Acquisition 

We have implemented a Java-based tool for the version 

space learning. In our tool, we rely on explicit 

representation for small concept classes (up to four 

variables with three domain values). In the case of larger 

CSPs, we represent the concept class implicitly by the most 

specific and general concepts.  

Generating the concept class: We create the concept class C 

of n variables as follows:  

1. Generate all possible undirected graphs over n 

vertices. There are 2n(n−1)/2 such graphs.  

2. For every undirected graph G(V,E), generate all 

possible constraint networks. There are |E||Γ| such 

networks.  

3. For every network, maps it to its corresponding 

concept f.  

4. If f ∈C then C=C∪{f}.  

The concepts in C represents all possible concepts arising 

from binary CSPs over language Γ.  

Sampling from the version space: Given an integer r > 0, we 

sample from the version space as follows:  

1. Generate all undirected graphs with n vertices and 

r edges. There are (𝑛
𝑟
)such graphs.  

2. Look for a consistent concept in those graphs.  

3. If no concept is found, increase the value of r by 

one and Repeat (1) to (3).  

4. If r > n(n − 1)/2, report collapsing.  

As the number of networks is exponential in n, r acts like a 

bias parameter for the type of consistent concepts we are 
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looking for. For instance, if we are interested in consistent 

concepts represented by simplest networks, we can set r to 

a small value. Indeed, in the worst case scenario we may 

generate exponentially many inconsistent networks before 

reaching a consistent one. To simplify this process we 

implemented three methods that trying to return 

simplest,complete or average consistent networks 

corresponds to initializing r to 1, n(n − 1)/2 or n(n − 1)/4 

respectively.  

In this section, we present an experiment over the number 

of examples a consistent algorithm needs before converging. 

Our approach is as follow:  

1. Fix a tolerance constant ε to 0.05 and create a 

random hidden target f∗ which represents a 

constrained network with the following 

parameters: n=6,m=3,Γ∈{Γ1,Γ2}whereΓ1 

={= ̸,=,≥,≤,>,<}andΓ2 ={≠, =} and density d ∈ 

[0.1, 1) with 0.1 increment value for each 

iteration.  

2. Each time we select randomly 10 ≤ i ≤ 500 

instances and label them according to f∗ with 

increment value of 10 in each iteration.  

3. Randomly sample a concept f’ from the current 

version space and check its generalization error.  

4. We stop when either i exceeds 500 or when f’ 

converges, err(f’) ≤ 0.05 × 36 ≈ 36.  

We vary the density of the target network and get the 

average of examples needed before converging for 10 target 

networks. Figure 1 shows the average number of examples 

needed to output a concept f* within ε error from the target 

f* . In this experiment, we never reached i > 100 which 

means we always get an ε−approximation of the target 

without revealing 95% of the possible labels. Furthermore, 

we look for the simplest consistent networks (initializing r 

to 1 in the previous section). This due to the fact that 

simplest explanations are more preferred to complex ones 

in machine learning (a.k.a Occam’s Razon principle).  

 

Fig. 1  The average number of examples needed to converge for two 

languages Γ1 and Γ2.  

6. Discussion 

Perhaps the first thing that a machine learning practitioner 

would spot on the literature is the usual bias assumption. 

Clearly, the goal of the bias is make sure the learner output 

something sensible to the domain and to escape from the 

exponential growth when blindly searching for the target 

network. For instance, in graph coloring problems, a bias 

would assure that every possible connected variables has 

distinct colors. Without bias the problem of learning 

constraints can be viewed as a learning relation problem. In 

its most general form: the solution set of the target could be 

any subset of Dn and the constraint networks could be any 

undirected graph where each constraint is defined as a set 

of allowed tuples. The bias in the literature is usually 

defined as a set of arithmetic relations (<, >, =). However, 

one could define his own bias as set of tuples that any k 

variables could have. We do not know any class of CSPs 

that can be describes with the latter bias and finding one 

class of CSPs with such bias would be interesting. But even 

with the bias assumption, the experimental results presented 

in the literature are usually limited to small number of 

variables (5 to 15)[8, 2]. The target networks gets bigger as 

we assume further capabilities of the user as in the case of 

QuiAcq where the problem with over 80 variables were 

experimented [1, 5].  
The assumption of partial queries, i.e., that the user is able 

to classify a subset of variables values as positive or 

negative, is too strong. Usually, users do not have the 

cognitive nor the patience to be able to do this. Moreover, 

the complexity analysis of QuAcq assumed the example 

with the most violated constraints has been chosen. In 

reality, it could be difficult to know which example 

violating most of the constraints. Although the bias is 
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polynomial, there could be exponentially many such 

examples [9]. 

7. Conclusion  

In this work, we discussed different methods in the 

literature aimed at learning the constraints. We classified 

the methods based on the interaction nature: passive or 

active. We then studied the problem of learning binary 

constraints and showed the generalization error of the 

version space learner assuming an adversary setting. Future 

work includes investigating the learnability and the 

generalization error of actively learning constraints. 
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