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Summary 
Reliability issues in embedded systems are becoming limiting 
factors while the demand for high performance and 
computational complexity continue to increase. Especially, 
systems operating under harsh conditions are prone to generate 
erroneous results. As embedded systems already house large 
datasets, traditional techniques to improve reliability such as task 
redundancy can be very costly in terms of memory space 
consumption and hence may cause performance degradation. In 
this paper, we propose a task-recomputation based approach that 
utilizes idle time frames of computational resources in order to 
iteratively recompute tasks to increase reliability of overall 
design without incurring any additional execution latency, area 
or extra memory space. We present our experimental evaluation 
and compare our results with a state-of-the-art technique. The 
experimental results collected using both task graphs extracted 
from benchmarks and automatically-generated task graphs show 
the effectiveness of the proposed approach. 
Keywords: 
Embedded systems, heterogeneous (hybrid) systems, 
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1. Introduction 

As the demand for high performance and computational 
complexity continue to increase in embedded systems, 
reliability issues are becoming limiting factors on appli-
cation scalability and long-term survivability in which such 
systems are operated. Given that erroneous results 
generated by super-fast power-aware architectures have no 
meaning, improving reliability of such systems has 
gathered much attention in recent years.  In today’s 
technology, reliability is considered as a primary 
optimization metric in computing systems. 
Embedded systems are widely used in controlling variety 
of applications ranging from portable devices to safety-
critical medical, automotive and space applications. Such 
systems are required to have extended life-times and long-
term availability with little or no maintenance. That is 
because such systems require very short repair time, 
closely available personnel and extensive data collection 
capabilities which can be very costly.  
With the recent advances in technology such as lower 
voltage values, higher clock frequencies and increased 
functionality, integrated circuits (ICs) have gotten denser 

causing lower capacitance inside the cells resulting in 
decreased natural resistance against transient errors, 
namely soft errors known as single event upsets (SEU). 
Soft errors are random and occur at unpredicted intervals; 
they are exposed as voltage glitches that cause 
computational errors in the output of functional units or bit 
flips in memory cells, but not a permanent damage to the 
circuit [28]. As a result, providing reliable (correct) 
execution of tasks on respective processing elements is 
becoming increasingly critical in embedded systems and 
de-signers are required to incorporate reliability into the 
overall system development cycle. 
Even though such faults affect systems in general, 
embedded systems designers are faced with unique 
challenges in order to meet user demands of increased 
functionality and reliability under tight constraints. First, 
these systems impose tight performance and area 
constraints requiring the execution of a set of tasks to meet 
a deadline with limited amount of resources. Second, high 
performance means high power consumption which limits 
these devices’ operational lifetime since they are mostly 
dependent on batteries. Therefore, techniques such as 
check-pointing and roll back and recovery cannot be 
applied because they are costly in terms of execution delay. 
Third, since these systems are cost sensitive and limited by 
small packaging size and weight, they use small attached 
memory or diskless designs that have no means of 
expanding other than upgrading which may cost more than 
the system itself. Additionally, the dataset sizes and 
software in such systems have grown to occupy a 
considerable memory space. As a result, standard 
techniques to improve reliability such as duplication [21] 
(i.e., per-forming the computation more than once and 
storing the result in memory) can be very costly in terms of 
memory space consumption.   
In this paper, we propose to utilize task recomputation in 
order to improve the overall system reliability of 
heterogeneous multi-core embedded architectures without 
incurring any overhead on performance, area or memory 
space consumption. Given the task graph representation of 
an application, our approach iteratively tries to recompute 
the outputs of tasks (from least reliable to most) using 
available input values and idle computation-al resources; 
and then, pass the recomputed outputs to the successor 
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task(s) without storing it in memory. By doing so, our goal 
is to create a parallel execution path and use this output if 
the original task fails to produce the correct result. Our 
approach makes use of a technology library that offers 
alternatives to each task with different reliability and delay 
metrics. After initial schedule of the tasks on available 
processing elements (PEs) using a reliability-centric 
scheduling algorithm [6], our approach iteratively searches 
for idle time frames of PEs and available inputs to 
recompute the output of a task before each of its successors 
start executing. If the out-puts of predecessor tasks are 
alive in memory, our approach assigns the recomputation 
of the task to an avail-able PE; otherwise, it searches if 
there is available idle time on the same or different PE to 
recompute the output of the predecessor task(s) that are not 
available. If the idle time available is smaller than the 
task’s execution time, we recompute the task and adjust the 
schedule accordingly. If the resulting latency is greater 
than the given execution deadline, the task is not 
recomputed. This process is iterated until all tasks in the 
task graph are visited. 
The rest of this paper is organized as follows. Section 2 
briefly reviews previous research and sets the stage for our 
work. Section 3 provides a background on types and 
sources of failures in embedded systems and how they 
occur. Section 4 presents the way in which the problem is 
formulated. Section 5 illustrates our approach through an 
example. Then, the details of the proposed approach are 
given in Section 6. After presenting our experimental 
evaluation in Section 7, we conclude the paper and give 
future directions in Section 8. 

2. Related Work 

As reliability has become a bottleneck on the next 
generation of embedded systems [10, 29], researchers 
proposed several hardware and software based solutions at 
different abstraction levels [16, 22, 26, 27]. At the system 
level, a recent work by Bolchini and Miele [15] provide a 
reliable design flow through improving the standard 
system-level synthesis process. They suggest an adaptive 
technique that adds another layer before operation 
scheduling and resource mapping to introduce reliability-
awareness. Many notable research efforts based on 
HW/SW co-design [24, 25] are reported in the literature. 
Tosun et al. [7] introduce a hardware/software co-design 
solution, which considers reliability as a main optimization 
metric under performance and area constraints during the 
scheduling phase by making use of a component library 
with multiple versions of the same task with different 
reliability, area and latency measures. Huang et al. [14] 
propose a combined hardware/software replication 
technique using multi-objective evolutionary algorithms 

(MOEA) that result in an optimized solution to map tasks 
to various PEs. Their technique gives an exact task and 
message schedule and applicable amount of hard-
ware/software redundancy. Li et al. [11] introduce 
reliability into co-design through allocation and scheduling 
algorithms that selectively duplicate tasks during idle times 
of functional resources, taking advantage of mutually 
exclusive tasks that have overlapping execution times. 
Bolchini et al [17] illustrate methodologies for integrating 
fault detection properties by introducing critical sections 
(i.e., tasks that require reliability) into system 
specifications and performing partitioning to provide an 
optimized solution under area, latency and power 
constraints. Their approach targets at designing redundant 
elements, such as checker and fault tolerant 
communication links. Glaß et al. [9] introduce a technique 
that synthesizes reliable datapaths that are optimal with 
respect to multiple objectives. They start from behavioral 
description and select resources with different area, latency 
and reliability values simultaneously, and then, optimize 
these parameters and implement resource sharing in or-der 
to allow redundancy for improved design reliability. 
In high level synthesis, Tosun et al. [6] propose an 
algorithm that utilizes most reliable version of each 
component in the design bounded by area and latency 
constraints. Furthermore, [8] put forward an integer linear 
programming (ILP) formulation that uses a 
characterization library with different versions of hardware 
components to schedule operations in order to increase 
reliability. Moreover, several researchers [20, 23, 28] 
propose allocation and scheduling algorithms to increase 
reliability in heterogeneous embedded systems. He et al. 
[12] present two heuristic scheduling algorithms that 
iteratively schedule nodes to processing elements in such a 
way that a minimum reliability cost is obtained under 
timing constraints. Qin et al. [13] describe a reliability cost 
driven scheduling scheme for real-time distributed 
heterogeneous systems that result in improved system 
reliability with reduced schedule at no extra area cost. 
Recomputation technique was studied first in the con-text 
of register allocation by Briggs et al [31]. Their meth-od 
rematerializes (recomputes) a register value when it is 
cheaper than storing and retrieving it from memory. 
Kandemir et al. [33] utilize recomputation to reduce 
memory space consumption of data intensive applications 
in memory-constrained embedded processing. Koc et al 
[18] use data recomputation to reduce the memory space 
consumption of data-intensive applications. Then, they aim 
at reducing the number of off-chip memory accesses in 
order to improve the performance of Chip Multi-
Processors in [32]. Most prior research on reliability 
focuses mainly on optimizing reliability by keeping area-
performance-power parameters at minimum and adding a 
lot of complexity while the recomputation concentrates on 
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improving the performance or memory space consumption 
of computing systems. To our knowledge, there is no re-
search that utilizes recomputation to improve reliability of 
heterogeneous multi-core embedded systems. Our 
approach improves reliability without incurring any 
performance, area or latency overhead. 

3. Sources and Types of Failures in 
Embedded Systems 

The accelerating pace in technology scaling (65nm and 
beyond) fueled by reduction in transistor size and voltage 
levels allowed for tremendous advances in embedded 
systems functionality but with concomitant increase in 
failures. That is, the reduced transistor size and the 
increased clock frequencies have minimized the effects of 
electrical and latching window masking resulting in an 
increased threat of errors in a processor’s functionality 
[29]. Such errors, in embedded systems, can be induced 
through different radiation sources. More specifically, 
when cosmic rays collide with environmental particles, 
they produce both high energetic proton and neutron 
precipitations; however, neutrons are of greater concern 
because they are capable of penetrating most of human 
made circuit designs. Another source of radiation occurs 
when low energy cosmic neutrons, which are uncharged 
particles, interact with circuit material and become 
electrically charged. Moreover, packaging material such as 
solder paste and molding compounds result in alpha 
particle radiation; which can also be emitted by radioactive 
elements that are found in abundance in our environment 
[3]. Another significant source of radiation is thermal 
neutrons; however, they are effectively accounted for by 
removing borophosphosilicate glass in recent processors 
[4]. The collision of these energetic particles with a 
sensitive area in a node result in different types of errors, 
namely single event effects (SEE), that can be classified as 
either soft or hard errors. 
Hard errors are ones that cause permanent damage to the 
circuit and occur in the form of single event latchups 
(SEL), produced when a particle strike cause an increased 
current in the circuit. Also, they can be manifested as 
single event burnouts (SEB), which are realized when a 
particle strike effects a power transistor resulting in a 
rupture [30]. However, hard failures are not of concern to 
us in this work because they should be accounted for by 
testing the hardware in the field, using simulation tools to 
analyze designs, and applying design improvements and 
mitigation schemes such as the ones in [27]. 
Soft errors, on the other hand, are single event upsets 
(SEU), which are wrong signals in the circuit (faults) that 
are random, occurring at unpredicted intervals, temporary, 
and do not cause a permanent damage to the circuit. They 

take the form of a single bit upset (SBU) caused by a bit 
flip in an element of the circuit (mostly memory); multiple 
bit upset (MBU), which causes more than one bit flip but is 
less likely to take place; and single event transients (SET) 
that cause voltage glitches (disruptions) [30]. The focus of 
this work is to increase resilience of embedded systems 
against soft errors, which have higher occurrence 
probabilities. According to the research done by IBM [35], 
a soft error rate of 4000 FIT (unit for expressing failure 
rate in electronic devices and one FIT equals one failure 
per billion hours) can occur in a processor’s silicon, of 
which half will affect the processor’s logic and half will 
affect the memory/cache. This number has been 
exponentially increasing because of decreased capacitance 
of today’s denser circuits; as a result, energetic particles 
have greater linear energy transfer (LET) effect 
(ionizations per unit distance) in circuits [5]. Such 
ionizations cause a charge collection, Qcollected on or near a 
sensitive region of the node (such as p-n junction) creating 
a voltage glitch and therefore altering the value produced 
by a processing unit or stored in memory. Soft errors occur 
when the collected charge, Qcollected, exceeds the critical 
charge, Qcritical, required to retain data, which has been 
decreasing resulting in a decreased natural resistance 
against soft errors. 

4. Problem Formulation  

4.1 System Modelling 

The functionality of an embedded system application is 
depicted as a task graph. A task graph is a directed acyclic 
graph, Gs(V, E), (e.g., one in Fig. 4). Each vertex node vi in 
V = {vi; i = 0, 1, 2, 3, …, n} represents an independent task 
performing various operations. The intercommunication 
between tasks is denoted by edges. The edges represent 
dependencies between tasks, E = {(vi, vj); i, j = 0, 1, …, n}. 
A task can start executing only after all its predecessors 
complete their executions. The result of a predecessor task 
is passed to its successors upon completion. Tasks are 
executed on various processing elements. Our target 
architecture is a multi-core embedded system composed of 
heterogeneous CPUs that have different reliability, latency 
and area values communicating through a software-
managed memory. These tasks are allocated and mapped 
to different PEs using a reliability-centric approach that 
makes use of a technology library to give the best 
reliability-optimized schedule under latency constraints. 
This algorithm is given in [7] and represents, in a sense, 
the state-of-the-art. 
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4.2 Reliability Calculations 

We calculate the reliability of the entire system 
considering reliability of each component. In its simplest 
form, reliability of a given task is defined as the probability 
that the task generates its intended output for a given time 
period knowing that it was functioning correctly at start 
time t0. It is a value from 0 to 1, where 1 represents 100% 
reliable output. Reliability models are formulated to match 
the system operation to a logical structure (that is used to 
calculate the reliability of the system) expressed as 
combinatorial reliabilities of its individual components [2]. 
The tasks are performed in a series or parallel pattern 
depending on when their inputs are available during the 
course of execution. However, in order to guarantee the 
successful execution of an application (represented by a 
task graph); the correct operation of each and every task is 
required. As a result, the original system has a series 
configuration in terms of reliability (i.e., failure of any 
single task interrupts the path and causes the whole system 
to generate an erroneous output) such as the one shown in 
Fig.1. The reliability of a single task is represented by the 
probability of success of the task, Pi, and is independent of 
the rest of the system. The reliability of the whole system, 
R, is the intersection of the probability of success of each 
task, which is expressed in (1), and then, can be re-written 
as shown in (2). Given that each task’s failure rate is 
constant and is independent of their usage time, Equation 
(2) simplifies to Equation (3), where Rs represents the 
system reliability, Ri is the reliability of component i and n 
is the number of tasks in the task graph. 

   (1) 

  (2) 

    (3) 

The series configuration is the lowest bound in terms of 
reliability. In order to improve reliability, we need to add 
redundancy (i.e., add redundant tasks that would take over 
and perform computation in case of failure of the primary 
task). In our approach, redundancy is added by 
recomputing the outputs of tasks using idle times of 
processing elements. The reliability of a purely parallel 
system, such as the one shown in Fig.2, can be expressed 
as in (4), which reduces to (5). 

 
Fig. 2. Parallel reliability configuration graph. 

 
 (4) 

  (5) 

As a result, a recomputed task adds an alternative path that 
could be taken in case the original computation fails. In 
this paper, the reliability of the system after applying the 
proposed recomputation technique is calculated using a 
combination of series and parallel configuration. A 
recomputed task with its original task is considered as a 
parallel subsystem connected in series to the rest of the 
system. 

4.3 Memory Space Consumption Cost 

In order to determine the minimum memory space 
consumption required to store results of a scheduled task 
graph, the well-known left-edge algorithm [1] is employed. 
This algorithm was originally developed to find the 
minimum number of tracks used to connect points in 
channel routing [36]. With this algorithm, we start out by 
finding lifetime intervals of each result generated by each 
task. Lifetime intervals are defined by a starting position 
(left edge) on the x-axis representing the clock cycle at 
which the result is generated as an output of a task (its 
birth) and an ending position on the x-axis (right edge) 
depicting the latest time at which the result is referenced as 
an input to another successor task (its death). The intervals 
are assigned to tracks such that no two intervals in a track 
overlap with each other. Intervals are sorted in increasing 
order of left edge; that is, the interval with the least value 
(in clock cycles) of left edge is assigned to the first 
memory space (track), then the rest of the intervals are 
scanned to find the next interval whose birth time is greater 
than or equal to the death time of the previous interval (one 
assigned to first memory space) and, if found, gets 
assigned to the same memory space. This process is 
repeated until no more intervals can share the same track 
or memory space. 

 
Fig. 1. Series reliability configuration graph. 
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Afterwards, one color is considered at a time and assigned 
to each packed interval (sorted intervals on the same track). 
Then, the colored graph is created where each of the 
intervals represent one of the vertices with its assigned 
color and an edge between pairs corresponding to intervals 
that overlap. The minimum amount of memory space used 
is obtained by minimum coloring of the graph where each 
color represents the cost of memory space and all vertices 
with the same color are assigned to the memory space that 
represents the color. In the case when memory space 
consumption is assumed to be the same for all tasks, the 
total cost of memory space consumption is found by 
multiplying the total number of colors used to color the 
graph by the memory space cost. Nevertheless, in the case 
where different tasks implemented on different PEs have 
different memory cost values, the total memory space 
consumption is determined by the maximum resultant 
value of adding each set of overlapping intervals (given 
that each interval has a different memory space cost). 

4.4. Task Recomputation 

CDFG Task recomputation is used to reduce the amount of 
data that must be saved during an execution of an 
application by recovering this data from a small subset of 
available saved data when needed by another task instead 
of storing it in memory. As mentioned earlier, a task graph 
representation is used to demonstrate a given embedded 
system application. The execution latency of such a task 
graph is determined by the critical path, which is the path 
from source to sink node for which the sum of latency and 
communication costs is the maximum [34]. Depending on 
the properties of the task graph, such as amount of 
dependencies between tasks, a poor utilization of 
processing elements (PEs) may exist; i.e., not all 
computing resources are fully used all the time since they 
will be waiting on an existing task to be completed. As a 
result, it might be possible to perform re-computations 
using those idle time frames without incurring performance 
overhead. Hence, if a result of a task will not be needed for 
a certain amount of time, then it does not need to be stored 
in memory and, instead, can be recomputed before its 
successor task(s) if there exists enough idle time for the 
needed recomputations to take place. Thus, performing 
careful recomputations can result in a reduction of memory 
space consumption at no extra latency cost. In many cases, 
further memory reduction can be achieved by introducing a 
small amount of latency overhead, which can lead to a 
significant improvement in systems that are limited by their 
memories. In some cases, it is possible to recompute a 
certain task once and store it in memory for a certain 
number of clock cycles in order to be used by other 
successor tasks or recomputations and result in an 
improvement in memory space consumption. 

4.5. Target Architecture 

The target architecture used in the experiments is 
illustrated in Fig.3, which depicts a commonly used 
heterogeneous multi-core architecture in embedded 
systems. It is composed of a number of heterogeneous 
CPUs and a software-managed memory. CPUs (PEs) have 
different area, latency and reliability values and 
communicate through a shared bus. Each task in the task 
graph can have different implementation option on each 
available CPU but with different area, performance and 
reliability values (technology library). We assume that 
each task requires the same amount of memory in each PE. 
Given the task graph representation of an embedded 
application, performance deadline and technology library 
(such as the one given in Table 1), our method produces a 
schedule with allowed recomputations for a certain number 
and type of CPUs.  

5. Illustrative Example 

In order to show how task recomputation is utilized to 
increase reliability, let us consider the task graph given 
in Fig. 4 with 7 tasks and a latency deadline of 120 clock 
cycles. In this illustrative example, let us assume a 
heterogeneous embedded architecture with two 
processing elements, namely CPU1 and CPU2 (similar 
to one in Fig. 3 with 2 CPUs). The technology library, 
which specifies performance (delay) and reliability 
values of each task on the different PEs, is given in 
Table 1. Execution delays are given in clock cycles. 
The initial task allocation and scheduling are based on the 
reliability-centric co-design framework in [7]. First, each 
task is allocated and scheduled on the most reliable PE. 
Then, after finding earliest start times (EST) and latest start 
times (LST), freedom (F) of each task is calculated (Fi = 
LSTi - ESTi, where Fi is the freedom of vertex vi). The 
freedom is used to determine the priority (order) of 

 
Fig. 3. Target heterogeneous multi-core embedded architecture. 
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competing tasks to schedule to earlier control steps. If the 
resulting schedule exceeds the given latency deadline,  
performance optimization techniques are applied. To 
decrease overall latency, we identify the tasks that can be 
scheduled concurrently (but are running on the same CPU 
one after another) and assign them to different CPUs 
without violating dependency conditions. If the deadline is 
still not achieved, we iteratively assign slowest tasks in the 
critical path to faster CPUs. This step is repeated until the 
performance deadline is met. The initial schedule of the 
example task graph after performance optimizations is 
given in Fig. 5. 
As seen in Fig. 5, there is a considerable amount of idle 
time on CPU2 that can be utilized for recomputation in 
order to increase reliability. First, we incrementally check 
for each task starting with the least reliable one whether the 
available idle time allows us recomputing that specific task. 
There must be enough idle time on the CPU to recompute 
a single task before its successors. In addition, the results 
of predecessors of the task to be recomputed should be 
alive as not to increase memory space consumption. We 
assume that communication between tasks running on 
different CPUs takes 1 clock cycle, while communication 
between tasks on the same CPU is done in the same clock 
cycle. In this example, the least reliable task is task 2. 
There exists enough idle time to recompute this task before 
task 4, which is its only successor. The next least reliable 
task is task 1, which needs to have enough idle time on 
CPU2 to be recomputed before its successor tasks, namely 
tasks 2, 3 and 5. Also, in order for our reliability 

calculation to hold true, task 1 needs to be recomputed 
before task 2’ (recomputed task 2). None of 
the other tasks can be recomputed because of deadline and 
dependency constraints. Fig. 6 illustrates the schedule of 
the task graph after allowed recomputations. Note that 
tasks 1 and 2 are recomputed and the corresponding 
parallel execution paths to improve reliability are shown in 
Fig. 7. Using the combination of series and parallel 
reliability models, our method results in a reliability value 
of 0.926814 (compared to the original schedule with 
reliability of 0.885922). Please note that this improvement 
comes with no performance or memory overhead. We use 
left-edge algorithm described earlier in order to determine 
the memory space consumption. Assuming each task needs 
10 units of memory space to store its result, our design 
requires 30 units of memory space (same as the original 
one), which corresponds to the chromatic number of the 
corresponding conflict graph. 

6. Details of the Approach 

In multi-core architectures, some processing elements sit 
idle during the course of execution due to dependences or 
lack of parallelism. In this paper, we propose to utilize 
these idle time frames to iteratively recompute the outputs 

 
Fig. 4. Example task graph with seven tasks. 

Table 1. Reliability and Execution Delay Values for Tasks in Fig. 1 on 
Different Processing Elements 

Tasks 
1 2 3 4 5 6 7 

CPU 1 Rel. 0.979 0.975 0.999 0.983 0.989 0.980 0.980 
Delay 20 45 50 19 18 15 12 

CPU 2 Rel. 0.973 0.966 0.989 0.978 0.985 0.985 0.985 
Delay 13 15 15 17 15 17 14 

 
Fig. 7. Reliability configuration graph for recomputed schedule. 

Fig. 5. The initial schedule for the task graph in Fig. 1 after performance 
optimization. 

Fig. 6. The schedule for the task graph in Fig. 1 after possible 
recomputations. 
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1. INPUT: Gs(V, E), technology library, memory (Mmax),  area (Amax) and 
performance (Lmax) bounds. 

2. OUTPUT: modified schedule with possible recomputations 
3. Schedule Gs(V, E) using a reliability-centric approach 
4. for all  vi := 1 to n 
5.     calculate criticality(vi) 
6. for each vi with reliability from low to high 
7.     Search for idle time slots before successors of vi 
8.     if (idle time slot & predecessors’ outputs are available) 
9.          Recompute task before its successors and update schedule 
10.     else if (idle time slots are available to recompute task and 

predecessors’ inputs) 
11.     Recompute task and its predecessors and update schedule 
12.     else if (idle time slots and predecessor’ inputs are not available) 
13.        Add recomputation to schedule and calculate new latency, lnew  
14.        if (lnew > lmax) 
15.            Delete the recomputation 
16.            Report that task cannot be recomputed 
17.        end if; 
18.     end if; 
19. end for;     

of least reliable tasks in order to improve the reliability of 
the system by strengthening the weakest link in the chain. 
Three conditions need to be considered in order to apply 
task recomputation: 1) There must be available processing 
elements sitting idle to perform recomputation, 2) 
dependency conditions should not be violated, and 3) 
given constraints (e.g., latency, performance, memory 
space consumption, etc.) should be met. 
A sketch of the high-level algorithm describing the 
proposed approach is given in Fig. 8. In order to use a 
parallel reliability model, the recomputed versions of the 
same task need to be implemented on the same processing 
element before all of its successors. Consequently, we first 
identify the least reliable task in the schedule, and then 
check if there are available idle time frames to recompute 
before all its successors. If so, we check if the outputs of 
predecessors of the task to be recomputed are currently 
alive until the latest task to be recomputed. Then, we 
schedule a recomputation and calculate the respective 
latency to ensure that the performance deadline is met. If 
the outputs of any of the predecessors are not available, we 
try to find idle time slots to recompute them, and then, 
perform recomputation and calculate latency of the new 
schedule. If there are not enough idle times to recompute a 
task before all its successors, we check the next least 
reliable task and so on. We do this until all tasks in the task 
graph are visited. The recomputations are performed 
regardless if an error is present in the original computation 
or not. A simple switch or checker is used to determine the 
correct result to be used. 
If there exist two or more tasks that have the same 
reliability value and only one can be recomputed, the one 
with the highest criticality value gets selected. That is 
because a soft error in a critical task can have a higher 
probability of propagating to later tasks and having a more 
serious impact on the system, which leads not only to 
corrupt the output data but also to cause a loss of 
functionality and critical failures of processing elements. In 
this work, the criticality of a task depends on the number 
of tasks whose correct functionality is subject to the task in 
question. It is also possible that criticality of a task is given 
in the specification. Sometimes, it is possible to recompute 
a task before one of its successors and store it in memory 
for a few clock cycles to serve as alternative path for 
another successor if it does not cause an increase in 
memory space consumption. 
In some cases, we are faced with two possibilities: 
recomputing a task more than once or recomputing another 
task with a higher reliability value. After performing 
extensive experiments, we conclude that recomputing a 
different task achieves higher reliability improvement. 
More specifically, after recomputing a task once, its 
reliability increases (due to different parallel paths) and 
becomes higher than the rest of the tasks that have not been 

recomputed yet. So, treating the task and its recomputed 
version as one component and comparing it 
with the next candidate task to be recomputed, we find that 
the candidate task has lower reliability value. In order to 
have better reliability gains, our approach recomputes as 
many different tasks as possible to create alternative paths. 
Please note that our algorithm can easily be modified to 
work with an allowed performance and memory space 
overhead. 

6. Experimental Evaluation 

In order to show the effectiveness of our approach, we 
conducted experiments using two sets of task graphs: task 
graphs extracted from benchmarks and automatically-
generated task graphs using TGFF tool [19]. Our target 
architecture is shown in Fig. 3 which is a four-core 
heterogeneous embedded system in which processors 
communicate through a shared software-managed memory. 
Data transfers between tasks running on different CPUs 
takes 1 clock cycle, while communication between tasks on 
the same CPU is performed in the same clock cycle. 
Automatically-generated task graphs contain 9 to 49 tasks. 
Each task needs 10 units of memory space and has a 
different execution time and reliability value for each 
processor (technology library). The important 
characteristics of these graphs are given in the first four 
columns of Table 2. Column 1 gives the task graph label; 
column 2 indicates the number of tasks; column 3 gives the 
latency constraint that should be met; and, column 4 
reports the memory space consumption. Reliability values 
calculated using the approach in [7] are reported in column 
5. Please note that this approach represents, in a sense, 

Fig. 8. A high-level algorithm to schedule task recomputations. 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020 

 

196

 

state-of-the-art. Then, next column reports the reliability 
values after applying our task recomputation approach. We 
also report, in the next column, the reliability values of our 
approach if 25% increase in memory consumption is 
allowed (e.g., a task is recomputed before some of its 
successors, and then, is stored in memory to be used for 
the rest of successors). Last two columns show the 
reliability improvements our approach achieves over 
Reference [6]. As can be seen in the table, our approach 
brings between 5.6% - 12.6% reliability improvements 
(around 8.6% on the average) without any overhead and 
between 6.7% - 28.1% reliability improvements (around 
12.3% on the average) with an allowed increase in memory 
consumption. Our approach achieves higher reliability gain 
for TG 2 (compared to TG 1 and TG 3) even though TG 2 
utilizes less memory space and all have similar number of 
tasks. It is because the tasks in TG 1 have less 
dependences; hence, allowing our algorithm to generate 
more recomputation opportunities. It is similar for TG 6 
and TG 7. 
The second set of experimental evaluation using task 
graphs extracted from benchmarks is given in Table 3, 
which follows a similar format as that of Table 2. Column 
1 gives the name of the benchmark and next two columns 

show latency constraint and memory space consumption, 
respectively, for each benchmark. Column 4 reports the 
reliability values calculated using the approach in [7]. 
Then, columns 5 and 6 give the reliability values after 
applying our approach. Last two columns reports the 
reliability improvements over Reference [7]. Our approach 
brings between 3.4% - 23.40% improvements (around 
11.9% on the average) without any overhead and between 
9.4% - 29.4% reliability improvements (around 18.1% on 
the average) with an allowed increase in memory 
consumption. When we compare the reliability values of 
EW Filter (last two columns), we see significant 
improvement because increasing memory consumption for 
this benchmark creates more recomputation opportunities 
for the successor tasks. 
Notice that we did not include a separate column for 
execution latency in both tables as none of the methods 
exceeds the latency bound. Also, it is worth mentioning 
that recomputation would bring more significant 
improvement if applied to a homogeneous embedded 
system. As mentioned earlier, in order for the reliability 
calculation to work correctly, a task has to be recomputed 
in a similar manner before each successor which places a 
constraint on our algorithm; thus not all idle time frames 

Table 2. Reliability Values for Automatically-Generated Task Graphs Using the Approach in [6] and the Proposed Approach. 
 

Task 
Graph 
Label 

Number 
of Tasks 

Latency 
Bound 

Memory 
Consump. 

Reliability 

Ref. [6] 
Task Recomputation Improvement (%) 

Same Mem.  25% Increase Same Mem.  25% Increase 

TG 1 9 600 40 0.878744 0.928221 0.938390 5.630 6.788 

TG 2 10 115 30 0.832658 0.923863 0.923863 10.95 10.95 

TG 3 12 120 40 0.792224 0.840325 0.88768 6.072 12.05 

TG 4 14 140 40 0.870059 0.934611 0.944731 7.419 8.582 

TG 5 16 153 40 0.828850 0.894701 0.914316 7.945 10.31 

TG 6 20 180 60 0.822328 0.916983 0.945175 11.51 14.94 

TG 7 22 700 70 0.762702 0.801795 0.801795 6.720 6.720 

TG 8 49 420 130 0.579133 0.652257 0.741849 12.63 28.10 

 
Table 3. Reliability values for task graphs extracted from benchmarks using the approach in [6] and the proposed approach. 

 

Benchmark Latency 
Bound 

Memory 
Consump. 

Reliability 

Ref. [6] 
Task Recomputation Improvement (%) 

Same Mem. 25% Increase Same Mem. 25% Increase 
Diff. Equation 

Solver 55 30 0.87227 0.954305 0.954305 9.405 9.405 

EW Filter 88 70 0.655482 0.67777 0.765061 3.400 16.72 

AR Filter 75 50 0.545696 0.607155 0.636386 11.26 16.62 

FIR Filter 165 40 0.706534 0.871886 0.914509 23.40 29.44 
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are utilized properly. However, in a homogeneous 
architecture, all PEs will have the same metrics giving the 
chance for tasks to be recomputed on any available PE 
before each successor. 
As seen in both sets of experimental evaluations, our 
approach gives, in most cases, higher reliability gains if it 
is allowed to utilize extra memory space. It is because this 
extra space is used to store recomputed values in memory 
and keep them available for recomputations of successor 
tasks. However, Diff. Equation, TG2 and TG7 have the 
same reliability values with/without memory increase (last 
two columns in both tables). This indicates that our 
algorithm utilized the recomputations at the highest degree 
for the given latency bound. 

8. Conclusion and Future Work 

Reliability concerns have increased with the technology 
scaling, latest power management techniques and 
radioactive impurities present in new device materials. All 
existing work done on reliability ignores memory space 
consumption constraint imposed by data intensive 
embedded systems. In order to remedy this deficiency, we 
present a task recomputation based approach that utilizes 
idle times of the processing elements in a heterogeneous 
multi-core embedded architecture to increase overall 
reliability of the system. That is, if a task fails to produce 
the intended result, the output of the recomputed task is 
passed to successor tasks that need it without storing in 
memory as long as area and latency requirements of an 
application are satisfied. Our experimental evaluation 
using automatically-generated task graphs and benchmarks 
shows the effectiveness of the proposed approach in 
improving reliability without incurring any performance, 
memory space or area overheads.  
Our future work is to apply the proposed approach in 
hardware/software co-design framework where a full 
degree of parallelism can be exploited by allowing 
recomputation of tasks to be performed on either hardware 
(ASICs) or software (general purpose CPUs) components 
regardless of the processing element on which they were 
originally scheduled to increase reliability of overall 
design while meeting system level objectives. 
In conclusion, even though guaranteeing proper 
functionality while meeting constraints in complex 
embedded systems presents a big challenge when dealing 
with safety critical applications, our recomputation method 
presents opportunity that leads to optimized reliability 
while meeting the design constraints.  
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