
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

55

Manuscript received September 5, 2020
Manuscript revised September 20, 2020

DOI: 10.22937/IJCSNS.2020.20.09.8

Management of Academic Workload Allocation Using Multi-Objective
Genetic Algorithm

Manar Salamah Ali

Computer Science Department, King Abdulaziz University, Jeddah, Saudi Arabia

Abstract
Enforcing fairness policies for academic workload distribution
and achieving staff satisfaction is of great importance in
academic institutions. The amount of effort spent by instructors
in teaching individual courses is not only measured by the
contact teaching hours with students in classes. Teaching efforts
include both in-class and out-of-class activities such as course
preparation, teaching, marking exams, marking assignments, and
supervising projects. In this paper, the fairness of workload
allocation is treated as an optimization problem. We propose a
two-dimensional and multi-objective implementation of the
Genetic algorithm. The problem is solved using two optimization
criteria:1) maximize the fairness workload allocation concerning
the actual effort and time spent on the teaching and learning
process, and 2) maximize a developed fair eligibility score for
instructor and course assignments in workload schedules. The
eligibility score is a combined metric which consists of
additional factors that may affect the workload allocation
decisions such instructor preferences, head of department
recommendations, and the level of instructor’s expertise in the
course. The workload problem is represented using two-
dimensional matrices. The experiments are conducted on a real
dataset consisting of 32 courses and 10 instructors. The overall
performance of the algorithm is measured based on the fitness
value and running time of the program. The results on the real
dataset show that the proposed algorithm solves the problem
efficiently in 395 seconds runtime. The proposed algorithm
achieves fair allocation of workload and fair eligibility score
with 3.2 and 13 standard deviations respectively. The average
eligibility score achieved is 61%.

Key words:
Genetic algorithm; fair academic workload allocation; teaching
eligibility scores.

1. Introduction

In the academic domain, faculty members spend
considerable effort to meet the educational environment’s
needs and challenges. Some academic institutions
establish a set of well-defined policies and regulations to
manage the process of workload distribution and
allocation. While other universities initiate general rules
and arbitrary constraints and leave the implementation to
the department chairs to apply the rules in whichever
method they find suitable.

Application of fair workload allocation in academic

departments create a positive work-life climate and has a
direct impact on the success of faculty [3]. In [15], the
authors show how unfair workload is linked to lower job
satisfaction. Also, inaccurate estimation of actual teaching
effort (ATF) has consequences on research and self-
development and productivity.

Academic workload calculation that is based solely on

the contact hours with students through lectures or labs is
not an accurate measure of the actual workload effort. For
example, an instructor might spend up to 5 preparation
hours for each one contact hour with students especially if
the course is taught by the instructor for the first time, or
the topic of the course is not within the field of his
expertise. In addition, other factors such as the number of
students in the course and the amount of assessed
homework and exams in a course contribute to the actual
effort spent in fulfilling the teaching and learning activities.
Therefore, the Head of Department (HoD) must take into
consideration the actual effort required for teaching
individual courses and distribute the workload following a
transparent, fair, and effective process. Accordingly,
workload allocation policies must be designed together
with a system to apply it.

Workload allocation is an optimization problem (NP-

hard) where exploring all possible solutions with a
reasonable amount of courses and instructors has an
excessive-high calculation time [4, 6, 8].

Genetic algorithms (GA) are used to solve a broad

range of optimization problems such as workload
allocation problems [1, 14], sequencing problems [11, 17],
machine learning models and image processing [20, 21],
and network partition problems[13].

In this paper, we apply the GA to solve the problem of

fair academic workload allocation. The main objective of
this work is to develop a policy-based algorithm to enforce
fair workload distribution. The result of the algorithm is
measured according to a combined objective function,
which balances both fairness in workload distribution and
balances the eligibility score in each schedule. In this

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

56

paper, we develop a combined eligibility measure that
provides a metric for scoring (instructor, course)
assignments in giving schedule. The eligibility metric
includes: 1) the instructor's level of experience in the
course, 2) the recommendation of the head of the
department, and 3) the course preferences of the instructor.
The workload problem is represented as two-dimensional
matrices.

The paper is organized as follows: in section 2, the

workload allocation problem is discussed. The previous
work on academic workload allocation problem is
discussed in section 3, and the mathematical model is
presented in section 4. The Genetic Algorithm is
addressed in section 5. Experimentation and results are
shown in section 6, followed by a discussion on results in
section 7. Finally, the conclusions are discussed in section
8.

2. Fair Workload Allocation Problem

Many theoretical models have been proposed to
enhance transparency and fairness in the academic
workload allocation problem [12] [7]. These models
discuss specific parameters such as weighing individual
teaching and research activities as well as focusing on the
overall performance of faculty members. In addition to the
primary role of teaching and supervising students, faculty
members perform additional tasks such as research-related
activities and administrative roles.

Different factors influence the decisions made

regarding workload allocation such as: 1) the number of
available teaching load, 2) the number of available
instructors, 3) the maximum and minimum workloads for
instructors, 4) the teaching experience of instructors and
how they fit for teaching specific courses, 5) the
preference of an instructor to teach particular courses, and
6) the recommendations of the HoD on the instructor-
course assignments.

In [2], the author suggests that the teaching workload

equation must consider all teaching and learning factors.
For example, teaching the same course repeatedly, or
teaching the same course for multiple sections are factors
that have a direct effect on the time spent on preparation
compared to teaching the course for the first time or the
lack of experience in the course topic. The preparation
time is minimal in the former cases. The provision of
teaching assistants or sharing the course with other
teachers are also factors that would affect the workload
equation [2].

Different additional vital factors influence the decision
making of workload allocation. First, the suitability of an
instructor to teach a specific course. The instructor's
experience and seniority have a direct impact on student
performance [5]. Second, instructor preference is put into
consideration when distributing the teaching load. Some
instructors would prefer specific courses because they like
teaching these courses or because they have good
experience in the course, which reduces the preparation
time required by them. Others may prefer courses offered
at certain times of the day regardless of the content of the
course. Third, the HoD is needed to provide instructors for
all offered courses in a course timetable. Sometimes the
HoD has to make decisions about who must teach the
courses even if the taken decisions do not favor the
instructors.

Therefore, thorough and comprehensive workload

policies must be developed within institutions that take
into consideration all the different factors that influence
the fair workload allocation.

3. Previous Work on Academic Workload

Allocation

In the literature, researchers have used different
optimization methods and algorithms to optimize the
academic workload allocation problem (also known as the
teacher assignment problem). Solutions have been
proposed for variant problem settings (different versions
of the problem) and considering different objective
functions,

The majority of recent works solved the problem using

linear programming models. For example, in [16], a
mixed-integer linear programming model was proposed to
solve the problem of assigning the most suitable teacher
assistants to the tutorials in the department. The objective
of the model is to maximize the number of tutorials that
are taught by the most suitable assistants. The model
assumes that each teaching assistant has a set of defined
capabilities for teaching tutorials. In [6], the authors
propose a linear regression model for assigning faculty
members to courses in Brazilian higher education where
the academic performance is linked directly to the
appropriate allocation of academic workload. The
objective of the model maximizes the contribution of
assigning instructors to courses. The authors in [4]
proposed an integer linear model for solving the problem
of assigning a set of tutors to a set of workshops with an
objective function to maximize tutor satisfaction based on
their teaching preferences. In [8], a Mixed Integer Linear
Programing model (MILP) is developed to solve the
teacher assignment problem. The model uses two

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

57

optimization criteria. The first criteria is balancing
teachers’ loads based on the contact hours with students.
The second criteria is maximizing teachers’ preference.
The model solves assignments of up to 40 teachers in
reduced calculation time.

Also, many researchers used GA to solve the problem.

For example, in [18], the teacher placement problem is
represented by one-dimensional array and solved using
GA. The study compares different crossover and mutation
operators. It concludes that with similar settings, the best
results are obtained from ordered crossover and partial
shuffle mutation with an average running time 40 minutes.
The authors in [14] addressed the timetable problem in
assigning teachers to courses. They have employed a
hybrid genetic algorithm using a self-adaptive mechanism
to guide four tuning operators to increase the optimality of
the solutions.

Despite the wealth of research in the area of workload

allocation, the problem is still an open optimization
research problem for researchers to attempt different
problem scenarios, optimization methods, and improved
performances.

In the following sections, the problem addressed in

this paper, the mathematical formulation of the problem,
the developed are discussed in detail.

4. Mathematical Model

In this paper, a solution is proposed for assigning a
finite set of instructors to a finite set of courses. Since our
approach depends on the ATF, no assumptions are made
regarding the maximum workload or the maximum
number of courses assigned to an instructor. Also, we
assume the set of courses is distinct and does not contain
sections of the same course. The objective is to assign
instructors to courses such that in given schedule:

1. Each course is assigned to only one instructor.
2. Each instructor must have at least one course in his

workload.
3. A balanced workload weight is achieved. The

variance between instructor workload weights is
minimal in a final accepted workload distribution.

4. A balanced workload eligibility score is achieved.
The variance between instructor schedules eligibility
scores is minimal in a final accepted workload
distribution

When calculating the ATF per semester, the following

weights are considered: number of contact hours per
semester, the preparation time spent corresponding to 1
contact hour with students (less weight is allocated to

courses taught before), number of students in each course,
number of assessed activities in each course, and the
number of hours required to mark each activity (per
student).

The problem is formulated such that a fair workload

(ATF) per semester is achieved.

4.1 Mathematical Notation

The following notations are used throughout the paper:

Number of instructors available for teaching
Number of offered courses for teaching

 Number of credit hours of course

 Number of preparation hours corresponding to 1
lecture contact hour if the course is taught for the
first time, where

 Number of preparation hours corresponding to 1
lecture contact hour if the course is taught before,
where
Weight of teaching course if the course is
taught for the first time, where
Weight of teaching course if the course is
taught before, where

Number of students in course
Constant denoting number of weeks in a semester

 Maximum number of assessed activities in
courses

 Number of hours required to mark an activity k in
course i, where
Given eligibility criteria percentages, where

 Recommendation of the HoD for instructor i to
teach course k, where

 Preference of instructor i to teach course
k,

 Scale (out of 100) of the experience of instructor i
in course k, where

 A calculated percentage denoting the eligibility of
instructor to teach course k,
where .

 A calculated percentage denoting the eligibility
score of instructor in a given schedule instance,
where
Binary matrix to indicate if instructor i has taught
course k before or not
where .

 Binary matrix that represents a schedule, where 1
indicates that instructor i has been assigned a
course k or 0 otherwise,
and .
Calculated weight of actual teaching hours for

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

58

instructor i, where

 The examples throughout the rest of the paper are
produced from an arbitrary test data of 9 courses and 4
instructors. The courses are labeled C1, C2 ..,C9, and the
instructors are labled I1, ..,I4.

To use the GA for fair workload allocation, several
fairness metrics are developed. In the following sections,
the metrics are discussed in detail.

4.2 Course Profile

First, a course profile is constructed for each course
available for teaching. The profile consists of the weight
of the course in terms of the actual effort needed to teach
the course. The weight is calculated for two different
scenarios: 1) the course is taught by an instructor for the
first time and requires significant preparation, and 2) the
course has been taught before by an instructor and requires
moderate preparation time. Additionally, the time
required (per student) to mark any course-related activities
(exams, projects, and assignments) is used in calculating
the total weight of the course as follows:

For first time teaching,

 (1)

For courses taught before:

(2)

Where k=1,2..C, and M is the maximum number of

activities in courses.

The weight is calculated considering the actual contact

hours , the preparation time per 1 contact

hour or , and the number of

hours required to assess course activities ().

The weight is calculated for weeks, which is set to the
default of 15 weeks per semester.

In Figure 1, we illustrate how the matrix representing

the weights of the 9 courses is calculated. First, the
following arbitrary data is provided as an input: the
preparation time of courses (considering the two scenarios
as in Figure 1.(a)), the number of students in each course
(Figure 1.(b)), credit hours of each course (Figure 1.(c)),
and assessment hours per each course activity (Figure
1.(d)). Then the weight matrix is produced according to Eq.
1, and 2 as illustrated in Figure 1.(e).

Fig. 1 Calculated course weight matrix

4.3 Eligibility Score

To determine the eligibility of each instructor for

teaching a specific course, an eligibility metric is
developed which depends on the following eligibility
criteria:

a) The experience of the instructor in the course

(teaching fitness)
b) The head of department’s recommendation for an

instructor to teach a course
c) The instructor’s preference to teach the course

Each criteria is assigned a scale (out of 100).

Accordingly, an eligibility matrix of (instructor, course)
pair is produced for each instructor i, and each offered
course k. The eligibility scores are calculated as follows:

 (3)

 Where

Continuing the steps of the test example, we assume

arbitrary values for ep1,ep2, and ep3 as 0.35,0.30, and
0.35, respectively. One may argue about the criteria types
or the given scales, so it is important to note that these
criteria and scales can change according to the standard

policies of departments. The values in , , and

 matrices are arbitrarily assumed, as shown in Figure

2(a)-(c). Each holds a percentage value (proximity
scale) representing the fitness of instructor i to teach

course k. Each holds a value of 1 if the HoD
recommends that instructor i teaches course k; otherwise,

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

59

the value is 0. And each holds the value 1 if
instructor i prefers to teach course k or otherwise the value
is 0. The course preferences in our model have no specific
order of priority. Accordingly, the eligibility matrix is
calculated using Eq. 3, as shown in Figure 2.(d).

Fig. 2 Calculating eligibility matrix

An instance of schedule is represented by a two-

dimensional binary matrix (). If instructor i is

assigned course k, then , otherwise the value
is 0.

The eligibility score for each instructor in a given
workload allocation is calculated according to the
following equation:

 (4)

Applying Eq. 4 to an arbitrary schedule , and

and from the test example will result in the estimation
scores illustrated in Figure 3. It reads as I1 has achieved a
64% eligibility score in his workload within the schedule.

Fig. 3 Instructor eligibility estimation scores in a given schedule.

4.4 Workload Calculation

The weight of the workload of each instructor is

calculated based on the courses assigned to the instructor
in a given schedule instance. To calculate the actual time
required to teach a course, teaching history data is required

for each instructor. The teaching history is represented by
the binary matrix isTaught. If the instructor i has taught
the course k before, then isTaughti,k=1 , otherwise the
value is 0. Accordingly, the actual workload wli is
calculated for each instructor i in a given schedule
instance according to the following process:

Process 1: Calculate the workload for each instructor n

terms of the ATF
Input: a two-dimensional schedule assign, a two-

dimensional matrix isTaught.
Output: calculated workload for each instructor in the

schedule

Step1: Set (for every instructor in the schedule)

Step 2: Set

Step 2: Set (for every course in the schedule)
Step 3:

step 4: k=k+1

Step 4: if go to step 5

Step 5: if then stop, otherwise go to Step2.

In Figure 4, we calculate the actual workload for each
instructor in the schedule instance in (Figure 3.(b)) given

an arbitrary matrix (Figure 3.(a)).

Fig. 4 Calculation of actual teaching hours for each instructor

As seen in Figure 4, the calculated workload according

to process 1 results in the following workloads of 921, 591,
486, and 648 hours per semester for instructors 1 to 4,
respectively, with a standard deviation of 161 hours. The
results show an unfair distribution of actual teaching hours
in workloads. To compare with workload calculations that
are based only on teaching contact hours using the formula

 and the matrix in Figure 4.(b),
we get the following workloads of 98, 84, 84, and 84
contact hours per semester for instructors 1 to 4,
respectively with a standard deviation of 6 hours which is
a misleading fair workload distribution.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

60

4.5 Constraints

The following constraints are applied to every new

generation of a schedule instance:

Const.1: In a given schedule, each course must be

allocated to only one instructor, or

 (5)

Const.2: Each instructor must have at least one course

assigned to him, or

 (6)

Const. 3: The number of courses assigned to an

instructor must are bounded by upper and lower bounds
UB and LB, such that:

 . (7)

The above constraints are considered hard constraints

because they determine if a schedule instance is feasible
and can be considered as a candidate solution or excluded
otherwise.

5. Genetic Algorithm

The GA is inspired by the genetic structure of

chromosomes and the three revolutionary genetic
operators which happen during breeding of plants and
animals. The operators are as follows: (1) the selection
operator (selection of the best chromosomes for evolution
process), (2) the crossover operation (exchange of sections
of parents’ chromosomes), and (3) the mutation operator
(random modification of a chromosome) [17]. Hence the
algorithm mimics evolutionary biology techniques. There
exist many extended variations of the genetic algorithm.
However, in this paper, we use the canonical GA by
Holland in [10] with modifications. The steps of the
algorithm are represented in figure 5.

The algorithm is initiated by a random population of

chromosomes (candidate solutions). The population is
evaluated against a fitness function (objective function)
then generates a subsequent population (generation) such
that chromosomes with a better fitness value are given a
chance to reproduce than the poorer chromosomes. The
next generation is reproduced using selection, crossover,
and mutation operators in order.

For a binary population where variables can be

represented by 0s and 1s, selection means retaining the
best performing bit (gene) of strings (chromosomes) from

one generation to the next by favoring them for
reproduction.

In our model, the chromosome (schedule instance) is

represented by a two dimensional binary matrix as
illustrated in Figure 4.(b), where columns represent
courses and rows represent instructors. The value of a
gene in the matrix is 1 if the instructor is assigned to the
course or 0 otherwise.

Fig. 5 Genetic Algorithm Flowchart

Step 1: Population Initialization

The initial population is randomly generated. N

random and feasible schedule instances are produced.
Only schedules satisfying Cosnt. 1-3 are considered
potential candidates in the population.

A dataset is initialized by inputting the variables I,C,

nw, ep1,ep2,ep3, M, UB, LB, the one-dimensional matrix
cr of length C, the matrix prep of size (2*C), and the
matrices of size (I*C): spec, hd, pref, isTaught.
Accordingly, the workload wli is calculated for each
instructor in every schedule in the population according to
the process 1.

Step 2: Fitness Function

First, the selection for reproduction is performed to

create a mating pool that contains the best-fitted schedules

from the previous generation. A fitness function is
calculated for each schedule in the population where j
represents the jth schedule in a population of N schedules.
The fitness function provides a measure of performance
with respect to a particular set of parameters

The fitness function for solving the problem of fair
workload allocation is a multi-objective function. The
objective of the optimization is two-fold: (1) the workload

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

61

must be balanced such that the workload is fairly allocated
with respect to the ATF required for teaching the allocated
courses per individual instructor, and (2) The eligibility
score must be balanced in a given schedule.

We denote and as the fitness functions for fair
workload and eligibility, respectively. The fitness
functions are variance functions defined as follows:

 (8)

Where is the mean of instructors’ workloads in a
given schedule.

 (9)

 Where is the mean of instructors’ eligibility scores

 in a given schedule.

Then the objective is to minimize the combined fitness

function, which is defined as:

 (10)

Where , and represent weighting
parameters of workload and eligibility, respectively, which
has to be decided by a decision-maker.

Step 3: Selection

The fitness probability is calculated for each schedule

in the population according as follows:

Assuming that is the fitness function value for the jth

schedule, then the fitness probability of the jth schedule is
calculated as:

 (11)

To select the best fitted strings in the sampling pool,

selection methods are used. One of the widely used and
straight forward selection methods is the Roulette Wheel
method [9]. The method maps the fitness probability of
each string in the population to contiguous sectors of a
wheel where sector sizes are proportional to the fitness

probabilities of strings in the population. A random

number r is selected such that to select
the corresponding sector of a string in the population.
Hence, strings with higher fitness function have a greater
possibility to be selected for crossover operation. In

addition, it is possible to retain copies of the best-fitted
strings.

Step 4: Crossover

In a crossover, randomly selected parents from the

sampling pool are combined to form a pool for mating in
the hope of producing offspring with higher fitness values.
The crossover is done by swapping string segments of the
selected parents at a random crossover point X. If we
assume that parents of schedules P1 and P2 are selected at
random for mating, then crossover is performed as
illustrated in Figure 6.

Fig. 6 Crossover operation at random point 6

Crossover is not applied to all couples. A random

crossover probability Pc is determined to decide the
proportion of couples to go through crossover operation.
Studies showed that the best value of Pc is to keep it in
the range 0.65 to 0.85, and the default is 0.75 [19]. Each
couple reproduces two children. Pc is global GA parameter.
This crossover strategy is guaranteed to hold Const. 1.
However, Const. 2 and 3 could be violated. Hence, an
offspring is added to the pool only if the offspring is a
feasible schedule.

Step 5: Mutation

The mutation is applied to offspring individually to

prevent the search algorithm from trapping into a local
optimum and to explore the search space by introducing
new genetic structures. The bits are mutated at randomly
chosen positions of randomly selected schedules by
flipping the bit from 1 to 0 or from 0 to 1. Mutation

frequency is controlled by a global GA parameter
which is a small value between 0 and 1, with a default
value 0.1. The mutated gene (instructor, course) is selected
according to the following process: two random integers
R1 and R2 are generated

where . The value gene
(R1,R2) is flipped.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

62

The mutated schedules are accepted if and only if the
result of the mutation is a feasible solution (satisfying
constraints 1-3).

Step 6: Replacement Strategy

Replacement is the last breeding step in the algorithm

where the chromosomes in the current pool are either
replaced or survives to the next generation. There exist
various replacement strategies such as generational
replacement, steady-state replacement, and elitism. We use
the steady-state replacement strategy. The best-fitted N
schedules from the pool are kept in the population, and the
remaining schedules are excluded.

Step 7: Terminate the algorithm

The GA terminates in case one of the following

termination conditions are true: an optimal solution is
found, or the maximum number of iterations is reached.
Since the fitness function is a balancing function, there is
no one optimal solution. Instead, a set of near-optimal
solutions are targeted.

6. Experimentation and Results

The experiments were carried out a real dataset

consisting of 10 instructors and 32 courses from a
Computer Science department. The dataset set is
initialized as discussed in section V. Since a multi-
objective optimization is applied, there does not exist one
single optimized solution to the problem. In addition, a
100% balance in workloads or eligibility scores is not
feasible. Hence we follow the Pareto analysis approach, by
selecting the best solutions from a set of optimal solutions.

The experiments are planned as follows: run batches

with different values of and . In the first batch,
we set N=200 and apply one crossover point. To expand
the search space, in the second batch, we set N=300 and
use two crossover points. In each run, we select the best
schedules in the population based on optimized fitness
values. The results showing in Table 1 represent average
values for the best 15 schedules in each run. We set the
maximum number of iterations to 104, UB=4, and LB=2.

The experiment was run on a PC with intel(R)

Core(TM)i7-6500U and 8GB RAM. The algorithm was
programmed in java. The results of the experiments are
illustrated in Table 1. The data in Table 2 demonstrates a
candidate solution to the problem. In the next section, the
results are discussed.

7. Discussion

In the model, we include combined metrics for criteria

that might affect the decisions in the workload assignment
other than the ATF. The values assigned to

 and has to be decided by the
decision-maker and used for tradeoffs depending on the
policies of the department. For example, if only instructor
preference is giving priority in the targeted schedules, then

 is set to 1. For population sizes less 150, the algorithm
did not produce significant value. We set the population

size to 200, and tuned Pc, and to different values
while using one crossover operator for generating new
schedules. We observed the best results are achieved with

Pc =0.75 and = 0.8. To increase the search space, we
increased N to 300, increased Pc to 0.85, and used two
crossover points. There was a significant improvement in
the results with minimized deviations for ATF and
eligibility scores.

We combine the real dataset values and a generated

optimized schedule in a single table (Table 3) to visualize
how the algorithm generated the solution. The algorithm
has achieved a fair workload with average of 455,
deviation of 3.2, and 445 seconds of runtime. Also, a fair
eligibility score is achieved with average 62 and a
deviation of 13. The error rates however were 50% for
both instructor and HoD preferences. It is an acceptable
result especially that we are not considering error rates in
our implementation of the problem. Finally, the results are
compared with the recommendation made by the HoD
(bold frames in Table 3). The calculations of the schedule
recommended by the HoD have a workload deviation of
123, were the workloads ranged between780 and 443. The
deviation of the eligibility scores is 11 with average 70%.

8. Conclusion

It is necessary for academic institutions to apply

optimal ways to produce fair and balanced workload
allocation for their academic instructors. The teaching
effort is not only calculated by the contact hours with
students. Teaching effort includes substantial time spent
on preparations and the assessment of student work.
Hence, it is crucial that teaching efforts are calculated and
balanced based on detailed metrics for taught courses. We
propose a genetic algorithm solution for fair workload
allocation based on comprehensive metrics and actual
teaching effort. The algorithm succeeded in achieving a
fair allocation reasonable eligibility score. Further
enhancement can be applied to by considering several
other workload metrics, such as weights of research and

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

63

administrative, and study how this could be introduced to
solve the problem.

Table 1: Experiment results on a real dataset with I=10 and C=32.

N
Cross Over Parameters Pareto optimal solutions Time in

seconds
Pc

Pm

 Workload
deviation

Workload
average

Eligibility
deviation

Eligibility
average

200

1 crossover
point

0.5 0.1 0.5 0.5 56 624 12 28 213.4
0.5 0.1 0.8 0.2 40 564 8 39 210.4
0.75 0.1 0.5 0.5 32 567 8 33 225.8
0.75 0.1 0.8 0.2 23 564 8 46 220.5

300

2 crossover
points

0.75 0.1 0.5 0.5 18 568 14 55 330.7
0.75 0.1 0.8 0.2 17 532 16 48 328.9
0.85 0.1 0.5 0.5 10 508 8 56 393.1
0.85 0.1 0.8 0.2 5 460 9 61 394.6

Table 2: Solution instance from the experiments

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

64

Course Name C# Credit

of
Stud. I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

programming 1 C1 4 15 187.5 97.5 67.5 80 80 100 80 80 80 80 100 80 100

programming 2 C2 4 30 285 195 165 80 80 100 60 80 80 80 100 80 100

programming 3 C3 4 25 212.5 92.5 62.5 80 60 100 60 80 80 80 100 80 100

Network 1 C4 3 30 330 195 150 20 20 20 20 20 100 100 60 20 20

Network 2 C5 3 15 187.5 97.5 52.5 20 20 20 20 20 100 100 60 20 20

Software Engineering 1 C6 3 30 285 195 150 20 100 80 20 100 80 20 50 50 100

Software Engineering 2 C7 3 15 202.5 112.5 67.5 20 100 50 20 100 20 20 20 20 100

Database 1 C8 3 30 210 97.5 75 100 90 50 80 100 50 50 100 50 100

Database 2 C9 3 15 202.5 90 67.5 20 80 50 20 100 50 20 80 20 100

Operating Systems C10 3 30 270 180 135 80 70 60 50 50 50 50 50 50 50

Digital Logic C11 3 30 285 150 105 100 50 50 50 80 100 50 50 50 50

Discrete Structures 1 C12 3 30 255 120 75 100 50 50 50 90 50 80 80 50 50

Discrete Structures 2 C13 2 30 225 165 135 80 50 80 20 60 20 60 100 20 20

Computer Architecture C14 3 30 345 210 165 100 50 50 50 100 50 50 50 50 50

Data Structure 1 C15 3 30 255 165 75 80 80 100 100 100 50 50 50 50 50

Data Structure 2 C16 3 15 255 120 75 80 50 100 80 50 50 50 50 50 50

Programming Languages C17 3 30 240 127.5 105 80 50 50 80 90 50 80 50 50 50

Artificial Intelligence 1 C18 3 25 305 170 125 100 20 50 100 20 80 20 20 100 20

 Algorithm Design C19 3 30 330 240 195 50 50 100 50 50 50 80 50 50 50

Artificial Intelligence 2 C20 3 20 250 160 70 100 20 20 100 20 50 20 20 100 20

HCI1 C21 2 15 127.5 97.5 67.5 20 100 20 20 50 20 20 80 20 80

HCI2 C22 3 30 225 157.5 135 20 80 20 20 50 20 20 80 20 50

Graphics 1 C23 3 15 187.5 97.5 52.5 20 20 20 20 20 20 20 20 100 80

Graphics 2 C24 3 30 210 165 75 20 20 20 20 20 20 20 20 100 80

Multimedia C25 3 30 255 165 120 20 20 20 20 20 20 20 80 80 100

Data Analytics C26 3 15 217.5 127.5 82.5 20 20 20 100 20 20 20 20 100 20

HPC C27 3 15 217.5 82.5 37.5 20 80 20 50 20 20 20 80 20 20

Computer Forensics C28 2 15 165 105 75 20 20 20 60 20 20 20 100 50 20

Web Development C29 3 15 187.5 97.5 52.5 20 80 20 20 50 20 20 80 20 100

Compiler Construction C30 3 20 255 165 120 50 50 50 50 50 80 50 80 50 50

Applied Math 1 C31 4 30 390 210 150 50 50 50 50 50 80 100 50 50 50

Applied Math for 2 C32 4 15 277.5 97.5 37.5 50 50 50 50 50 50 100 80 50 50

458 458 458 455 450 458 450 458 453 453

51 48 57 86 64 75 62 41 75 62

Workload Deviation

Eligibility Score Deviation

Workload Average

Eligibility Average

Ints. Preference Error Rate

HoD Preference Error Rate

Grey highlight means that Instructor i has been assigned course k in the schedule

X The numbers in in each (course, instructor) assignment represents the experience of the instructor in the course

Bold frame means the HoD recommends that instructor i teaches course k

X Blue means that the instructor i prefers to teach course k

X Underlined means the instructor has taught the course before

X Red means no instructors preferred to teach the course

Total Workload

Eligibility Score

3.207802986

13.0418557

0.5

0.47

455.1

62.1

𝒑𝒓𝒆𝒑𝟏 ,𝒌 𝒑𝒓𝒆𝒑𝟐 ,𝒌 𝒉𝒓𝒊

References

[1] M. Abbasi, E. M. Pasand, and M. R. Khosravi, "Workload

Allocation in IoT-Fog-Cloud Architecture Using a Multi-
Objective Genetic Algorithm," Journal of Grid Computing,
pp. 1-14, 2020.

[2] E. Bitzer, "Attempting a fair and equitable academic
workload distribution in a faculty of education," South
African Journal of Higher Education, vol. 21, no. 1, pp. 23-
37, 2007.

[3] L. Boyd, "Exploring the utility of workload models in
academe: a pilot study," Journal of Higher Education Policy
and Management, vol. 36, no. 3, pp. 315-326, 2014.

[4] G. Caselli, M. Delorme, and M. Iori, "Integer Linear
Programming for the Tutor Allocation Problem: A Practical
Case in a British University," arXiv preprint
arXiv:2005.09442, 2020.

[5] J. Coenen, I. Cornelisz, W. Groot, H. Maassen van den Brink,
and C. Van Klaveren, "Teacher characteristics and their
effects on student test scores: A systematic review," Journal
of economic surveys, vol. 32, no. 3, pp. 848-877, 2018.

[6] J. J. da Cunha Jr and M. C. de Souza, "A linearized model for
academic staff assignment in a Brazilian university focusing
on performance gain in quality indicators," International
Journal of Production Economics, vol. 197, pp. 43-51, 2018.

[7] S. Dekeyser, R. Watson, and E. Baré, "Comparing academic
workload models: How Australian universities resource
teaching activities," in Tertiary Education Management

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

65

Conference: From Rhetoric to Reality. Retrieved from
https://www. atem. org. au/documents/item/576, 2016.

[8] B. Domenech and A. Lusa, "A MILP model for the teacher
assignment problem considering teachers’ preferences,"
European journal of operational research, vol. 249, no. 3, pp.
1153-1160, 2016.

[9] D. E. Goldenberg, "Genetic algorithms in search,
optimization and machine learning," ed: Addison Wesley,
Reading: MA, 1989.

10] J. H. Holland, Adaptation in natural and artificial systems:
an introductory analysis with applications to biology, control,
and artificial intelligence. MIT press, 1992.

[11] A. A. R. Hosseinabadi, J. Vahidi, B. Saemi, A. K. Sangaiah,
and M. Elhoseny, "Extended genetic algorithm for solving
open-shop scheduling problem," Soft computing, vol. 23, no.
13, pp. 5099-5116, 2019.

 [15] K. O’Meara, C. J. Lennartz, A. Kuvaeva, A. Jaeger, and J.
Misra, "Department conditions and practices associated
with faculty workload satisfaction and perceptions of
equity," The Journal of Higher Education, vol. 90, no. 5, pp.
744-772, 2019.

[16] X. Qu, W. Yi, T. Wang, S. Wang, L. Xiao, and Z. Liu,
"Mixed-integer linear programming models for teaching
assistant assignment and extensions," Scientific
Programming, 2017.

[17] C. R. Reeves, "A genetic algorithm for flowshop
sequencing," Computers & operations research, vol. 22, no.
1, pp. 5-13, 1995.

[18] P. Rosa, H. Sriwindono, R. Nugroho, A. Polina, and K.
Pinaryanto, "Comparison of Crossover and Mutation
Operators to Solve Teachers Placement Problem by Using
Genetic Algorithm," in Journal of Physics: Conference
Series, vol. 1566, p. 1-8, 2020.

[19] E. G. Shopova and N. G. Vaklieva-Bancheva, "BASIC—A
genetic algorithm for engineering problems solution,"
Computers & chemical engineering, vol. 30, no. 8, pp.
1293-1309, 2006.

[20] Y. Sun, B. Xue, M. Zhang, G. G. Yen, and J. Lv,
"Automatically Designing CNN Architectures Using the
Genetic Algorithm for Image Classification," IEEE
Transactions on Cybernetics, 2020.

[21] H. Zhi and S. Liu, "Face recognition based on genetic
algorithm," Journal of Visual Communication and Image
Representation, vol. 58, pp. 495-502, 2019.

 Manar Salamah Ali received the M.Sc.
degree in advanced computing from the
Imperial College London, and the Ph.D.
degree in web service-based transaction
management from the University of
Leicester. She has assumed a variety of
roles during her professional career,
including the Chairwoman of the Computer
Science Department, various consultancy

roles, and the Vice Director of the Knowledge-Based E-Portal
Center, King Abdulaziz University, where she is currently an
Assistant Professor in the Department of Computer Science. Her
current research interests include the use of machine learning and

computer vision in image and video processing as well as
automated assessment of human and machine translations.

