
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

242

Manuscript received August 5, 2020
Manuscript revised August 20, 2020

Android OS Information Security Level Assessment

Pavlo Chernenko, Maria Orlova
romankev@scs.kpi.ua

Faculty of Applied Mathematics, Igor Sikorsky Kyiv Polytechnic Institute, Kyiv, Ukraine

Summary
The increase of the efficiency of the collection, processing

and exchange of information through modern data transfer
technologies, remote monitoring and automated management, is
one of the essential directions of the information systems
development. Various mobile devices that deal with data transfer
and processing issue make the base of this concept. Modern
mobile services, consisting of those which exchange and process
secret, banking and critical data, show up in light of the
consistent increment of the quantity of information security
crimes compared to the usage of mobile devices. The extensive
use of these devices to access protected data in information
systems has given a particular importance to ensuring
information security.
Mobile operating systems form the foundation of the Ad hoc
mobile networks structure and thus the evaluation of the present
status of data security instruments for mobile operating systems
is the subject of this paper. The article examines questions of the
mobile ecosystem’s development and techniques intended to
solve these problems, including their principal harmful influences.
The article reveals strategies for protection from static and
dynamic analysis, and modern security components taking
Android OS as an example.

Key words:
Android, information security, malicious impact, mobile OS,
protection instruments.

1. Introduction

According to the reports of the rating agency
Statcounter (Fig. 1), for the second quarter of 2020,
Android is the most common operating system (OS) in the
world with a result of almost 38% of the total number of
installed OS, which imposes the obligation of this OS to
have the highest quality in information security[1].
However, although Google and mobile device
manufacturers are constantly improving the security
system, the open source code and extensive fragmentation
of the platform make this system one of the most
vulnerable to malicious exposure.

Fig. 1 Operating System Market Share Worldwide

2. Current Android OS security status

The major reason for the fragmentation of the
Android ecosystem is the technology used to create mobile
devices based on SoC-system (System on a chip). SoC-
system consists in the integration of the central processor,
graphics accelerator, radio module and various sensor
equipment onto one microchip. This concept allows to
reduce the physical size of the device, lower the power
consumption and increase the productivity with the help of
a better integration of components, but the interaction of
the entire system requires a development of special drivers.
Manufacturers of various SoC-systems develop drivers
which are proprietary and unique to each model. As a
result, mobile device manufacturers integrate the received
drivers for the SoC-system into their own assembly, which
makes software update procedures being dependent. Fig. 2
shows the production algorithm for mobile devices based
on Android. High fragmentation of the platform doesn’t
allow to provide relevant updates to mobile devices
quickly because of the large number of manufacturers of
chipsets and mobile devices (ODM is the manufacturer
who create products according to the original project;
OEM is the manufacturer who sell parts and equipment to
other manufacturers).

37.81%35.83%

15.28%
8.54%

0.79% 0.91% 0.84%
0%

10%

20%

30%

40%

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

243

Android
source code

Mobile
device

Qualcomm

MediaTek

HiSilicon
Kirin

NVIDIA
Tegra

Broadcom

Samsung

ODM 1

ODM n

ODM n+1

OEM 1

OEM n

OEM n+1

Chipset
Manufacturers

Device
Manufacturers

Fig. 2 Algorithm of the production of Android devices

1. Google has taken several important steps to solve the

problem of high device fragmentation:
2. In 2014, Google introduces Android One software and

hardware standard – an OEM support program aimed
to motivate manufacturing devices without OS
modifications. The goal of the project is the ability for
Google to manage the design, development and support
of these devices, while original manufacturers carry out
the production.

3. As a result, Google handling security issues and OS
updates has increased the level of the security system.
However, for now, the largest device manufacturers do
not support the concept of a “clean” OS leading to low
efficiency in addressing ecosystem fragmentation.

4. In 2017, Google changes the Android architecture by
adding the “Project Treble” abstraction layer, which
allows separating the layer of hardware code
implementation from the operating system code [2].
This step allows to update the operating system code
separately from the drivers, but getting recent software
versions still depends on the manufacturer. That does
not improve the situation.

5. Since 2018, manufacturers have had to release OS
updates for at least two years for all Android devices,

6. the number of which exceeds 100,000. If a partner does

not fulfill this condition, Google may refuse his license
[3].

7. Google’s policy aims to provide updates for devices
not older than 2-3 years, which leads to serious security
issues in the industry. Devices related to this segment
should be potentially vulnerable accordingly. Table 1
shows a brief description of the Android versions on
the market and their support status.

Table 1: Android versions characteristic.

Version Name
Version
Number

Release
Year

Support
status

Cupcake 1.5
2009

No longer
supported by

Google

Donut 1.6
Eclair 2.0 – 2.1

2010 Froyo 2.2 – 2.2.3
Gingerbread 2.3 – 2.3.7
Honeycomb 3.0 – 3.2.6

2011 Ice Cream
Sandwich

4.0 – 4.0.4

Jelly Bean 4.1 – 4.3.1 2012
KitKat 4.4 – 4.4.4 2013
Lollipop 5.0 – 5.1.1 2014
Marshmallow 6.0 – 6.0.1 2015
Nougat 7.0 – 7.1.2 2016
Oreo 8.0 – 8.1 2017 Supported by

Google Pie 9.0 2018

10 Q 10 2019
Current
version

11 R 11 2020 Beta

Based on the analysis of supported versions and
statistics of distribution of versions of Android, presented
in Table 2, it is possible to calculate the probabilities of a
device being in a vulnerable state over the past 7 years
under the conditions under which manufacturers perform
device updates for two years [4], [5].

Table 2: Android operating system share worldwide by OS version and a probability of a device being in a vulnerable state from 2013 to 2020 (%)

 F
ro

yo

G
in

ge
rb

re
ad

H
on

ey
co

m
b

Ic
e

C
re

am
 S

an
dw

ic
h

Je
ll

y
B

ea
n

K
it

K
at

L
ol

li
po

p

M
ar

sh
m

al
lo

w

N
ou

ga
t

O
re

o

P
ie

10
 Q

P
ro

ba
b

il
it

y

2013 2.2 28.5 0.1 20.6 48.6 30.7
1H 2014 0.8 14.9 12.3 58.4 13.6 28.0

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

244

2H 2014 0.7 11.4 9.6 53.8 24.5 21.7
1H 2015 0.4 7.4 6.4 44.5 39.7 1.6 58.7
2H 2015 0.2 3.8 3.4 30.2 38.9 23.5 37.6
1H 2016 0.1 2.2 2.0 20.1 32.5 35.6 7.5 56.9
2H 2016 0.1 1.5 1.4 15.6 27.7 35.0 18.7 46.3
1H 2017 1.0 0.8 9.1 18.8 32.0 31.2 7.1 61.7
2H 2017 0.6 0.6 6.9 15.1 28.8 32.2 15.8 52.0
1H 2018 0.3 0.4 4.3 10.3 22.4 25.5 31.1 5.7 63.2
2H 2018 0.3 0.3 3.2 7.8 18.3 21.6 29.3 19.2 51.5
1H 2019 0.3 0.3 3.2 6.9 14.5 16.9 19.2 28.3 10.4 61.3
2H 2019 0.2 0.2 3.0 2.4 6.2 11.3 12.6 22.1 42.0 35.9
1H 2020 0.1 0.1 1.5 1.8 4.9 8.7 10.6 18.9 34.7 18.7 46.6

Fig. 4 shows a graph displaying a negative trend in the
distribution of relevant Android versions.

 Fig. 4 Negative trend in the distribution of relevant Android versions.

Using the data above, it is possible to forecast a trend
of the device being in a vulnerable state for the next few
years using a pairwise simple linear regression function
(Fig. 5).

Thus, if the Android ecosystem’s development trend

continues, by 2022 the probability of compromising
devices on this platform will tend 65%, which is a serious
motivator to create alternative methods for providing
security updates for mobile devices.

Fig. 5 Chart displaying an increase of vulnerable devices

3. Infection vectors

 The study “Android: protecting the kernel”, dedicated to
the analysis of Android vulnerabilities from 2014 to 2016,
showed a notable increase in the detected vulnerabilities in
the Linux kernel [6]. Fig. 6 shows statistics characterizing
the dynamics of growth of kernel vulnerabilities. In 2014,
4% of vulnerabilities were found in the Android kernel, in
2016 this indicator increased to 36% and for 2018 remains
at 33%.

0%

10%

20%

30%

40%

50%

60%

20
13

1H
 2

01
4

2H
 2

01
4

1H
 2

01
5

2H
 2

01
5

1H
 2

01
6

2H
 2

01
6

1H
 2

01
7

2H
 2

01
7

1H
 2

01
8

2H
 2

01
8

1H
 2

01
9

2H
 2

01
9

1H
 2

02
0

Froyo Gingerbread

Honeycomb Ice Cream Sandwich

Jelly Bean KitKat

Lollipop Marshmallow

Nougat Oreo

Pie 10 Q

31%

28%

22%

59%

38%

57%

46%

62%

52%

63%

52%

61%

36%

47%

20%

25%

30%

35%

40%

45%

50%

55%

60%

65%

70%

2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

245

Fig. 6 Android OS vulnerabilities statistics.

According to cvedetails.com, there are 2563
vulnerabilities in Android, moreover 613 and 414
vulnerabilities are discovered in 2018 and 2019
accordingly [7].

The main reason for the high increase of

vulnerabilities in the kernel is the introduction in 2013 of
Android 4.4 SELinux (Security Enhanced Linux) control
system that allows to create policies that define types of
interactions allowed and forbidden for each process within
the general security context, and also to introduce
administrator restrictions

Kernel issues include vulnerabilities not only in the
Linux kernel but also in the code of drivers supplied by
developers of mobile chipsets. At the international
conference on information security (RSA Conference USA
2018), a report on the research of existing vulnerabilities
in Android showed that 85% of vulnerabilities detected in
the kernel are classified as private drivers[8]. Fig. 7 shows
a correlation diagram of various types of kernel errors. As
a result, these types of vulnerabilities facilitate attacks on
systems regardless of the version of Android.

Fig. 7 Kernel error types

Each type of malware designed for desktop
computers has an analogue for Android. For example,
organizing a botnet, stealing personal data, gaining control
of a device or disabling it. Fig. 8 shows a diagram
characterizing the ratio of existing types of malware for
Android for the 3rd quarter of 2018 [9]. With the
development of permission and security systems, the
percentage of viruses like Trojan-SMS and Spyware has
sharply decreased.

Fig. 8 Malware types

4. Modern malware distribution technologies

Malware distribution technologies are classified as
follows [10]:

1. Exploitation of vulnerabilities in the Linux kernel and

its modules. Android is a Linux distribution with its
own implementation of the inter-process
communication function, management of sleep mode,
kernel protection (shared memory mechanism, etc.)
and memory cleanup. Thus, vulnerabilities found in
common kernel components can be applied on mobile
devices.

2. Exploitation of vulnerabilities in hardware modules.
Mobile devices have many hardware modules designed
to interact with other devices [11]. Such vulnerabilities
can be exploited in the coverage area of radio modules
or with direct access to the device.

3. Exploitation of vulnerabilities in operating system
components, programs and drivers. Allows the attacker
to bypass Android and SELinux defenses.

4. Exploitation of vulnerabilities in components of mobile
device manufacturers. Device manufacturers are
modifying Android by placing various applications in
the system directory, i.e., processes are launched in
privileged mode. These applications may contain
vulnerabilities leading to data leak, account hijacking,

4% 9%
39% 45% 33%

96% 91%
61% 55% 67%

2014 2015 2016 2017 2018

Linux Kernel Android OS code

3%
4%
4%
4%

6%
7%
7%

9%
12%

44%

other
memory corruption

integer overflow
uninitialized data

race condition
lack of permission

use-after-free
data leak

null checking
bounds checking

0.7%
0.7%
0.8%
0.9%
1.1%

4.4%
5.0%
5.4%
6.4%

22.6%
52.1%

Backdoor
Monitor

Other
Spyware

Trojan-Ransom
Trojan-Banker

Trojan-SMS
Trojan

Adware
Trojan-Dropper

RiskTool

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

246

and the installation of malware. Also, manufacturers
themselves can change the system with undeclared
functionality.

5. Exploitation of vulnerabilities in libraries. Several
libraries are included in the Android architecture, such
as OpenGL, Audio Manager, Media Framework, libc
[2]. Exploiting vulnerabilities in these components is
one of the main attack vectors at the moment. The most
common vulnerabilities of the Media Framework
component allow attacks such as remote code
execution (RCE) on the affected device (for example,
when working with e-mail, browsing the Internet or
processing MMS files) [12].

6. Exploitation of vulnerabilities in machine codes.
Android contains a toolkit that allows to execute C and
C ++ code (Android NDK). This feature generates
errors specific to low-level programming languages
(memory leaks, buffer overflows, etc.).

7. Exploitation of vulnerabilities in user applications.
Applications installed by the user may manage a
personal data, but storage and access to this
information is not always ensured properly (using
HTTP traffic, locating application data files in shared
folders, etc.).

8. The use of social engineering methods used for the
transfer and subsequent installation of malware from
various sources (including the Play Market).

5. Resisting tools of static analysis of
applications.

Fig. 9 shows masking methods used to resist the
signature analysis. Various ways of code obfuscation bring
the source code or executable code of the program to a
form that preserves its functionality, but complicates the
analysis, understanding of work algorithms and
modification during decompilation.

Malware masking methods

Code obfuscation

Strings encrption

Names changes

Execution stream
replacement

Debugging information
removal

Modularity

Media-Container

Remote code/program
download

Storing additional dex/
apk in resources

Fig. 9 Malware masking methods

The most common tools for obfuscating application code
in Android are DexGuard, Alatori, DashO, and
DexProtector. Also, for the initial protection against code
analysis, the built-in tools in Android Studio (Proguard or
R8) are used, but these tools only rename objects.
Fig. 10 shows the primary stages of converting the source
code of programs to the executable code of the Dalvik /
ART virtual machine using these tools.

Source code

Byte code
Optimization of the

Java byte code

Optimization of the
Dalvik byte code

Javac/kotlinc

ProGuard

R8 – optimization, obfuscation

dex

Fig. 10 Stages of an app creation using ProGuard and R8

Modular architecture for building applications allows
to apply reflection methods making loading byte-code into
a virtual machine during application execution possible.
In Android, to implement the concept of dynamic loading
and code execution, the following functionality is used:

1. dalvik.system.DexClassLoader - a class that allows to

download “.dex”, “.jar” or “.apk” files.
2. Java Reflection API allows, that allows to interact with

the downloaded code during program execution.

6. Resisting dynamic application analysis tools

Fig. 11 displays methods used to resist the dynamic
analysis of the application. Their goal is to detect attempts
to control the behavior during program execution in a
sandbox and to get a pattern of the behavior [13]. The
static heuristic method checks unique identifiers of a
device, such as a serial number or belonging of an external
IP address to application verification services. When using
a hypervisor, these indicators are equal to the default
values, which is an indicator for detecting surveillance
systems. A method based on the occurrence of an error in

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

247

the readings of sensor equipment (accelerometer,
gyroscope, light sensor, GPS, etc.) refers to dynamic
heuristics. Modern emulators support simulation of sensors
with pseudo-random value update events occurring at
random time intervals, which complicates dynamic
heuristics.

Static heuristics

IMEI

Router table

MAC address

Manufactures

Dynamic heuristics

Accelerometer

Gyroscope

Magnetometer

Proximity sensor

Hypervisor heuristics

Instruction length
limit

Context switching
time

Coherence between
caches and
instructions

Heuristics

Fig. 11 Methods to resist dynamic analysis tools

Hypervisor heuristics aim is to detect differences in
defective emulation of real equipment. The above methods
search for differences in the functionality of real and
emulated devices. These differences are differences in the
values of the MSR registers (model-specific registers),
time intervals for switching the context, within the
instruction lengths, and specific processor errors, relative
performance, etc.
The above methods are often used to bypass the Google
Bouncer antivirus scanning system, which operates in the
official Google Play repository, as a result allowing
malware to get the status of a “trusted application”.

7. Modern security approaches and tools in
the Android OS

Platform-level security is the most serious change in
Android in recent versions. To eliminate discovered
vulnerabilities in the Android code efficiently, Google
launched monthly security update program. Starting with
Android 8.0 they added a component to the platform level
of “Play Protect” – a cloud-based security system that
provides real-time scanning of applications in the official
repository and on users’ devices.

Modern tools to ensure information security at the

device level and their purposes are the following [14], [15].

1. Encryption. Data protection from unauthorized access

using cryptographic information protection tools.
2. Hardware protection tools. Ensuring reliable storage of

encryption keys and a secure authentication procedure.
3. Core protection.

PAN (Privileged Access Never) – restriction to access
processes’ memory directly and forcing the usage of
memory copy functions (Android 8.0);
CFI (Control Flow Integrity) – creation of a graph of
function calls, embedding a verification code with
before each function call. This mechanism aims to
resist the modification of function pointers and return
addresses (Android 9.0);
IOS (Integer Overflow Sanitization) – integer overflow
data protection. Checking the performance of
arithmetic operations (Android 7.0);
KASLR (Kernel Address Space Layout Randomization)
– assignment of a random address to the code location
area, anonymous memory area and to a kernel data in
memory on each boot (Android 8.0);
PIROM (Post-Init Read-Only Memory) – creation of
readable and writable memory areas that could be used
only during initialization and are put in read-only mode
after initialization (Android 8.0).

4. Isolation of processes Execution of each application
in a separate address space with unique values
user/group ID. Exchange of data between processes is
carried out through OS services.

5. SELinux. Mandatory access control that provides the
minimum necessary set of privileges for each process.

6. OS boot verification. Ensuring the operating system’s
good condition at boot time. Mechanisms to prevent
the launch of self-signed code, check the integrity and
digital signature of the kernel.

8. Conclusion

Article shows that Android platform security issues
are present at all levels of the platform. In modern versions
of Android, protection mechanisms have seriously
increased the level of device security, but these solutions
are not ensuring the security of the ecosystem entirely and
cannot guarantee the absolute reliability and security of
data in mobile devices.

Despite a significant improvement in the quality of

protection mechanisms and big variety of modern security
approaches and tools, working separately they cannot
secure a device completely against the constantly growing
number of vulnerabilities.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.8, August 2020

248

The high level of fragmentation of the platform and

the predicted increase of the number of vulnerable devices
require the use of alternative approaches to ensure the
security of mobile operating systems and malware analysis
systems. This area is an urgent task with the need for a
detailed study of the issues of identifying malicious code.

References
	
[1] “Operating System Market Share Worldwide”.

https://gs.statcounter.com/os-market-share (accessed
Aug. 13, 2020).

[2] “Android Architecture”.
 https://source.android.com/devices/architecture
(accessed Aug. 13, 2020).

[3] “Android Enterprise Recommended”.
 https://www.android.com/enterprise/recommended/
(accessed Aug. 13, 2020).

[4] “Mobile & Tablet Android Version Market Share
Worldwide”. https://gs.statcounter.com/android-
version-market-share/mobile-tablet/worldwide
(accessed Aug. 13, 2020).

[5] J. Stoep Vander, “Android: protecting the kernel”,
Aug. 26, 2016.
https://events.static.linuxfound.org/sites/events/files/s
lides/Android-%20protecting%20the%20kernel.pdf
(accessed Aug. 13, 2020).

[6] “Google Android - CVE Details”.
https://www.cvedetails.com/product/19997/Google-
Android.html?vendor_id=1224 (accessed Aug. 13,
2020).

[7] G. Vigna, “How Automated Vulnerability Analysis
Discovered Hundreds of Android 0-days”, Apr. 18,
2019. https://www.rsaconference.com/industry-
topics/presentation/how-automated-vulnerability-
analysis-discovered-hundreds-of-android-0-days
(accessed Aug. 13,).

[8] V. Chebyshev, “Mobile malware evolution 2019”,
Feb. 20, 2020. https://securelist.com/mobile-
malware-evolution-2019/96280/ (accessed Aug. 13,
2020).

[9] R. Ferreira, A. Santos, and R. Choren,
“Vulnerabilities Classification for Safe Development
on Android”, Journal of Information Systems

Engineering & Management, vol. 1, pp. 187-190, Jun.
2016, doi: 10.20897/lectito.201634.

[10] A. Stern, “Bluetooth Security Vulnerabilities”, Apr.
15,2013. https://www.kaspersky.com/blog/bluetooth-
security/1637/ (accessed Aug. 13, 2020).

[11] “CVE-2017-0466 - NVD”.
https://nvd.nist.gov/vuln/detail/CVE-2017-0466
(accessed Aug. 13, 2020).

[12] T. Petsas, Voyatzis Giannis, E. Athanasopoulos, M.
Polychronakis, and S. Ioannidis, “Rage Against the
Virtual Machine: Hindering Dynamic Analysis of
Android Malware”, EuroSec ’14. 2014.

[13] “Android Security & Privacy 2018 Year In Review”.
https://source.android.com/security/reports/Google_
Android_Security_2018_Report_Final.pdf (accessed
Aug. 13, 2020).

[14] “Android security Blog”.
https://security.googleblog.com/search/label/android
%20security (accessed Aug. 13, 2020).

[15] “Android: Vulnerability Statistics”.
https://www.cvedetails.com/product/19997/Google-
Android.html?vendor_id=1224 (accessed Aug. 13,
2020).

