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Abstract 
Enforcing fairness policies for academic workload distribution 
and achieving staff satisfaction is of great importance in 
academic institutions. The amount of effort spent by instructors 
in teaching individual courses is not only measured by the 
contact teaching hours with students in classes. Teaching efforts 
include both in-class and out-of-class activities such as course 
preparation, teaching, marking exams, marking assignments, and 
supervising projects. In this paper, the fairness of workload 
allocation is treated as an optimization problem. We propose a 
two-dimensional and multi-objective implementation of the 
Genetic algorithm. The problem is solved using two optimization 
criteria:1) maximize the fairness workload allocation concerning 
the actual effort and time spent on the teaching and learning 
process, and 2)  maximize a developed fair eligibility score for 
instructor and course assignments in workload schedules.  The 
eligibility score is a combined metric which consists of 
additional factors that may affect the workload allocation 
decisions such instructor preferences, head of department 
recommendations, and the level of instructor’s expertise in the 
course. The workload problem is represented using two-
dimensional matrices. The experiments are conducted on a real 
dataset consisting of 32 courses and 10 instructors. The overall 
performance of the algorithm is measured based on the fitness 
value and running time of the program. The results on the real 
dataset show that the proposed algorithm solves the problem 
efficiently in 395 seconds runtime. The proposed algorithm 
achieves fair allocation of workload and fair eligibility score 
with 3.2 and 13 standard deviations respectively. The average 
eligibility score achieved is 61%. 
 
Key words: 
Genetic algorithm; fair academic workload allocation; teaching 
eligibility scores. 

 
1.  Introduction 
 

In the academic domain, faculty members spend 
considerable effort to meet the educational environment’s 
needs and challenges. Some academic institutions 
establish a set of well-defined policies and regulations to 
manage the process of workload distribution and 
allocation. While other universities initiate general rules 
and arbitrary constraints and leave the implementation to 
the department chairs to apply the rules in whichever 
method they find suitable.  

 
Application of fair workload allocation in academic 

departments create a positive work-life climate and has a 
direct impact on the success of faculty [3]. In [15], the 
authors show how unfair workload is linked to lower job 
satisfaction. Also, inaccurate estimation of actual teaching 
effort (ATF) has consequences on research and self-
development and productivity.  

 
Academic workload calculation that is based solely on 

the contact hours with students through lectures or labs is 
not an accurate measure of the actual workload effort. For 
example, an instructor might spend up to 5 preparation 
hours for each one contact hour with students especially if 
the course is taught by the instructor for the first time, or 
the topic of the course is not within the field of his 
expertise. In addition, other factors such as the number of 
students in the course and the amount of assessed 
homework and exams in a course contribute to the actual 
effort spent in fulfilling the teaching and learning activities. 
Therefore, the Head of Department (HoD) must take into 
consideration the actual effort required for teaching 
individual courses and distribute the workload following a 
transparent, fair, and effective process. Accordingly, 
workload allocation policies must be designed together 
with a system to apply it.  

 
Workload allocation is an optimization problem (NP-

hard) where exploring all possible solutions with a 
reasonable amount of courses and instructors has an 
excessive-high calculation time [4, 6, 8].  

 
Genetic algorithms (GA) are used to solve a broad 

range of optimization problems such as workload 
allocation problems [1, 14], sequencing problems [11, 17], 
machine learning models and image processing [20, 21], 
and network partition problems[13].  

 
In this paper, we apply the GA to solve the problem of 

fair academic workload allocation.  The main objective of 
this work is to develop a policy-based algorithm to enforce 
fair workload distribution. The result of the algorithm is 
measured according to a combined objective function, 
which balances both fairness in workload distribution and 
balances the eligibility score in each schedule. In this 
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paper, we develop a combined eligibility measure that 
provides a metric for scoring (instructor, course) 
assignments in giving schedule. The eligibility metric 
includes: 1) the instructor's level of experience in the 
course, 2) the recommendation of the head of the 
department, and 3) the course preferences of the instructor. 
The workload problem is represented as two-dimensional 
matrices.  

 
The paper is organized as follows: in section 2, the 

workload allocation problem is discussed. The previous 
work on academic workload allocation problem is 
discussed in section 3, and the mathematical model is 
presented in section 4. The Genetic Algorithm is 
addressed in section 5. Experimentation and results are 
shown in section 6, followed by a discussion on results in 
section 7. Finally, the conclusions are discussed in section 
8. 

 
2.  Fair Workload Allocation Problem 
 

Many theoretical models have been proposed to 
enhance transparency and fairness in the academic 
workload allocation problem [12] [7]. These models 
discuss specific parameters such as weighing individual 
teaching and research activities as well as focusing on the 
overall performance of faculty members. In addition to the 
primary role of teaching and supervising students, faculty 
members perform additional tasks such as research-related 
activities and administrative roles.  

 
Different factors influence the decisions made 

regarding workload allocation such as: 1) the number of 
available teaching load, 2) the number of available 
instructors, 3) the maximum and minimum workloads for 
instructors, 4) the teaching experience of instructors and 
how they fit for teaching specific courses, 5) the 
preference of an instructor to teach particular courses, and 
6) the recommendations of the HoD on the instructor-
course assignments. 

 
In [2], the author suggests that the teaching workload 

equation must consider all teaching and learning factors. 
For example, teaching the same course repeatedly, or 
teaching the same course for multiple sections are factors 
that have a direct effect on the time spent on preparation 
compared to teaching the course for the first time or the 
lack of experience in the course topic. The preparation 
time is minimal in the former cases. The provision of 
teaching assistants or sharing the course with other 
teachers are also factors that would affect the workload 
equation [2].  

 

Different additional vital factors influence the decision 
making of workload allocation. First, the suitability of an 
instructor to teach a specific course. The instructor's 
experience and seniority have a direct impact on student 
performance [5]. Second, instructor preference is put into 
consideration when distributing the teaching load. Some 
instructors would prefer specific courses because they like 
teaching these courses or because they have good 
experience in the course, which reduces the preparation 
time required by them. Others may prefer courses offered 
at certain times of the day regardless of the content of the 
course. Third, the HoD is needed to provide instructors for 
all offered courses in a course timetable. Sometimes the 
HoD has to make decisions about who must teach the 
courses even if the taken decisions do not favor the 
instructors. 

 
Therefore, thorough and comprehensive workload 

policies must be developed within institutions that take 
into consideration all the different factors that influence 
the fair workload allocation.   

 
3. Previous Work on Academic Workload 

Allocation  
 

In the literature, researchers have used different 
optimization methods and algorithms to optimize the 
academic workload allocation problem (also known as the 
teacher assignment problem). Solutions have been 
proposed for variant problem settings (different versions 
of the problem) and considering different objective 
functions,  

  
The majority of recent works solved the problem using 

linear programming models.  For example, in [16], a 
mixed-integer linear programming model was proposed to 
solve the problem of assigning the most suitable teacher 
assistants to the tutorials in the department. The objective 
of the model is to maximize the number of tutorials that 
are taught by the most suitable assistants.  The model 
assumes that each teaching assistant has a set of defined 
capabilities for teaching tutorials. In [6], the authors 
propose a linear regression model for assigning faculty 
members to courses in Brazilian higher education where 
the academic performance is linked directly to the 
appropriate allocation of academic workload. The 
objective of the model maximizes the contribution of 
assigning instructors to courses. The authors in [4] 
proposed an integer linear model for solving the problem 
of assigning a set of tutors to a set of workshops with an 
objective function to maximize tutor satisfaction based on 
their teaching preferences. In [8], a Mixed Integer Linear 
Programing model (MILP) is developed to solve the 
teacher assignment problem. The model uses two 
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optimization criteria. The first criteria is balancing 
teachers’ loads based on the contact hours with students. 
The second criteria is maximizing teachers’ preference. 
The model solves assignments of up to 40 teachers in 
reduced calculation time.  

 
Also, many researchers used GA to solve the problem. 

For example, in [18], the teacher placement problem is 
represented by one-dimensional array and solved using 
GA. The study compares different crossover and mutation 
operators. It concludes that with similar settings, the best 
results are obtained from ordered crossover and partial 
shuffle mutation with an average running time 40 minutes. 
The authors in [14] addressed the timetable problem in 
assigning teachers to courses. They have employed a 
hybrid genetic algorithm using a self-adaptive mechanism 
to guide four tuning operators to increase the optimality of 
the solutions.  

 
Despite the wealth of research in the area of workload 

allocation, the problem is still an open optimization 
research problem for researchers to attempt different 
problem scenarios, optimization methods, and improved 
performances. 

 
In the following sections, the problem addressed in 

this paper, the mathematical formulation of the problem, 
the developed are discussed in detail. 
 
4. Mathematical Model 
 

In this paper, a solution is proposed for assigning a 
finite set of instructors to a finite set of courses. Since our 
approach depends on the ATF, no assumptions are made 
regarding the maximum workload or the maximum 
number of courses assigned to an instructor. Also, we 
assume the set of courses is distinct and does not contain 
sections of the same course. The objective is to assign 
instructors to courses such that in given schedule: 

1. Each course is assigned to only one instructor. 
2. Each instructor must have at least one course in his 

workload. 
3. A balanced workload weight is achieved. The 

variance between instructor workload weights is 
minimal in a final accepted workload distribution. 

4. A balanced workload eligibility score is achieved. 
The variance between instructor schedules eligibility 
scores is minimal in a final accepted workload 
distribution 

 
When calculating the ATF per semester, the following 

weights are considered: number of contact hours per 
semester, the preparation time spent corresponding to 1 
contact hour with students (less weight is allocated to 

courses taught before), number of students in each course, 
number of assessed activities in each course, and the 
number of hours required to mark each activity (per 
student). 

  
The problem is formulated such that a fair workload 

(ATF) per semester is achieved.  
 
4.1 Mathematical Notation 
 
The following notations are used throughout the paper: 
 

Number of instructors available for teaching 
Number of offered courses for teaching 

 Number of credit hours of course 
 

 Number of preparation hours corresponding to 1 
lecture contact hour if the course is taught for the 
first time, where    

 Number of preparation hours corresponding to 1 
lecture contact hour if the course is taught before, 
where    
Weight of teaching course  if  the  course  is 
taught for the first time, where     
Weight of teaching course  if  the  course  is 
taught before, where   

  
Number of students in course 
Constant denoting number of weeks in a semester 

 Maximum number of assessed activities in 
courses  

 Number of hours required to mark an activity k in 
course i, where  
Given eligibility criteria percentages, where 

 
 

 Recommendation of the HoD for instructor i to 
teach course k, where 

 

 Preference of  instructor i to teach course 
k,  
 

 Scale (out of 100) of the experience of instructor i 
in course k, where  

 A calculated percentage denoting the eligibility of 
instructor  to  teach  course  k, 
where . 

 A calculated percentage denoting the eligibility 
score of instructor  in  a  given  schedule  instance, 
where    
Binary matrix to indicate if instructor i has taught 
course k before or not 
where . 

 Binary matrix that represents a schedule, where 1 
indicates that instructor i has been assigned a 
course k or 0 otherwise, 
and . 
Calculated weight of actual teaching hours for 
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instructor i, where  
 

 The examples throughout the rest of the paper are 
produced from an arbitrary test data of  9 courses and 4 
instructors. The courses are labeled C1, C2 ..,C9, and the 
instructors are labled I1, ..,I4. 

To use the GA for fair workload allocation, several 
fairness metrics are developed. In the following sections, 
the metrics are discussed in detail. 
 
4.2 Course Profile 
 

First, a course profile is constructed for each course 
available for teaching. The profile consists of the weight 
of the course in terms of the actual effort needed to teach 
the course. The weight is calculated for two different 
scenarios: 1) the course is taught by an instructor for the 
first time and requires significant preparation, and 2) the 
course has been taught before by an instructor and requires 
moderate preparation time.  Additionally, the time 
required (per student) to mark any course-related activities 
(exams, projects, and assignments) is used in calculating 
the total weight of the course as follows: 

 
For first time teaching, 

 (1) 
  
For courses taught before: 

(2) 

 
Where k=1,2..C, and M is the maximum number of 

activities in courses. 
 
The weight is calculated considering the actual contact 

hours , the preparation time per 1 contact 

hour  or , and the number of 

hours required to assess course activities ( ). 

The weight is calculated for   weeks, which is set to the 
default of 15 weeks per semester.  

 
In Figure 1, we illustrate how the matrix representing 

the weights of the 9 courses is calculated. First, the 
following arbitrary data is provided as an input: the 
preparation time of courses (considering the two scenarios 
as in Figure 1.(a)), the number of students in each course 
(Figure 1.(b)), credit hours of each course (Figure 1.(c)), 
and assessment hours per each course activity (Figure 
1.(d)). Then the weight matrix is produced according to Eq. 
1, and 2 as illustrated in Figure 1.(e). 

 
 
 
 

 
 
 

 
 

Fig. 1 Calculated course weight matrix 

 
 

4.3 Eligibility Score 
 
To determine the eligibility of each instructor for 

teaching a specific course, an eligibility metric is 
developed which depends on the following eligibility 
criteria:  

 
a) The experience of the instructor in the course 

(teaching fitness) 
b) The head of department’s recommendation for an 

instructor to teach a course 
c) The instructor’s preference to teach the course 

 
Each criteria is assigned a scale (out of 100). 

Accordingly, an eligibility matrix of (instructor, course) 
pair is produced for each instructor i, and each offered 
course k. The eligibility scores are calculated as follows: 

 

 
                                                                                   (3) 
 
 Where                                                              
 
Continuing the steps of the test example, we assume 

arbitrary values for ep1,ep2, and ep3 as 0.35,0.30, and 
0.35, respectively. One may argue about the criteria types 
or the given scales, so it is important to note that these 
criteria and scales can change according to the standard 

policies of departments. The values in , , and 

 matrices are arbitrarily assumed, as shown in Figure 

2(a)-(c). Each holds a percentage value (proximity 
scale) representing the fitness of instructor i to teach 

course k. Each  holds a value of 1 if the HoD 
recommends that instructor i teaches course k; otherwise, 
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the value is 0. And each  holds the value 1 if 
instructor i prefers to teach course k or otherwise the value 
is 0. The course preferences in our model have no specific 
order of priority. Accordingly, the eligibility matrix is 
calculated using Eq. 3, as shown in Figure 2.(d).   

 

 
 

Fig. 2 Calculating eligibility matrix 

 
 
An instance of schedule is represented by a two-

dimensional binary matrix ( ). If instructor i is 

assigned course k, then , otherwise the value 
is 0. 

The eligibility score for each instructor in a given 
workload allocation is calculated according to the 
following equation: 
 

                                        (4) 

 

Applying Eq. 4 to an arbitrary schedule , and  

and  from the test example will result in the estimation 
scores illustrated in Figure 3. It reads as I1 has achieved a 
64% eligibility score in his workload within the schedule.  

 

 
 
 

Fig. 3 Instructor eligibility estimation scores in a given schedule. 
 

4.4 Workload Calculation 
 
The weight of the workload of each instructor is 

calculated based on the courses assigned to the instructor 
in a given schedule instance. To calculate the actual time 
required to teach a course, teaching history data is required 

for each instructor. The teaching history is represented by 
the binary matrix isTaught. If the instructor i has taught 
the course k before, then isTaughti,k=1 , otherwise the 
value is 0. Accordingly, the actual workload wli  is 
calculated for each instructor i in a given schedule 
instance according to the following process: 

 
Process 1: Calculate the workload for each instructor n 

terms of the ATF 
Input: a two-dimensional schedule assign, a two-

dimensional matrix isTaught.  
Output: calculated workload for each instructor in the 

schedule  
 

Step1: Set   (for every instructor in the schedule) 

Step 2: Set  

Step 2: Set    (for every course in the schedule) 
Step 3: 

                                             

 
step 4: k=k+1 

Step 4: if  go to step 5 

Step 5: if  then stop, otherwise go to Step2.                                          
 

In Figure 4, we calculate the actual workload for each 
instructor in the schedule instance in (Figure 3.(b)) given 

an arbitrary  matrix (Figure 3.(a)). 
 

 
 

Fig. 4 Calculation of actual teaching hours for each instructor 

 
As seen in Figure 4, the calculated workload according 

to process 1 results in the following workloads of 921, 591, 
486, and 648 hours per semester for instructors 1 to 4, 
respectively, with a standard deviation of  161 hours. The 
results show an unfair distribution of actual teaching hours 
in workloads. To compare with workload calculations that 
are based only on teaching contact hours using the formula 

   and the  matrix in Figure 4.(b), 
we get the following workloads of 98, 84, 84, and 84 
contact hours per semester for instructors 1 to 4, 
respectively with a standard deviation of 6 hours which is 
a misleading fair workload distribution.     
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4.5 Constraints 

 
The following constraints are applied to every new 

generation of a schedule instance: 
 
Const.1: In a given schedule, each course must be 

allocated to only one instructor, or 

    (5) 
 
Const.2: Each instructor must have at least one course 

assigned to him, or 

          (6) 
 
Const. 3: The number of courses assigned to an 

instructor must are bounded by upper and lower bounds 
UB and LB, such that: 

 .                         (7) 
 
The above constraints are considered hard constraints 

because they determine if a schedule instance is feasible 
and can be considered as a candidate solution or excluded 
otherwise. 

 
5. Genetic Algorithm 

 
The GA is inspired by the genetic structure of 

chromosomes and the three revolutionary genetic 
operators which happen during breeding of plants and 
animals. The operators are as follows: (1) the selection 
operator (selection of the best chromosomes for evolution 
process), (2) the crossover operation (exchange of sections 
of parents’ chromosomes), and (3) the mutation operator 
(random modification of a chromosome) [17]. Hence the 
algorithm mimics evolutionary biology techniques. There 
exist many extended variations of the genetic algorithm. 
However,  in this paper, we use the canonical GA by 
Holland in [10] with modifications. The steps of the 
algorithm are represented in figure 5. 

 
The algorithm is initiated by a random population of 

chromosomes (candidate solutions). The population is 
evaluated against a fitness function (objective function) 
then generates a subsequent population (generation) such 
that chromosomes with a better fitness value are given a 
chance to reproduce than the poorer chromosomes. The 
next generation is reproduced using selection, crossover, 
and mutation operators in order. 

   
For a binary population where variables can be 

represented by 0s and 1s, selection means retaining the 
best performing bit (gene) of strings (chromosomes) from 

one generation to the next by favoring them for 
reproduction.  

 
In our model, the chromosome (schedule instance) is 

represented by a two dimensional binary matrix as 
illustrated in Figure 4.(b), where columns represent 
courses and rows represent instructors. The value of a 
gene in the matrix is 1 if the instructor is assigned to the 
course or 0 otherwise. 

 
 

 
Fig. 5 Genetic Algorithm Flowchart 

 
Step 1: Population Initialization  

 
The initial population is randomly generated. N 

random and feasible schedule instances are produced. 
Only schedules satisfying Cosnt. 1-3 are considered 
potential candidates in the population.  

 
A dataset is initialized by inputting the variables I,C, 

nw, ep1,ep2,ep3, M, UB, LB, the one-dimensional matrix 
cr of length C, the matrix prep  of size (2*C), and the 
matrices of size (I*C): spec, hd, pref, isTaught. 
Accordingly, the workload wli  is calculated for each 
instructor in every schedule in the population according to 
the process 1. 

 
Step 2: Fitness Function 

 
First, the selection for reproduction is performed to 

create a mating pool that contains the best-fitted schedules 

from the previous generation. A fitness function  is 
calculated for each schedule in the population where j 
represents the jth schedule in a population of N schedules. 
The fitness function provides a measure of performance 
with respect to a particular set of parameters 

The fitness function for solving the problem of fair 
workload allocation is a multi-objective function. The 
objective of the optimization is two-fold: (1) the workload 
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must be balanced such that the workload is fairly allocated 
with respect to the ATF required for teaching the allocated 
courses per individual instructor, and (2) The eligibility 
score must be balanced in a given schedule.  

 

We denote   and  as the fitness functions for fair 
workload and eligibility, respectively. The fitness 
functions are variance functions defined as follows: 

 

                                                     (8) 

Where    is the mean of instructors’ workloads  in a 
given schedule.                          

 

                                                      (9) 

    Where  is the mean of instructors’ eligibility scores 

 in a given schedule.                  
 
Then the objective is to minimize the combined fitness 

function, which is defined as: 
 

                                                   (10) 

Where , and  represent weighting 
parameters of workload and eligibility, respectively, which 
has to be decided by a decision-maker. 

 
                    

Step 3: Selection  
 
The fitness probability is calculated for each schedule 

in the population according as follows:  
 

Assuming that  is the fitness function value for the jth 

schedule, then the fitness probability of the jth schedule is 
calculated as: 

 

                                                         (11)                                                                                                                                  
 
To select the best fitted strings in the sampling pool, 

selection methods are used. One of the widely used and 
straight forward selection methods is the Roulette Wheel 
method [9]. The method maps the fitness probability of 
each string in the population to contiguous sectors of a 
wheel where sector sizes are proportional to the fitness 

probabilities   of strings in the population. A random 

number r is selected such that     to select 
the corresponding sector of a string in the population. 
Hence, strings with higher fitness function have a greater 
possibility to be selected for crossover operation. In 

addition, it is possible to retain copies of the best-fitted 
strings.  

 
Step 4: Crossover 

 
In a crossover, randomly selected parents from the 

sampling pool are combined to form a pool for mating in 
the hope of producing offspring with higher fitness values. 
The crossover is done by swapping string segments of the 
selected parents at a random crossover point X. If we 
assume that parents of schedules P1 and P2 are selected at 
random for mating, then crossover is performed as 
illustrated in Figure 6. 

 

 
Fig. 6 Crossover operation at random point 6 

 
Crossover is not applied to all couples. A random 

crossover probability Pc  is determined to decide the 
proportion of couples to go through crossover operation. 
Studies showed that the best value of Pc  is to keep it in 
the range 0.65 to 0.85, and the default is 0.75 [19]. Each 
couple reproduces two children. Pc is global GA parameter. 
This crossover strategy is guaranteed to hold Const. 1. 
However, Const. 2 and 3 could be violated. Hence, an 
offspring is added to the pool only if the offspring is a 
feasible schedule.  

 
Step 5: Mutation 

 
The mutation is applied to offspring individually to 

prevent the search algorithm from trapping into a local 
optimum and to explore the search space by introducing 
new genetic structures.  The bits are mutated at randomly 
chosen positions of randomly selected schedules by 
flipping the bit from 1 to 0 or from 0 to 1. Mutation 

frequency is controlled by a global GA parameter  
which is a small value between 0 and 1, with a default 
value 0.1. The mutated gene (instructor, course) is selected 
according to the following process: two random integers 
R1 and R2 are generated 

where . The value gene 
(R1,R2) is flipped. 
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The mutated schedules are accepted if and only if the 
result of the mutation is a feasible solution (satisfying 
constraints 1-3). 

 
 

Step 6: Replacement Strategy 
 
Replacement is the last breeding step in the algorithm 

where the chromosomes in the current pool are either 
replaced or survives to the next generation. There exist 
various replacement strategies such as generational 
replacement, steady-state replacement, and elitism. We use 
the steady-state replacement strategy. The best-fitted N 
schedules from the pool are kept in the population, and the 
remaining schedules are excluded.  

 
Step 7: Terminate the algorithm  

 
The GA terminates in case one of the following 

termination conditions are true: an optimal solution is 
found, or the maximum number of iterations is reached. 
Since the fitness function is a balancing function, there is 
no one optimal solution. Instead, a set of near-optimal 
solutions are targeted.  

 
6. Experimentation and Results 

 
The experiments were carried out a real dataset 

consisting of 10 instructors and 32 courses from a 
Computer Science department. The dataset set is 
initialized as discussed in section V. Since a multi-
objective optimization is applied, there does not exist one 
single optimized solution to the problem. In addition, a 
100% balance in workloads or eligibility scores is not 
feasible. Hence we follow the Pareto analysis approach, by 
selecting the best solutions from a set of optimal solutions.  

The experiments are planned as follows: run batches 

with different values of  and . In the first batch, 
we set N=200 and apply one crossover point. To expand 
the search space, in the second batch, we set N=300 and 
use two crossover points. In each run, we select the best 
schedules in the population based on optimized fitness 
values. The results showing in Table 1 represent average 
values for the best 15 schedules in each run.  We set the 
maximum number of iterations to 104, UB=4, and LB=2. 

 
The experiment was run on a PC with intel(R) 

Core(TM)i7-6500U and 8GB RAM. The algorithm was 
programmed in java. The results of the experiments are 
illustrated in Table 1. The data in Table 2 demonstrates a 
candidate solution to the problem. In the next section, the 
results are discussed. 

 
7. Discussion 

 
In the model, we include combined metrics for criteria 

that might affect the decisions in the workload assignment 
other than the ATF. The values assigned to 

  and  has to be decided by the 
decision-maker and used for tradeoffs depending on the 
policies of the department. For example, if only instructor 
preference is giving priority in the targeted schedules, then 

 is set to 1. For population sizes less 150, the algorithm 
did not produce significant value. We set the population 

size to 200, and tuned Pc, and  to different values 
while using one crossover operator for generating new 
schedules. We observed the best results are achieved with 

Pc =0.75 and  = 0.8. To increase the search space, we 
increased N to 300, increased Pc to 0.85, and used two 
crossover points. There was a significant improvement in 
the results with minimized deviations for ATF and 
eligibility scores.     

 
We combine the real dataset values and a generated 

optimized schedule in a single table (Table 3) to visualize 
how the algorithm generated the solution. The algorithm 
has achieved a fair workload with average of 455, 
deviation of  3.2, and 445 seconds of runtime. Also, a fair 
eligibility score is achieved with average 62 and a 
deviation of 13. The error rates however were 50% for 
both instructor and HoD preferences. It is an acceptable 
result especially that we are not considering error rates in 
our implementation of the problem. Finally, the results are 
compared with the recommendation made by the HoD 
(bold frames in Table 3). The calculations of the schedule 
recommended by the HoD have a workload deviation of 
123, were the workloads ranged between780 and 443. The 
deviation of the eligibility scores is 11 with average 70%.   

 
 

8. Conclusion 
 
It is necessary for academic institutions to apply 

optimal ways to produce fair and balanced workload 
allocation for their academic instructors. The teaching 
effort is not only calculated by the contact hours with 
students. Teaching effort includes substantial time spent 
on preparations and the assessment of student work. 
Hence, it is crucial that teaching efforts are calculated and 
balanced based on detailed metrics for taught courses. We 
propose a genetic algorithm solution for fair workload 
allocation based on comprehensive metrics and actual 
teaching effort. The algorithm succeeded in achieving a 
fair allocation reasonable eligibility score. Further 
enhancement can be applied to by considering several 
other workload metrics, such as weights of research and 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020 

 

63

 

administrative, and study how this could be introduced to 
solve the problem.   

 

Table 1: Experiment results on a real dataset with I=10 and C=32. 
 

N 
Cross Over Parameters Pareto optimal solutions Time in 

seconds  
Pc 

 
Pm 

 

 

 Workload 
deviation 

Workload 
average 

Eligibility 
deviation 

Eligibility 
average 

 
200 

1 crossover 
point 

0.5 0.1 0.5 0.5 56 624 12 28 213.4 
0.5 0.1 0.8 0.2 40 564 8 39 210.4 
0.75 0.1 0.5 0.5 32 567 8 33 225.8 
0.75 0.1 0.8 0.2 23 564 8 46 220.5 

 
300 

2 crossover 
points 

0.75 0.1 0.5 0.5 18 568 14 55 330.7 
0.75 0.1 0.8 0.2 17 532 16 48 328.9 
0.85 0.1 0.5 0.5 10 508 8 56 393.1 
0.85 0.1 0.8 0.2 5 460 9 61 394.6 

 
Table 2: Solution instance from the experiments 
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Course Name C# Credit

# of 
Stud. I1 I2 I3 I4 I5 I6 I7 I8 I9 I10

programming 1 C1 4 15 187.5 97.5 67.5 80 80 100 80 80 80 80 100 80 100

programming 2 C2 4 30 285 195 165 80 80 100 60 80 80 80 100 80 100

programming 3 C3 4 25 212.5 92.5 62.5 80 60 100 60 80 80 80 100 80 100

Network 1 C4 3 30 330 195 150 20 20 20 20 20 100 100 60 20 20

Network 2 C5 3 15 187.5 97.5 52.5 20 20 20 20 20 100 100 60 20 20

Software Engineering 1 C6 3 30 285 195 150 20 100 80 20 100 80 20 50 50 100

Software Engineering 2 C7 3 15 202.5 112.5 67.5 20 100 50 20 100 20 20 20 20 100

Database 1 C8 3 30 210 97.5 75 100 90 50 80 100 50 50 100 50 100

Database 2 C9 3 15 202.5 90 67.5 20 80 50 20 100 50 20 80 20 100

Operating Systems C10 3 30 270 180 135 80 70 60 50 50 50 50 50 50 50

Digital Logic C11 3 30 285 150 105 100 50 50 50 80 100 50 50 50 50

Discrete Structures 1 C12 3 30 255 120 75 100 50 50 50 90 50 80 80 50 50

Discrete Structures 2 C13 2 30 225 165 135 80 50 80 20 60 20 60 100 20 20

Computer Architecture C14 3 30 345 210 165 100 50 50 50 100 50 50 50 50 50

Data Structure 1 C15 3 30 255 165 75 80 80 100 100 100 50 50 50 50 50

Data Structure 2 C16 3 15 255 120 75 80 50 100 80 50 50 50 50 50 50

Programming Languages C17 3 30 240 127.5 105 80 50 50 80 90 50 80 50 50 50

Artificial Intelligence 1 C18 3 25 305 170 125 100 20 50 100 20 80 20 20 100 20

 Algorithm Design C19 3 30 330 240 195 50 50 100 50 50 50 80 50 50 50

Artificial Intelligence 2 C20 3 20 250 160 70 100 20 20 100 20 50 20 20 100 20

HCI1 C21 2 15 127.5 97.5 67.5 20 100 20 20 50 20 20 80 20 80

HCI2 C22 3 30 225 157.5 135 20 80 20 20 50 20 20 80 20 50

Graphics 1 C23 3 15 187.5 97.5 52.5 20 20 20 20 20 20 20 20 100 80

Graphics 2 C24 3 30 210 165 75 20 20 20 20 20 20 20 20 100 80

Multimedia C25 3 30 255 165 120 20 20 20 20 20 20 20 80 80 100

Data Analytics C26 3 15 217.5 127.5 82.5 20 20 20 100 20 20 20 20 100 20

HPC C27 3 15 217.5 82.5 37.5 20 80 20 50 20 20 20 80 20 20

Computer Forensics C28 2 15 165 105 75 20 20 20 60 20 20 20 100 50 20

Web Development C29 3 15 187.5 97.5 52.5 20 80 20 20 50 20 20 80 20 100

Compiler Construction C30 3 20 255 165 120 50 50 50 50 50 80 50 80 50 50

Applied Math  1 C31 4 30 390 210 150 50 50 50 50 50 80 100 50 50 50

Applied Math for  2 C32 4 15 277.5 97.5 37.5 50 50 50 50 50 50 100 80 50 50

458 458 458 455 450 458 450 458 453 453

51 48 57 86 64 75 62 41 75 62

Workload Deviation

Eligibility Score Deviation

Workload Average

Eligibility Average

Ints. Preference Error Rate

HoD Preference Error Rate

Grey highlight means that Instructor i  has been assigned course k in the schedule

X The numbers in in each (course, instructor) assignment represents the experience of the instructor in the course

Bold frame means the  HoD recommends that instructor i teaches course k

X Blue means that the instructor i  prefers to teach course k

X Underlined means the instructor  has taught the course before 

X Red means no instructors preferred to teach the course

Total Workload

Eligibility Score

3.207802986

13.0418557

0.5

0.47

455.1

62.1

𝒑𝒓𝒆𝒑𝟏 ,𝒌 𝒑𝒓𝒆𝒑𝟐 ,𝒌 𝒉𝒓𝒊
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