

A Survey and Comparative Study of Embedded FPGA Architectures

Hajer SAIDI1,2, Mariem TURKI1, Abdulfattah OBEID3, Zied MARRAKCHI4 and Mohamed ABID1,2

1 CES Laboratory, National Engineering School of Sfax, Sfax, Tunisia
2 Digital Research Center of Sfax (CRNS), Sfax, Tunisia
3 National Center for Electronics and Photonics Technology, King Abdul-Aziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
4 Mentor Graphics, Tunisia

Summary
In recent years, the modern embedded systems are in intense complexity growth, that is why the different constraints (power consumption, performance, area, and cost) become increasingly inevitable. In this context, re-configurable System on Chip (SoC) has been proposed to attain these goals and the higher flexibility. Many solutions are proposed to obtain the reconfigurability with the best compromise between different challenges. Thus, the embedded FPGA is one of the key solutions to ensure the reconfigurability into systems. In this survey, we describe a comprehensive overview of existing embedded FPGA, specific techniques and tools used for the development and the configuration of the core. Moreover, we present comparative tables used as a guideline to select which architecture is adequate for the target application in terms of characteristics such as occupancy, area utilization and regularity.

Key words: embedded FPGA, Architecture, Hardware, Re-configurable, IP

1. Introduction
Nowadays, embedded systems have an increasing interest in technology. For this reason, the requirements for high performance and low power consumption are becoming more and more important when designing modern embedded systems [1,2]. As shown in Figure 1, the re-programmable computing as CPU is considered very flexible since they can execute all tasks, but this solution is bad in terms of performance [3]. Conversely, ASICs improve performance [4], but they are optimized for a specific application. Considering these information, reconfigurable systems/devices stand between re-programmable computing and ASICs [5,6].

Fig. 1 Diagram of System's evolution

Embedded programmable logic devices (ePLDs) have a growing interest in the scientific and industrial communities thanks to innovations that have occurred during the last decades in the domains of microelectronics, Mechanical System Design (MSD), energy harvesting, WSN (Wireless Sensor Network), EPLDs can be applied in system-on-a-chip (SoC) designs [5]. In fact, making modifications to the hardware during both development and post manufacturing is the reason of increasing flexibility, widen their market, and curb soaring nonrecurring engineering (NRE) costs. In [1], authors studied the existing solutions to have a re-configurable SoC. They found that Embedded Field Programmable Gate Arrays (eFPGAs) offers computational advantages in terms of area and cost. An embedded FPGA (eFPGA) is an IP core that can be integrated into an ASIC or SoC to get the benefits of programmable logic with better latency, throughput, and power consumption. Quantity of look-up-tables (LUTs), registers, embedded memories and number of I/O ports can all be controlled when designing an eFPGA to make trade-offs between power and performance. Five years ago, eFPGA becomes available. Moreover, due to its flexibility and feature set, it invaded the market very quickly. Now, it is commercially available from multiple vendors [7–11], on a wide range of foundries (TSMC, GlobalFoundries, SMIC and Samsung). In addition, eFPGA development is an interesting research field in many labs in the world (Sandia National Labs, DARPA, Boeing, Harvard, MorningCore China [12,13,13–17], Lip6 Paris and silicon valley research centers) [18]. These researches will be presented in section 3 with more details. eFPGA is also being used in a wide range of applications such as aerospace, communications, networking and most recently, artificial intelligence (AI), Internet of things, sensors networks, deep learning [19–22]. In last year’s where eFPGA has been available, the industry and academic has proposed several generations of products. With each new generation, eFPGAs become more flexible and more usable for new applications, all driven by customer demand. In fact, the applications for eFPGA seem to be endless and in the future, this technology should be as pervasive as Arm processors are...
today [23]. The eFPGA IP has grown from simple and typical architecture which is programmed in Verilog with command line interfaces to earlier generation which is programmed by high level neural network model languages such as TensorFlow Lite and ONNX [19].

This research paper is a part of a research project called the Energy-Aware Re-configurable Node (EARN) project [24], which aims to design a low-power sensor node based on a system-on-chip for water pipeline monitoring applications. The system on chip includes a re-configurable part called "eFPGA". This paper will review the recent generations of eFPGA existing in literature [25,26] and industrial [8–10] In this survey, we analyze and emphasize the research key trends of embedded FPGA architecture, in order to guide the designer to select the most suitable IP for the designed application in terms of capacity, architectural structure, power consumption and latency.

The remainder of this paper is organized as follows. Next section presents the embedded FPGA characteristics. Next, the background used along with this research works in both academic and available industrial solutions are presented in section 3 and 4. Section 5 summarizes this study.

2. Embedded FPGA: Overview

Many factors such as the internal architecture and the IP implementation control the performance of the embedded FPGA. This section presents common concepts and definitions related to eFPAs. The goal is to highlight the parameters of the performance optimization.

2.1 Embedded FPGA Versus FPGA

The increasing density of current programmable circuits, particularly FPAs (Field Programmable Gate Arrays), allows the rapid prototyping of highly complex digital circuits. Also, it is possible to quickly test the performance of new architectural concepts: the complete implementation of a processor on FPGA circuits is now possible. Thus, the performance evaluation of software application is more than these offered by software simulators [27]. FPGA is defined as an integrated circuit including a network of programmable cells. Each cell can perform a function, chosen from several possible ones like shown in Fig.2-A. The interconnections are also reconfigurable. The most of FPGA components are mainly based on SRAM technology. The logic blocks in FPAs are based on Look Up Tables (LUTs) to implement any Boolean function with 4, 5, 6 inputs with one or two outputs. The flexibility in FPAs is mainly based on the interconnect network that allows any logic block to be connected to any other. This is also controlled by programming bits. Traditional FPAs use 2D-mesh architectures that can require 10+ metal layers and take up much more area than the logic blocks themselves. In addition, the reconfigurability of some FPGA circuits opened new research Fields:

- Methodologies for designing re-configurable systems, with the ability to adapt new requirements environments or variable constraints.
- The possibility to be embed in ASIC systems and so considered as embedded FPGA [28].

Embedded FPAs is an IP which is like the larger stand-alone FPAs [29]. Its architecture is composed by arrays of computational logic blocks (LB) connected using programmable routing. EFPFA is equivalent to the core of an FPGA which can be integrated into the chip, just like others components: processors, DSPs and RAM ...[5,30,31]. An FPGA core is implemented with maximum metal layers and full-custom logic design to minimize area. However, an embedded FPGA needs to be designed differently: it must be modular to offer a wide range of sizes. The main use of FPGA is the prototyping but the eFPGA is useful more to be integrated into system on chip, which can make system more flexible by ensuring the reconfigurability in ASIC systems [32].

2.2 Soft eFPGA Versus Hard eFPGA

Embedded Re-configurable FPGA can be provided as hardware cores (ASIC), defined as soft Intellectual Property (IP) also as an RTL design. This section tackles these two issues and describes each of them. Soft Re-configurable eFPGA is an IP which is described in behavioral RTL with hardware language [12,13,33]. Next, users implement this IP using CAD tools for synthesizing, mapping the RTL to standard cell library, placing and routing to generate the physical IC layout. This approach is better in flexibility than the hard solution, it is simple to use. However, design is constructed from CMOS logic gates like NORs and NANDs. Consequently, the implementation of this logic is poorly in soft IP, therefore overheads in area, delay, and power occur [33]. In the
other side, Hardware eFPGA is a re-configurable hard block, which can be integrated into the design flow, but in this approach, designers cannot change the eFPGA core, because all the parameters are fixed from the beginning (speed, physical dimensions, power efficiency ...) [34]. The major advantage is that user don't need to re-design or build the programmable core, because all is ready to use, Full-custom design techniques maintain highly optimization of hard eFPGA core. However, vendors of hard IP typically offer a single eFPGA architecture that may not be ideal for a particular application.

2.3 Coarse Grain Versus Fine Grain

In this section, two families of eFPGA architecture are described: Fine Grain and Coarse Grain [35]. Like shown in Fig.3, fine-grain re-configurable architecture, means that embedded re-configurable logic architectures have homogeneous components. These architectures are characterized by their multi-function role in a system-on-a-chip. The coarse grain, architecture can include hardware blocks like (DSP, memory, adder) [36,37]. Coarse logic blocks simplify the implementation of complex functions [38]. These structures provide a much better area efficiency, and still being flexible enough for the target application domain. However, this higher flexibility can increase cost overhead. In the case of fine grain, it is easy to modify, and it has greater flexibility compared to coarse-grained.

![Fig. 3 Coarse Grain Versus Fine Grained](image)

In the present section, we detailed the concepts and the application of eFPGA. We presented the difference between the twice coarse/fine grained architectures, and soft/hard core IP. In the two next sections, we will present the existing solutions in both literature and industry.

3. EFPGA Solutions

3.1 Industry Examples:

Different works in industry will be presented in this section, to give a global overview on the existing works related to the eFPGA design.

- **Flex Logic:** Flex logic technologies is a company, which has introduced their innovative eFPGA core since 2015 [8]. The main objective is to update fixed functions in silicon, and to re-use the chip after fabrication. This company has their own hardware and software environments. Their eFPGA core called FLX 150; it has a meretricious architecture that goes up to (6*6, 7*7) lacks. It contains three global blocks: Boundary Less Radix Interconnect Network (RBB), Input / outputs and the logic Blocks. It has 20 Kbits RAM and 2.520 look-up-tables (6-input LUTs or dual 5-input LUTs). The total size is ranged between 2.520 LUTs to 122.500 LUTs. Flex logic proposed new patented architecture which uses only 5-7 metal layers. The architecture of the invented IP is presented in Table1. The EFLEX compiler is the software tool used to achieve the packing, placing, routing and generation of the configuration bit stream that will be loaded into the eFPGA core [11]. Flex logic can be integrated into SoC for many ways: RAM, Inputs/outputs, customize logic or co-processor. This IP can be used as: Software reconfiguration I/Os Inputs/outputs, customize logic or co-processor. This architecture of the invented IP is presented in Table1. The EFLEX compiler is the software tool used to achieve the packing, placing, routing and generation of the configuration bit stream that will be loaded into the eFPGA core [11]. Flex logic can be integrated into SoC for many ways: RAM, Inputs/outputs, customize logic or co-processor. This IP can be used as: Software reconfiguration I/Os Inputs/outputs, customize logic or co-processor.

- **Menta:** Since 2007, Menta has founded to deliver standard cells embedded FPGA IPs [39]. The main objective is to make the possibility to update the silicon post-production. Menta IP delivered its first version in 2009. Afterward four versions are delivered between 2013 and 2018 by Menta technology [40]. eFPGA IP core has a coarse-grained architecture as shown in Table 1. It contains embedded logic blocks (eLB) and embedded memory blocks (eMBs) and embedded application blocks (eAB) which can be inserted inside the array to increase performance for application-oriented design and to have high-speed arithmetic functions. Menta has their own tools to compile and configure the IP called Origami toolchains [41]; it includes RTL synthesis in HDL language (VHDL, System Verilog or Verilog) with additional support to SDC application design constraints. The Menta IP can be used in defense, aerospace, ADAS, data center systems and networking, to implement digital radio filters and cryptography algorithms.

- **Quick Logic:** Since 1988, Quick logic has founded. It started the researches to develop a programmable logic device, with lower power [42]. In 2016, this company announced their first version of eFPGA IP core, which is called ArcticPro. This IP is characterized by the ultra-low power. ArcticPro IP has fine grained architecture, it is an array ranging from...
16x16 logic cells up to 64x64 logic cells. Like shown in Table 1, each logic cells contains Flexible Flip Flop, which can be driven by logic (4-input LUT or two independent 3-input LUT). Using this architecture, the routing delay is reduced and routing resource utilization in the IP core is improved. ArcticPro uses the Borealis eFPGA Compiler to easily evaluate and define a custom eFPGA logic cell array sizes and generate all the necessary design files for SoC integration (.cdd, .v, .lib, .lef and .gds). ArcticPro also uses Aurora for Placement and Routing. The proposed eFPGA is used to control Sensor Hub, so that, the eFPGA is used to run sensor fusion at a very low power level.

- **Achronix**: Since the middle of 2016, Speedcore eFPGA technology has been in production and shipping to end customers [10]. Speedcore core has a coarse grain architecture. It contains several blocks like the Re-configurable Logic Blocks (RLBs), RAMs Block (BRAMs), Logic RAMs (LRAMs) and Digital Signal Processing Blocks (DSP64s). These blocks are routing resources where the connection points between vertical and horizontal routing tracks are supported by component called Switch Boxes. The abstract view of the eFPGA is shown in Table 1. The size of Speedcore IP goes up to 1,000 LUTs. Speedcore uses their own of the ACE design tools (Achronix CAD Environment) to configure the core by the required function. The IP can serve as hardware accelerator and re-configurable co-processor to implement a wide range of applications such as multimedia processing, cryptography [10].

- **Nano Explore**: NanoXplore is a very fast-growing company, which was developed in 2014 [9]. The eFPGA IP of NanoXplore is based on SRAM technology and contains programmable logic blocks, which has 4- inputs LUT. This IP offers an innovative solution to give flexibility in SoC and future ASIC. It is characterized by limited area. Its architecture is presented in Table 2. It has coarse grain blocks, it can support DSP and memory functions, LUTs, Carry chains. NanoXplore can deliver up to 750K LUT to Configure NX-eFPGA. And uses the mapping software called NanoXmap, to transform a synthesized RTL description into a bit stream downloadable in the NX-eFPGA through various hardware interfaces [43]. Thanks to mapping process used by NX, optimization in architecture has occurred, so a gain in the use of LUT appeared, which can reach 90%.

Table 1 presents a comparison between the industrial architectures, all the studied eFPGA are mesh based architectures, this is due to the regularity of this type of architecture. Indeed, when the number of CLB increases, regular rows and columns are added with the related connection blocks. In the other part, all the vendors proposed hard cores eFPGA to include in the system on chip design. This could be beneficial in terms of time to market and chip integration, but developers could not make modifications after the production process. Only Quick Logic proposed a fine-grained IP. All other eFPGA are coarse grained to add more flexibility in the application implementation. The Speedcore provides IP with a total size going up 2 M of LUTs. Finally, each IP is delivered with the corresponding CAD tools to implement the soft-core application into the hardware architecture.

Table 1 Industrial eFPGA Comparison

<table>
<thead>
<tr>
<th>eFPGA</th>
<th>Date</th>
<th>Architecture</th>
<th>Input-LUT</th>
<th>Soft/Hard Core</th>
<th>Total Size (LUTs)</th>
<th>Company</th>
<th>CAD Tools</th>
<th>Domain</th>
<th>eFPGA Template</th>
<th>Delivered Generation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flex Logic [8]</td>
<td>2015 - 2019</td>
<td>Mesh</td>
<td>6-input</td>
<td>Hard</td>
<td>122,5</td>
<td>Flex Technology</td>
<td>EFlEX Compiler</td>
<td>Cloud Data Center</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Or dual 5-input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In this section we tried to address different emerging trends in industry for embedded FPGA. We presented some existing vendors of eFPGA IPs. We compared of the described solutions in terms of architecture, implementation, number of cells, target applications...

3.1 Academia Examples:

This section highlights the academic research related to eFPGA. The IPs are described in detail including the theoretical concepts and parameters developed to design the proposed eFPGA.

- **FASE eFPGA**: In [26], authors presented an automatic design flow for generating customized embedded FPGA fabric. The authors implement a matrix's FPGA embedded into SoC called "FASE". The basic elements of FASE eFPGA are: CLB (Configurable Logic Block) with 4-input LUT (Look Up Table), switches and configuration parts: Flip Flops + Shift register chain. Authors used VPR Tools [44] (placer and router) to generate the bit-stream file. They added a model to VPR tools for the generation of structured VHDL.

- **EFPGA Based on Multistage Switching Networks**: In [12,15] authors described a MSSN eFPGA. It is based on the utilization of Multistage network (MSSN). This topology is characterized by its routing infrastructures that is regular. The interconnection topology allows a hierarchical structure in order to reach connection between logic networks like shown in [45]. The general architecture is composed by: Inputs/Outputs, Logic Blocks (6:1 LUT, 2 LUT 4:2, multiplexers and FF), crossbars topology ensures the connections between LUT Blocks and the DSP Blocks. Typical size of MSSN eFPGA is 1 KLUT [15]. To ensure the configuration of an eFPGA core, authors used a complete CAD flow based on VPR [46], an academic open source tool for FPGA. For the routing step, authors have their own tool called MSSN-specific router.

- **ACLBs eFPGA**: Recently, in 2019, a patent [25] is delivered including new strategies in embedded FPGA fields. This IP is developed in Valbonne / Sophia Antipolis (FR). The architecture of the invented IP is presented in Table 2. It includes several Abuttiable Configurable Logic Blocks (ACLBs) which are organized in island style. In this IP, each ACLB may be an instance of multiple programmable functional blocks including several ACLBs of the same or different types.

- **Overlay eFPGA**: The architecture conforms to a VPR template [46]. The template shown in Table 2 describes a regular array of cells (CLBs), where each on embeds several logic elements (BLEs). A BLE contains a Look-Up Table and a register. The cells are surrounded by routing channels, interconnected through switch boxes. The switch boxes can expose several connection schemes, but the Wilton [47] connectivity is most used. The CLBs can drive a portion of their close routing tracks, while some of the tracks can drive the CLBs inputs. The number of inputs for a CLB is usually less than the sum of inputs of its BLEs. Therefore, efficient resources sharing through a smart packing is a key issue [48].

- **EFPgas based on a flexible architecture**: In [49], authors proposed an embedded FPGA based on a flexible architecture. Table 2 presents the architecture of the proposed IP. It has an island style composed by: LE (Logic Element) in a row and column, Routing Switch (RS), clusters and Connections Boxes (CB). The architecture template described above was
formulated as a high-level description using MATLAB. Authors used exiting tools to achieve the synthesis, mapping and routing the target application (VPR), and Existing bit-stream generators like DAGGER [50] for the bit-stream generation.

- **ESL Re-programmable eFPGA:** In [16,51], authors proposed an eFPGA as soft IP. The general architecture is island style. The description architecture is written in VHDL. Since it is a soft IP there are no SRAM cells, Pass transistor or tri state buffer switches. The configuration element is a Flip Flop and switching element is a Multiplexer. The core is flexible since; the designer can select or choose all the fundamental parameters (LUT size, number of LUT, array size). However, this research work is done in close collaboration between startup Menta® and research center which makes more details not publicly available [17].

- **EFPGA Subsystem:** Recently, in 2019, researchers in [15] used Soft-core embedded-FPGA of [13]. Table 2 represents the eFPGA subsystem, composed of a frequency divider, a configuration loader, the PLD core and the interface toward APB, including the configuration registers which allow the processor to handle the subsystem.

- **LIP6 eFPGA:** In [52], authors developed a traditional island-style programmable logic architecture, as presented in Table 2. The developed eFPGA contains the configurable logic blocks (CLBs) and bidirectional I/O pad resources which are connected together with routing networks. In [5], authors integrated the embedded IP into system on chip with multi fifo components in order to achieve the configuration, read and write data to test the target application.

- **FlexTiles:** In [53], authors proposed a hardware embedded FPGA. It has an island-style architecture. It has a typical architecture described with Verilog-To-Routing (VTR) framework. The FlexTiles platform uses an intermediary representation of the routing data called the Virtual Bit-Stream (VBS). Table 2 presents the architecture of FlexTiles Platform.

In Table 2, the academic eFPGA of the last decade are presented. In fact, we notice that the coarse grained architecture is appeared recently [14,25] . All the other works studied the fine-grained architecture due to its flexibility to implement the software application. The element component is the 4-inputs which is considered as the best solution in both mesh and hierarchical architectures. Most studied eFPGAs use the VPR tool to implement the software application. VPR offers a complete flow starting from the synthesis mapping and packing tools to the place and route tools. VPR can be adapted to target different eFPGA architectures. The performance of some eFPGA [5,15,52] is evaluated after integration into a system on chip. The integration aims to add flexibility and reconfigurability into the SoC even after production.

<table>
<thead>
<tr>
<th>eFPGA</th>
<th>Date</th>
<th>Architecture</th>
<th>Input-soft</th>
<th>Input-hard</th>
<th>Coarse-soft</th>
<th>Coarse-hard</th>
<th>Total Size</th>
<th>Research Team</th>
<th>eFPGA Template</th>
<th>CAD Tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>FASE</td>
<td>2007</td>
<td>Mesh</td>
<td>4-input</td>
<td>Soft</td>
<td>Fine</td>
<td>-</td>
<td>-</td>
<td>GET Telecom Paris, CNRS – LTCI France</td>
<td>VPR</td>
<td></td>
</tr>
<tr>
<td>MSSN [52]</td>
<td>2013-2019</td>
<td>Hierarchical</td>
<td>6-input</td>
<td>2-4-input,</td>
<td>Fine</td>
<td>1 KLUTs</td>
<td>-</td>
<td>Bologna, Italy & STMicroelectronics</td>
<td>VPR</td>
<td></td>
</tr>
<tr>
<td>LIP6 eFPGA</td>
<td>2013-2016</td>
<td>Mesh</td>
<td>4-input</td>
<td>Soft</td>
<td>Fine</td>
<td>-</td>
<td>-</td>
<td>LIP6-Paris France</td>
<td>VPR</td>
<td></td>
</tr>
</tbody>
</table>
In the present section, many researches are illustrated, presented and discussed. A comparative table is described in the last part of this section. In the last decade, many CAD tools and architectures are explored to obtain the best performance.

4. Conclusion

This paper presents a selective state-of-the-art review of embedded FPGA architecture and technologies. It classifies existing architectures related to the conception of eFPGA cores used technology from fine grain to coarse grain. These architectures have been detailed, discussed, evaluated and compared. Future trends and research directions have been enumerated. The aim of this paper is to present the different technologies which was not commonly expressed in previous review papers. Considering all the challenges and issues studied in this paper, new eFPGA architecture will be evaluated and explored. The target architecture should improve the logic occupancy and decrease the number of routing switches in order to ensure shorter critical path and better area. In this context, recent works study the possibility to design new architectures using new technologies such as Deep Learning frameworks: Tensor Flow.

Acknowledgments

The authors would like to thank Mentor Graphics Tunisia, the Digital Research center of Sfax and King Abdul-Aziz City for Science and Technology (KACST), which supports this work under a research grant (project no. 35/1012).

References

