
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

189

Manuscript received August 5, 2020
Manuscript revised August 20, 2020

Task Recomputation Based Reliability Improvements in Heterogeneous
Multi-Core Systems

Hakduran Koc† and Bayan Nimer
KocHakduran@uhcl.edu Bayan.Nimer@gmail.com

University of Houston-Clear Lake, Houston, TX, USA, †Corresponding Author

Summary
Reliability issues in embedded systems are becoming limiting
factors while the demand for high performance and
computational complexity continue to increase. Especially,
systems operating under harsh conditions are prone to generate
erroneous results. As embedded systems already house large
datasets, traditional techniques to improve reliability such as task
redundancy can be very costly in terms of memory space
consumption and hence may cause performance degradation. In
this paper, we propose a task-recomputation based approach that
utilizes idle time frames of computational resources in order to
iteratively recompute tasks to increase reliability of overall
design without incurring any additional execution latency, area
or extra memory space. We present our experimental evaluation
and compare our results with a state-of-the-art technique. The
experimental results collected using both task graphs extracted
from benchmarks and automatically-generated task graphs show
the effectiveness of the proposed approach.
Keywords:
Embedded systems, heterogeneous (hybrid) systems,
multiprocessor systems, recomputation, reliability, soft errors.

1. Introduction

As the demand for high performance and computational
complexity continue to increase in embedded systems,
reliability issues are becoming limiting factors on appli-
cation scalability and long-term survivability in which such
systems are operated. Given that erroneous results
generated by super-fast power-aware architectures have no
meaning, improving reliability of such systems has
gathered much attention in recent years. In today’s
technology, reliability is considered as a primary
optimization metric in computing systems.
Embedded systems are widely used in controlling variety
of applications ranging from portable devices to safety-
critical medical, automotive and space applications. Such
systems are required to have extended life-times and long-
term availability with little or no maintenance. That is
because such systems require very short repair time,
closely available personnel and extensive data collection
capabilities which can be very costly.
With the recent advances in technology such as lower
voltage values, higher clock frequencies and increased
functionality, integrated circuits (ICs) have gotten denser

causing lower capacitance inside the cells resulting in
decreased natural resistance against transient errors,
namely soft errors known as single event upsets (SEU).
Soft errors are random and occur at unpredicted intervals;
they are exposed as voltage glitches that cause
computational errors in the output of functional units or bit
flips in memory cells, but not a permanent damage to the
circuit [28]. As a result, providing reliable (correct)
execution of tasks on respective processing elements is
becoming increasingly critical in embedded systems and
de-signers are required to incorporate reliability into the
overall system development cycle.
Even though such faults affect systems in general,
embedded systems designers are faced with unique
challenges in order to meet user demands of increased
functionality and reliability under tight constraints. First,
these systems impose tight performance and area
constraints requiring the execution of a set of tasks to meet
a deadline with limited amount of resources. Second, high
performance means high power consumption which limits
these devices’ operational lifetime since they are mostly
dependent on batteries. Therefore, techniques such as
check-pointing and roll back and recovery cannot be
applied because they are costly in terms of execution delay.
Third, since these systems are cost sensitive and limited by
small packaging size and weight, they use small attached
memory or diskless designs that have no means of
expanding other than upgrading which may cost more than
the system itself. Additionally, the dataset sizes and
software in such systems have grown to occupy a
considerable memory space. As a result, standard
techniques to improve reliability such as duplication [21]
(i.e., per-forming the computation more than once and
storing the result in memory) can be very costly in terms of
memory space consumption.
In this paper, we propose to utilize task recomputation in
order to improve the overall system reliability of
heterogeneous multi-core embedded architectures without
incurring any overhead on performance, area or memory
space consumption. Given the task graph representation of
an application, our approach iteratively tries to recompute
the outputs of tasks (from least reliable to most) using
available input values and idle computation-al resources;
and then, pass the recomputed outputs to the successor

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

190

task(s) without storing it in memory. By doing so, our goal
is to create a parallel execution path and use this output if
the original task fails to produce the correct result. Our
approach makes use of a technology library that offers
alternatives to each task with different reliability and delay
metrics. After initial schedule of the tasks on available
processing elements (PEs) using a reliability-centric
scheduling algorithm [6], our approach iteratively searches
for idle time frames of PEs and available inputs to
recompute the output of a task before each of its successors
start executing. If the out-puts of predecessor tasks are
alive in memory, our approach assigns the recomputation
of the task to an avail-able PE; otherwise, it searches if
there is available idle time on the same or different PE to
recompute the output of the predecessor task(s) that are not
available. If the idle time available is smaller than the
task’s execution time, we recompute the task and adjust the
schedule accordingly. If the resulting latency is greater
than the given execution deadline, the task is not
recomputed. This process is iterated until all tasks in the
task graph are visited.
The rest of this paper is organized as follows. Section 2
briefly reviews previous research and sets the stage for our
work. Section 3 provides a background on types and
sources of failures in embedded systems and how they
occur. Section 4 presents the way in which the problem is
formulated. Section 5 illustrates our approach through an
example. Then, the details of the proposed approach are
given in Section 6. After presenting our experimental
evaluation in Section 7, we conclude the paper and give
future directions in Section 8.

2. Related Work

As reliability has become a bottleneck on the next
generation of embedded systems [10, 29], researchers
proposed several hardware and software based solutions at
different abstraction levels [16, 22, 26, 27]. At the system
level, a recent work by Bolchini and Miele [15] provide a
reliable design flow through improving the standard
system-level synthesis process. They suggest an adaptive
technique that adds another layer before operation
scheduling and resource mapping to introduce reliability-
awareness. Many notable research efforts based on
HW/SW co-design [24, 25] are reported in the literature.
Tosun et al. [7] introduce a hardware/software co-design
solution, which considers reliability as a main optimization
metric under performance and area constraints during the
scheduling phase by making use of a component library
with multiple versions of the same task with different
reliability, area and latency measures. Huang et al. [14]
propose a combined hardware/software replication
technique using multi-objective evolutionary algorithms

(MOEA) that result in an optimized solution to map tasks
to various PEs. Their technique gives an exact task and
message schedule and applicable amount of hard-
ware/software redundancy. Li et al. [11] introduce
reliability into co-design through allocation and scheduling
algorithms that selectively duplicate tasks during idle times
of functional resources, taking advantage of mutually
exclusive tasks that have overlapping execution times.
Bolchini et al [17] illustrate methodologies for integrating
fault detection properties by introducing critical sections
(i.e., tasks that require reliability) into system
specifications and performing partitioning to provide an
optimized solution under area, latency and power
constraints. Their approach targets at designing redundant
elements, such as checker and fault tolerant
communication links. Glaß et al. [9] introduce a technique
that synthesizes reliable datapaths that are optimal with
respect to multiple objectives. They start from behavioral
description and select resources with different area, latency
and reliability values simultaneously, and then, optimize
these parameters and implement resource sharing in or-der
to allow redundancy for improved design reliability.
In high level synthesis, Tosun et al. [6] propose an
algorithm that utilizes most reliable version of each
component in the design bounded by area and latency
constraints. Furthermore, [8] put forward an integer linear
programming (ILP) formulation that uses a
characterization library with different versions of hardware
components to schedule operations in order to increase
reliability. Moreover, several researchers [20, 23, 28]
propose allocation and scheduling algorithms to increase
reliability in heterogeneous embedded systems. He et al.
[12] present two heuristic scheduling algorithms that
iteratively schedule nodes to processing elements in such a
way that a minimum reliability cost is obtained under
timing constraints. Qin et al. [13] describe a reliability cost
driven scheduling scheme for real-time distributed
heterogeneous systems that result in improved system
reliability with reduced schedule at no extra area cost.
Recomputation technique was studied first in the con-text
of register allocation by Briggs et al [31]. Their meth-od
rematerializes (recomputes) a register value when it is
cheaper than storing and retrieving it from memory.
Kandemir et al. [33] utilize recomputation to reduce
memory space consumption of data intensive applications
in memory-constrained embedded processing. Koc et al
[18] use data recomputation to reduce the memory space
consumption of data-intensive applications. Then, they aim
at reducing the number of off-chip memory accesses in
order to improve the performance of Chip Multi-
Processors in [32]. Most prior research on reliability
focuses mainly on optimizing reliability by keeping area-
performance-power parameters at minimum and adding a
lot of complexity while the recomputation concentrates on

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

191

improving the performance or memory space consumption
of computing systems. To our knowledge, there is no re-
search that utilizes recomputation to improve reliability of
heterogeneous multi-core embedded systems. Our
approach improves reliability without incurring any
performance, area or latency overhead.

3. Sources and Types of Failures in
Embedded Systems

The accelerating pace in technology scaling (65nm and
beyond) fueled by reduction in transistor size and voltage
levels allowed for tremendous advances in embedded
systems functionality but with concomitant increase in
failures. That is, the reduced transistor size and the
increased clock frequencies have minimized the effects of
electrical and latching window masking resulting in an
increased threat of errors in a processor’s functionality
[29]. Such errors, in embedded systems, can be induced
through different radiation sources. More specifically,
when cosmic rays collide with environmental particles,
they produce both high energetic proton and neutron
precipitations; however, neutrons are of greater concern
because they are capable of penetrating most of human
made circuit designs. Another source of radiation occurs
when low energy cosmic neutrons, which are uncharged
particles, interact with circuit material and become
electrically charged. Moreover, packaging material such as
solder paste and molding compounds result in alpha
particle radiation; which can also be emitted by radioactive
elements that are found in abundance in our environment
[3]. Another significant source of radiation is thermal
neutrons; however, they are effectively accounted for by
removing borophosphosilicate glass in recent processors
[4]. The collision of these energetic particles with a
sensitive area in a node result in different types of errors,
namely single event effects (SEE), that can be classified as
either soft or hard errors.
Hard errors are ones that cause permanent damage to the
circuit and occur in the form of single event latchups
(SEL), produced when a particle strike cause an increased
current in the circuit. Also, they can be manifested as
single event burnouts (SEB), which are realized when a
particle strike effects a power transistor resulting in a
rupture [30]. However, hard failures are not of concern to
us in this work because they should be accounted for by
testing the hardware in the field, using simulation tools to
analyze designs, and applying design improvements and
mitigation schemes such as the ones in [27].
Soft errors, on the other hand, are single event upsets
(SEU), which are wrong signals in the circuit (faults) that
are random, occurring at unpredicted intervals, temporary,
and do not cause a permanent damage to the circuit. They

take the form of a single bit upset (SBU) caused by a bit
flip in an element of the circuit (mostly memory); multiple
bit upset (MBU), which causes more than one bit flip but is
less likely to take place; and single event transients (SET)
that cause voltage glitches (disruptions) [30]. The focus of
this work is to increase resilience of embedded systems
against soft errors, which have higher occurrence
probabilities. According to the research done by IBM [35],
a soft error rate of 4000 FIT (unit for expressing failure
rate in electronic devices and one FIT equals one failure
per billion hours) can occur in a processor’s silicon, of
which half will affect the processor’s logic and half will
affect the memory/cache. This number has been
exponentially increasing because of decreased capacitance
of today’s denser circuits; as a result, energetic particles
have greater linear energy transfer (LET) effect
(ionizations per unit distance) in circuits [5]. Such
ionizations cause a charge collection, Qcollected on or near a
sensitive region of the node (such as p-n junction) creating
a voltage glitch and therefore altering the value produced
by a processing unit or stored in memory. Soft errors occur
when the collected charge, Qcollected, exceeds the critical
charge, Qcritical, required to retain data, which has been
decreasing resulting in a decreased natural resistance
against soft errors.

4. Problem Formulation

4.1 System Modelling

The functionality of an embedded system application is
depicted as a task graph. A task graph is a directed acyclic
graph, Gs(V, E), (e.g., one in Fig. 4). Each vertex node vi in
V = {vi; i = 0, 1, 2, 3, …, n} represents an independent task
performing various operations. The intercommunication
between tasks is denoted by edges. The edges represent
dependencies between tasks, E = {(vi, vj); i, j = 0, 1, …, n}.
A task can start executing only after all its predecessors
complete their executions. The result of a predecessor task
is passed to its successors upon completion. Tasks are
executed on various processing elements. Our target
architecture is a multi-core embedded system composed of
heterogeneous CPUs that have different reliability, latency
and area values communicating through a software-
managed memory. These tasks are allocated and mapped
to different PEs using a reliability-centric approach that
makes use of a technology library to give the best
reliability-optimized schedule under latency constraints.
This algorithm is given in [7] and represents, in a sense,
the state-of-the-art.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

192

4.2 Reliability Calculations

We calculate the reliability of the entire system
considering reliability of each component. In its simplest
form, reliability of a given task is defined as the probability
that the task generates its intended output for a given time
period knowing that it was functioning correctly at start
time t0. It is a value from 0 to 1, where 1 represents 100%
reliable output. Reliability models are formulated to match
the system operation to a logical structure (that is used to
calculate the reliability of the system) expressed as
combinatorial reliabilities of its individual components [2].
The tasks are performed in a series or parallel pattern
depending on when their inputs are available during the
course of execution. However, in order to guarantee the
successful execution of an application (represented by a
task graph); the correct operation of each and every task is
required. As a result, the original system has a series
configuration in terms of reliability (i.e., failure of any
single task interrupts the path and causes the whole system
to generate an erroneous output) such as the one shown in
Fig.1. The reliability of a single task is represented by the
probability of success of the task, Pi, and is independent of
the rest of the system. The reliability of the whole system,
R, is the intersection of the probability of success of each
task, which is expressed in (1), and then, can be re-written
as shown in (2). Given that each task’s failure rate is
constant and is independent of their usage time, Equation
(2) simplifies to Equation (3), where Rs represents the
system reliability, Ri is the reliability of component i and n
is the number of tasks in the task graph.

 (1)

 (2)

 (3)

The series configuration is the lowest bound in terms of
reliability. In order to improve reliability, we need to add
redundancy (i.e., add redundant tasks that would take over
and perform computation in case of failure of the primary
task). In our approach, redundancy is added by
recomputing the outputs of tasks using idle times of
processing elements. The reliability of a purely parallel
system, such as the one shown in Fig.2, can be expressed
as in (4), which reduces to (5).

Fig. 2. Parallel reliability configuration graph.

 (4)

 (5)

As a result, a recomputed task adds an alternative path that
could be taken in case the original computation fails. In
this paper, the reliability of the system after applying the
proposed recomputation technique is calculated using a
combination of series and parallel configuration. A
recomputed task with its original task is considered as a
parallel subsystem connected in series to the rest of the
system.

4.3 Memory Space Consumption Cost

In order to determine the minimum memory space
consumption required to store results of a scheduled task
graph, the well-known left-edge algorithm [1] is employed.
This algorithm was originally developed to find the
minimum number of tracks used to connect points in
channel routing [36]. With this algorithm, we start out by
finding lifetime intervals of each result generated by each
task. Lifetime intervals are defined by a starting position
(left edge) on the x-axis representing the clock cycle at
which the result is generated as an output of a task (its
birth) and an ending position on the x-axis (right edge)
depicting the latest time at which the result is referenced as
an input to another successor task (its death). The intervals
are assigned to tracks such that no two intervals in a track
overlap with each other. Intervals are sorted in increasing
order of left edge; that is, the interval with the least value
(in clock cycles) of left edge is assigned to the first
memory space (track), then the rest of the intervals are
scanned to find the next interval whose birth time is greater
than or equal to the death time of the previous interval (one
assigned to first memory space) and, if found, gets
assigned to the same memory space. This process is
repeated until no more intervals can share the same track
or memory space.

Fig. 1. Series reliability configuration graph.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

193

Afterwards, one color is considered at a time and assigned
to each packed interval (sorted intervals on the same track).
Then, the colored graph is created where each of the
intervals represent one of the vertices with its assigned
color and an edge between pairs corresponding to intervals
that overlap. The minimum amount of memory space used
is obtained by minimum coloring of the graph where each
color represents the cost of memory space and all vertices
with the same color are assigned to the memory space that
represents the color. In the case when memory space
consumption is assumed to be the same for all tasks, the
total cost of memory space consumption is found by
multiplying the total number of colors used to color the
graph by the memory space cost. Nevertheless, in the case
where different tasks implemented on different PEs have
different memory cost values, the total memory space
consumption is determined by the maximum resultant
value of adding each set of overlapping intervals (given
that each interval has a different memory space cost).

4.4. Task Recomputation

CDFG Task recomputation is used to reduce the amount of
data that must be saved during an execution of an
application by recovering this data from a small subset of
available saved data when needed by another task instead
of storing it in memory. As mentioned earlier, a task graph
representation is used to demonstrate a given embedded
system application. The execution latency of such a task
graph is determined by the critical path, which is the path
from source to sink node for which the sum of latency and
communication costs is the maximum [34]. Depending on
the properties of the task graph, such as amount of
dependencies between tasks, a poor utilization of
processing elements (PEs) may exist; i.e., not all
computing resources are fully used all the time since they
will be waiting on an existing task to be completed. As a
result, it might be possible to perform re-computations
using those idle time frames without incurring performance
overhead. Hence, if a result of a task will not be needed for
a certain amount of time, then it does not need to be stored
in memory and, instead, can be recomputed before its
successor task(s) if there exists enough idle time for the
needed recomputations to take place. Thus, performing
careful recomputations can result in a reduction of memory
space consumption at no extra latency cost. In many cases,
further memory reduction can be achieved by introducing a
small amount of latency overhead, which can lead to a
significant improvement in systems that are limited by their
memories. In some cases, it is possible to recompute a
certain task once and store it in memory for a certain
number of clock cycles in order to be used by other
successor tasks or recomputations and result in an
improvement in memory space consumption.

4.5. Target Architecture

The target architecture used in the experiments is
illustrated in Fig.3, which depicts a commonly used
heterogeneous multi-core architecture in embedded
systems. It is composed of a number of heterogeneous
CPUs and a software-managed memory. CPUs (PEs) have
different area, latency and reliability values and
communicate through a shared bus. Each task in the task
graph can have different implementation option on each
available CPU but with different area, performance and
reliability values (technology library). We assume that
each task requires the same amount of memory in each PE.
Given the task graph representation of an embedded
application, performance deadline and technology library
(such as the one given in Table 1), our method produces a
schedule with allowed recomputations for a certain number
and type of CPUs.

5. Illustrative Example

In order to show how task recomputation is utilized to
increase reliability, let us consider the task graph given
in Fig. 4 with 7 tasks and a latency deadline of 120 clock
cycles. In this illustrative example, let us assume a
heterogeneous embedded architecture with two
processing elements, namely CPU1 and CPU2 (similar
to one in Fig. 3 with 2 CPUs). The technology library,
which specifies performance (delay) and reliability
values of each task on the different PEs, is given in
Table 1. Execution delays are given in clock cycles.
The initial task allocation and scheduling are based on the
reliability-centric co-design framework in [7]. First, each
task is allocated and scheduled on the most reliable PE.
Then, after finding earliest start times (EST) and latest start
times (LST), freedom (F) of each task is calculated (Fi =
LSTi - ESTi, where Fi is the freedom of vertex vi). The
freedom is used to determine the priority (order) of

Fig. 3. Target heterogeneous multi-core embedded architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

194

competing tasks to schedule to earlier control steps. If the
resulting schedule exceeds the given latency deadline,
performance optimization techniques are applied. To
decrease overall latency, we identify the tasks that can be
scheduled concurrently (but are running on the same CPU
one after another) and assign them to different CPUs
without violating dependency conditions. If the deadline is
still not achieved, we iteratively assign slowest tasks in the
critical path to faster CPUs. This step is repeated until the
performance deadline is met. The initial schedule of the
example task graph after performance optimizations is
given in Fig. 5.
As seen in Fig. 5, there is a considerable amount of idle
time on CPU2 that can be utilized for recomputation in
order to increase reliability. First, we incrementally check
for each task starting with the least reliable one whether the
available idle time allows us recomputing that specific task.
There must be enough idle time on the CPU to recompute
a single task before its successors. In addition, the results
of predecessors of the task to be recomputed should be
alive as not to increase memory space consumption. We
assume that communication between tasks running on
different CPUs takes 1 clock cycle, while communication
between tasks on the same CPU is done in the same clock
cycle. In this example, the least reliable task is task 2.
There exists enough idle time to recompute this task before
task 4, which is its only successor. The next least reliable
task is task 1, which needs to have enough idle time on
CPU2 to be recomputed before its successor tasks, namely
tasks 2, 3 and 5. Also, in order for our reliability

calculation to hold true, task 1 needs to be recomputed
before task 2’ (recomputed task 2). None of
the other tasks can be recomputed because of deadline and
dependency constraints. Fig. 6 illustrates the schedule of
the task graph after allowed recomputations. Note that
tasks 1 and 2 are recomputed and the corresponding
parallel execution paths to improve reliability are shown in
Fig. 7. Using the combination of series and parallel
reliability models, our method results in a reliability value
of 0.926814 (compared to the original schedule with
reliability of 0.885922). Please note that this improvement
comes with no performance or memory overhead. We use
left-edge algorithm described earlier in order to determine
the memory space consumption. Assuming each task needs
10 units of memory space to store its result, our design
requires 30 units of memory space (same as the original
one), which corresponds to the chromatic number of the
corresponding conflict graph.

6. Details of the Approach

In multi-core architectures, some processing elements sit
idle during the course of execution due to dependences or
lack of parallelism. In this paper, we propose to utilize
these idle time frames to iteratively recompute the outputs

Fig. 4. Example task graph with seven tasks.

Table 1. Reliability and Execution Delay Values for Tasks in Fig. 1 on
Different Processing Elements

Tasks
1 2 3 4 5 6 7

CPU 1 Rel. 0.979 0.975 0.999 0.983 0.989 0.980 0.980
Delay 20 45 50 19 18 15 12

CPU 2 Rel. 0.973 0.966 0.989 0.978 0.985 0.985 0.985
Delay 13 15 15 17 15 17 14

Fig. 7. Reliability configuration graph for recomputed schedule.

Fig. 5. The initial schedule for the task graph in Fig. 1 after performance
optimization.

Fig. 6. The schedule for the task graph in Fig. 1 after possible
recomputations.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

195

1. INPUT: Gs(V, E), technology library, memory (Mmax), area (Amax) and
performance (Lmax) bounds.

2. OUTPUT: modified schedule with possible recomputations
3. Schedule Gs(V, E) using a reliability-centric approach
4. for all vi := 1 to n
5. calculate criticality(vi)
6. for each vi with reliability from low to high
7. Search for idle time slots before successors of vi
8. if (idle time slot & predecessors’ outputs are available)
9. Recompute task before its successors and update schedule
10. else if (idle time slots are available to recompute task and

predecessors’ inputs)
11. Recompute task and its predecessors and update schedule
12. else if (idle time slots and predecessor’ inputs are not available)
13. Add recomputation to schedule and calculate new latency, lnew
14. if (lnew > lmax)
15. Delete the recomputation
16. Report that task cannot be recomputed
17. end if;
18. end if;
19. end for;

of least reliable tasks in order to improve the reliability of
the system by strengthening the weakest link in the chain.
Three conditions need to be considered in order to apply
task recomputation: 1) There must be available processing
elements sitting idle to perform recomputation, 2)
dependency conditions should not be violated, and 3)
given constraints (e.g., latency, performance, memory
space consumption, etc.) should be met.
A sketch of the high-level algorithm describing the
proposed approach is given in Fig. 8. In order to use a
parallel reliability model, the recomputed versions of the
same task need to be implemented on the same processing
element before all of its successors. Consequently, we first
identify the least reliable task in the schedule, and then
check if there are available idle time frames to recompute
before all its successors. If so, we check if the outputs of
predecessors of the task to be recomputed are currently
alive until the latest task to be recomputed. Then, we
schedule a recomputation and calculate the respective
latency to ensure that the performance deadline is met. If
the outputs of any of the predecessors are not available, we
try to find idle time slots to recompute them, and then,
perform recomputation and calculate latency of the new
schedule. If there are not enough idle times to recompute a
task before all its successors, we check the next least
reliable task and so on. We do this until all tasks in the task
graph are visited. The recomputations are performed
regardless if an error is present in the original computation
or not. A simple switch or checker is used to determine the
correct result to be used.
If there exist two or more tasks that have the same
reliability value and only one can be recomputed, the one
with the highest criticality value gets selected. That is
because a soft error in a critical task can have a higher
probability of propagating to later tasks and having a more
serious impact on the system, which leads not only to
corrupt the output data but also to cause a loss of
functionality and critical failures of processing elements. In
this work, the criticality of a task depends on the number
of tasks whose correct functionality is subject to the task in
question. It is also possible that criticality of a task is given
in the specification. Sometimes, it is possible to recompute
a task before one of its successors and store it in memory
for a few clock cycles to serve as alternative path for
another successor if it does not cause an increase in
memory space consumption.
In some cases, we are faced with two possibilities:
recomputing a task more than once or recomputing another
task with a higher reliability value. After performing
extensive experiments, we conclude that recomputing a
different task achieves higher reliability improvement.
More specifically, after recomputing a task once, its
reliability increases (due to different parallel paths) and
becomes higher than the rest of the tasks that have not been

recomputed yet. So, treating the task and its recomputed
version as one component and comparing it
with the next candidate task to be recomputed, we find that
the candidate task has lower reliability value. In order to
have better reliability gains, our approach recomputes as
many different tasks as possible to create alternative paths.
Please note that our algorithm can easily be modified to
work with an allowed performance and memory space
overhead.

6. Experimental Evaluation

In order to show the effectiveness of our approach, we
conducted experiments using two sets of task graphs: task
graphs extracted from benchmarks and automatically-
generated task graphs using TGFF tool [19]. Our target
architecture is shown in Fig. 3 which is a four-core
heterogeneous embedded system in which processors
communicate through a shared software-managed memory.
Data transfers between tasks running on different CPUs
takes 1 clock cycle, while communication between tasks on
the same CPU is performed in the same clock cycle.
Automatically-generated task graphs contain 9 to 49 tasks.
Each task needs 10 units of memory space and has a
different execution time and reliability value for each
processor (technology library). The important
characteristics of these graphs are given in the first four
columns of Table 2. Column 1 gives the task graph label;
column 2 indicates the number of tasks; column 3 gives the
latency constraint that should be met; and, column 4
reports the memory space consumption. Reliability values
calculated using the approach in [7] are reported in column
5. Please note that this approach represents, in a sense,

Fig. 8. A high-level algorithm to schedule task recomputations.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

196

state-of-the-art. Then, next column reports the reliability
values after applying our task recomputation approach. We
also report, in the next column, the reliability values of our
approach if 25% increase in memory consumption is
allowed (e.g., a task is recomputed before some of its
successors, and then, is stored in memory to be used for
the rest of successors). Last two columns show the
reliability improvements our approach achieves over
Reference [6]. As can be seen in the table, our approach
brings between 5.6% - 12.6% reliability improvements
(around 8.6% on the average) without any overhead and
between 6.7% - 28.1% reliability improvements (around
12.3% on the average) with an allowed increase in memory
consumption. Our approach achieves higher reliability gain
for TG 2 (compared to TG 1 and TG 3) even though TG 2
utilizes less memory space and all have similar number of
tasks. It is because the tasks in TG 1 have less
dependences; hence, allowing our algorithm to generate
more recomputation opportunities. It is similar for TG 6
and TG 7.
The second set of experimental evaluation using task
graphs extracted from benchmarks is given in Table 3,
which follows a similar format as that of Table 2. Column
1 gives the name of the benchmark and next two columns

show latency constraint and memory space consumption,
respectively, for each benchmark. Column 4 reports the
reliability values calculated using the approach in [7].
Then, columns 5 and 6 give the reliability values after
applying our approach. Last two columns reports the
reliability improvements over Reference [7]. Our approach
brings between 3.4% - 23.40% improvements (around
11.9% on the average) without any overhead and between
9.4% - 29.4% reliability improvements (around 18.1% on
the average) with an allowed increase in memory
consumption. When we compare the reliability values of
EW Filter (last two columns), we see significant
improvement because increasing memory consumption for
this benchmark creates more recomputation opportunities
for the successor tasks.
Notice that we did not include a separate column for
execution latency in both tables as none of the methods
exceeds the latency bound. Also, it is worth mentioning
that recomputation would bring more significant
improvement if applied to a homogeneous embedded
system. As mentioned earlier, in order for the reliability
calculation to work correctly, a task has to be recomputed
in a similar manner before each successor which places a
constraint on our algorithm; thus not all idle time frames

Table 2. Reliability Values for Automatically-Generated Task Graphs Using the Approach in [6] and the Proposed Approach.

Task
Graph
Label

Number
of Tasks

Latency
Bound

Memory
Consump.

Reliability

Ref. [6]
Task Recomputation Improvement (%)

Same Mem. 25% Increase Same Mem. 25% Increase

TG 1 9 600 40 0.878744 0.928221 0.938390 5.630 6.788

TG 2 10 115 30 0.832658 0.923863 0.923863 10.95 10.95

TG 3 12 120 40 0.792224 0.840325 0.88768 6.072 12.05

TG 4 14 140 40 0.870059 0.934611 0.944731 7.419 8.582

TG 5 16 153 40 0.828850 0.894701 0.914316 7.945 10.31

TG 6 20 180 60 0.822328 0.916983 0.945175 11.51 14.94

TG 7 22 700 70 0.762702 0.801795 0.801795 6.720 6.720

TG 8 49 420 130 0.579133 0.652257 0.741849 12.63 28.10

Table 3. Reliability values for task graphs extracted from benchmarks using the approach in [6] and the proposed approach.

Benchmark Latency
Bound

Memory
Consump.

Reliability

Ref. [6]
Task Recomputation Improvement (%)

Same Mem. 25% Increase Same Mem. 25% Increase
Diff. Equation

Solver 55 30 0.87227 0.954305 0.954305 9.405 9.405

EW Filter 88 70 0.655482 0.67777 0.765061 3.400 16.72

AR Filter 75 50 0.545696 0.607155 0.636386 11.26 16.62

FIR Filter 165 40 0.706534 0.871886 0.914509 23.40 29.44

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

197

are utilized properly. However, in a homogeneous
architecture, all PEs will have the same metrics giving the
chance for tasks to be recomputed on any available PE
before each successor.
As seen in both sets of experimental evaluations, our
approach gives, in most cases, higher reliability gains if it
is allowed to utilize extra memory space. It is because this
extra space is used to store recomputed values in memory
and keep them available for recomputations of successor
tasks. However, Diff. Equation, TG2 and TG7 have the
same reliability values with/without memory increase (last
two columns in both tables). This indicates that our
algorithm utilized the recomputations at the highest degree
for the given latency bound.

8. Conclusion and Future Work

Reliability concerns have increased with the technology
scaling, latest power management techniques and
radioactive impurities present in new device materials. All
existing work done on reliability ignores memory space
consumption constraint imposed by data intensive
embedded systems. In order to remedy this deficiency, we
present a task recomputation based approach that utilizes
idle times of the processing elements in a heterogeneous
multi-core embedded architecture to increase overall
reliability of the system. That is, if a task fails to produce
the intended result, the output of the recomputed task is
passed to successor tasks that need it without storing in
memory as long as area and latency requirements of an
application are satisfied. Our experimental evaluation
using automatically-generated task graphs and benchmarks
shows the effectiveness of the proposed approach in
improving reliability without incurring any performance,
memory space or area overheads.
Our future work is to apply the proposed approach in
hardware/software co-design framework where a full
degree of parallelism can be exploited by allowing
recomputation of tasks to be performed on either hardware
(ASICs) or software (general purpose CPUs) components
regardless of the processing element on which they were
originally scheduled to increase reliability of overall
design while meeting system level objectives.
In conclusion, even though guaranteeing proper
functionality while meeting constraints in complex
embedded systems presents a big challenge when dealing
with safety critical applications, our recomputation method
presents opportunity that leads to optimized reliability
while meeting the design constraints.

References
[1] G. D. Micheli, Synthesis and Optimization of Digital

Circuits, 3rd ed., New York: McGraw-Hill Higher
Education, 1994, pp.51-67.

[2] M. L. Shooman, Reliability of Computer Systems and
Networks: Fault Tolerance, Analysis, and Design. New
York: John Wiley & Sons Inc., 2002.

[3] R. C. Baumann, “Soft errors in advanced computer
systems,” IEEE Trans. Design & Test of Computers, vol. 22,
no. 3, June 2005, pp. 258-266.

[4] R.C. Baumann, T. Hossain, S. Murata and H. Kitagwa,
“Boron compounds as a dominant source of alpha particles
in semiconductor devices,” Proc. 33rd Annual Int’l
Symposium on Reliability Physics, IEEE Press, 1995, pp.
297-302.

[5] A. Javanainen, T. Malkiewicz, J. Perkowski, W. H. Trzaska,
A. Virtanen, G. Berger, W. Hajdas, R. Harboe-Sorenson, H.
Kettunen, V. Lyapin, M. Mutterer, A. Pirojenko, I.
Riihimaki, T. Sajavaara, G. Tyurin, and H. J. Whitlow,
“Linear energy transfer of heavy ions in silicon,” IEEE
Trans. Nuclear Science, vol. 54, no. 4, Aug. 2007, pp.
1158-1162.

[6] S. Tosun, N. Mansouri, E. Arvas, M. T. Kandemir, and Y.
Xie, “Reliability-centric high-level synthesis,” Proc. Conf.
Design, Automation and Test in Europe, IEEE Press, March
2005, pp. 1258-1263.

[7] S. Tosun, N. Mansouri, E. Arvas, Y. Xie, and W. L. Hung,
“Reliability-centric hardware/software co-design,” Proc. 6th
Int’l Quality of Electronic Design Symp. (ISQED 05),
March 2005, pp. 375-380.

[8] S. Tosun, O. Ozturk, N. Mansouri, E. Arvas, M. Kandemir,
Y. Xie, and W. L. Hung, “An ILP formulation for
reliability-oriented high-level synthesis,” Proc. 6th Int’l
Quality of Electronic Design Symp. (ISQD 05), IEEE Press,
March 2005, pp. 364-369.

[9] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt and J.
Teich, “Reliability-aware system synthesis,” Proc. Design,
Automation and Test in Europe (DATE 07), IEEE CS Press,
April 2007, pp. 1-6.

[10] M. Glaß, M. Lukasiewycz, F. Reimnn, C. Haubelt, J. Teich,
“Symbolic reliability analysis and optimization of ECU
networks.” Proc. Design, Automation and Test in Europe
(DATE 08), IEEE CS Press, March 2008, pp. 158-163.

[11] L. Li, Y. Xie, M. T. Kandemir, N. Vijaykrishnan, M. J.
Irwin, “Reliability-aware co-synthesis for embedded
systems.” Proc. 15th Int’l Conf. Application-Specific
Systems, Architectures and Processors, IEEE Press, Sept.
2004. pp. 41-50.

[12] Y. He, Z. Shao, B. Xiao, Q. Zhuge, and E. Sha, “Reliability
driven task scheduling for heterogeneous systems,” Proc.
15th Int’l Conf. Parallel and Distributed Computing and
Systems, vol.1, Nov. 2003, pp. 465-470.

[13] X. Qin, H. Jiang, C. S. Xie, and Z. F. Han, “Reliability-
driven scheduling for real-time tasks with precedence
constraints in heterogeneous systems,” Proc. 12th Int’l Conf.
Parallel and Distributed Computing and Systems, 2000.

[14] J. Huang , J.O. Blech, A. Raabe and A. Knoll, “Reliability-
aware design optimization for multiprocessor embedded

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

198

systems,” Proc. 14th Euromicro Conf. Digital System
Design (DSD), IEEE Press. Aug. 2011, pp. 239-246.

[15] C. Bolchini and A. Miele, “Reliability-driven system-level
synthesis for mixed-critical embedded systems,” IEEE
Trans. On Computers, no. 99, 2012.

[16] C. Bolchini, A. Miele and C. Pilato, “Combined architecture
and hardening techniques exploration for reliable embedded
system design.” Proc. 21st Great Lakes VLSI Symp., ACM
Press. May 2011, pp. 301-306.

[17] C. Bolchini, L. Pomante, F. Salice, and D. Scuito,
“Reliability properties assessment at system level: a co-
design framework,” Proc. 7th Int’l On-Line Testing
Workshop, IEEE Computer Soc., Oct. 2001, pp. 165-171.

[18] H. Koc, S. Tosun, O. Ozturk, M.T. Kandemir, “Reducing
memory requirements through task re-computation in
embedded systems,” Proc. Annual Emerging VLSI
Technologies and Architectures Symp. (ISVLSI), March
2006.

[19] R. P. Dick, D. L. Rhodes, and W. Wolf, “TGFF: task graphs
for free,” Proc. 6th Int’l Hardware/Software Co-design
Workshop, IEEE Computer Soc., March 1998, pp. 97-101.

[20] L. Huang, F. Yuan, and Q. Xu, “Lifetime reliability-aware
task allocation and scheduling for MPSoC,” Proc. Conf.
Design, Automation & Test in Europe, European Design
and Automation Association, April 2009, pp. 51-56.

[21] G. Chen, F. Li, M. Kandemir and I. Demirkiran, “Increasing
FPGA resilience against soft errors using task duplication,”
Proc. Conf. Asia South Pacific Automation, ACM Press, Jan.
2005, pp. 924-927.

[22] K. Mohanaram and N.A. Touba, “Cost-effective approach
for reducing soft error failure rate in logic circuits.” Int’l
Test Conf., Sept. 2003, pp. 893-901.

[23] G. Chen, M.T. Kandemir, S. Tosun and U. Sezer,
“Reliability-conscious process scheduling under
performance constraints in FPGA-based embedded
systems,” Proc. 19th Int’l Parallel and Distributed
Processing Symp., IEEE Press, Sept. 2005, pp. 162a-162a.

[24] B. Xia, F. Qiao, H. Yang and H. Wang, “A fault-tolerant
structure for reliable multi-core systems based on hardware-
software co-design.” The 11th Int’l Symp. Quality
Electronic Design (ISQED), IEEE Press. March 2010, pp.
191-197.

[25] F. Vargas, E. Bezerra, L. Wulff and D. Barros Jr.,
“Optimizing HW/SW co-design towards reliability for
critical-application systems.” Proc. 7th Asian Test Symp.
(ATS 98), IEEE Press, Dec. 1998, pp. 52-57.

[26] N. Wattanapongsakorn, S.P. Levitan, “Reliability
optimization models for embedded systems with multiple
applications”, IEEE Trans. Reliability, vol. 53, no. 3, 2004,
pp. 406-416.

[27] M. Nicolaidis, “Design for soft error mitigation”, IEEE
Trans. Device and Material Reliability, vol.5, no. 3, 2005,
pp. 405-418.

[28] A. Dogan and F. Ozguner, “Reliable matching and
scheduling of precedence-constrained tasks in
heterogeneous distributed computing”, Proc. 2000 Conf.

Parallel Processing International, IEEE Press, 2000, pp.
307-314.

[29] P. Shivakumar, M. Kistler, S.W. Keckler, D. Burger and L.
Alvisi, “Modeling the effect of technology trends on the soft
error rate of combinational logic,” Proc. Int’l Conf.
Dependable Systems and Networks (DSN 02), 2002, pp.
389-398.

[30] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger and L.
Alvisi. “Modeling the impact of device and pipeline scaling
on the soft error rate of processor elements,” Computer
Science Department, University of Texas at Austin, 2002.

[31] P. Briggs, K. D. Cooper, and L. Torczon,
“Rematerialization,” ACM SIGPLAN Notices, vol. 27, no. 7,
July 1992, pp. 311-321.

[32] H. Koc, M. Kandemir, E. Ercanli, and O. Ozturk, “Reducing
off-chip memory access costs using data recomputation in
embedded chip multi-processors,” Proc. 44th Conf. Annual
Design Automation, ACM Press. June 2007, pp. 224-229.

[33] M. T. Kandemir, F. Li, G. Chen, G. Chen, and O. Ozturk.
“Studying storage-recomputation tradeoffs in memory-
constrained embedded processing,” Proc. Conf. Design,
Automation and Test in Europe, IEEE Press, March 2005,
pp. 1026-1031.

[34] T. N’takpe and F. Suter, “Critical path and area based
scheduling of parallel task graphs on heterogeneous
platforms.” Proc. 12th Int’l Conf. on Parallel and
Distributed Systems, 2006.

[35] J. F. Ziegler, H. P. Muhlfeld, C. J. Montrose, H. W. Curtis,
T. J. O’Gorman and J. M. Ross. "Accelerated testing for
cosmic soft-error rate," IBM Journal of Research and
Development, vol. 40, no. 1, 1996, pp. 51-72.

[36] A. Ghosh, S. Devadas and A. Newton, “Sequential Logic
Testing and Verification”. Boston: Kluwer Academic
Publishers, 1992.

Hakduran Koc received his B.S. degree in Electronics
Engineering from Ankara University in 1997. After working in
the industry for two years, he joined Syracuse University, NY
where he received his M.S. and Ph.D. degrees in Computer
Engineering in 2001 and 2008, respectively. During his graduate
study, he was at the Pennsylvania State University as visiting
scholar. He is currently chair and an associate professor of
Computer Engineering at University of Houston-Clear Lake. His
research is in the areas of digital design, embedded systems, and
computer architecture.

Bayan Nimer received her B.S. degree Telecommunications
Engineering at University of Texas at Dallas in 2009; and her
M.S. degree from Computer Engineering at University of
Houston-Clear Lake in 2013. Her research interests include
digital design, embedded systems and cyber physical systems.

