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Abstract: We consider the single-depot multiple travelling salesman 
Problem (MTSP) that is a generalization of the benchmark travelling 
salesman problem (TSP). The problem outlines that there are 
multiple salesmen m who should visit n cities so that each salesman 
must start from and end at single depot. The objective of the problem 
is to obtain the lowest total distance covered by all salesmen so that 
each city is visited only once by one salesman only. It is NP-hard, 
and it has numerous real-life applications. Though exact solutions 
can be found for small sized problem instances, yet there are certain 
circumstances where exact solutions are very essential. Hence, we 
propose to develop a lexisearch algorithm that uses path 
representation for a tour to find exact solution to the MTSP. The 
usefulness of the proposed exact algorithm is shown by comparing 
with an existing exact algorithm on various sized asymmetric 
instances from TSPLIB website with various number of salesmen. 
Experimental study shows the usefulness of the proposed algorithm. 
Finally, solutions to some symmetric TSPLIB instances are presented. 

Keywords: Multiple travelling salesman problem; NP-hard; Optimal; 
Exact; Bound; Lexisearch algorithm. 

1. Introduction 

The travelling salesman problem (TSP) is a multidisciplinary 
benchmark problem that aims to obtain a least cost 
Hamiltonian circuit/cycle in a network. It may be defined as: 
Given n cities and distances among them. Starting from and 
ending at a single depot city, a salesman should visit all the 
cities exactly once so that the total distance (cost) covered by 
the salesman is minimum. Though this problem has been 
extensively studied by many researchers and proposed many 
useful algorithms to solve it, yet there are certain 
circumstances where more than one salesman is required. 
Hence, the multiple TSP (MTSP) is defined where all 
salesmen must start from and end at a single depot city. Each 
city, excluding the depot, is visited only once by one salesman 
only so that the total distance covered by all salesmen is 
minimum. 

The MTSP has many practical applications, for example, 
school bus scheduling [1], interview scheduling [2], mission 
planning [3], crew scheduling [4], job scheduling [5], global 
navigation satellite surveying system networks [6], and 
vehicle scheduling and print press scheduling [7]. 

The problem has many variations such as single-depot, 
multi-depot, closed or open tours, etc [8]. Also, number of 
salesmen might be prefixed or permitted to vary, lower and 
upper bounds can be fixed on the number of salesmen as well 
as costs can be fixed related to the salesmen. We consider the 
single-depot closed tour problem that restricts all salesmen to 
begin from a single depot and finish their tours at the same 
depot. 

The MTSP is NP-hard [9], and there is no any known 
polynomial-time algorithm available for the solving the 
problem. Since, the problem is a TSP variant, the solution 
methods available for the usual TSP can also be applied to the 
MTSP. There are two kinds of algorithms available to solve 
the TSP and the MTSP such as heuristic and exact algorithms. 
Exact algorithms find exact solutions, whereas, heuristic 
algorithms obtain near exact solutions very quickly without 
assuring their optimality. As the problem size increases 
finding its exact solution using exact algorithm is too tough, if 
not impossible. However, small and medium sized problem 
instances can be solved easily, and there are some 
circumstances where finding exact optimal solutions are 
required.  

In this study, we try to obtain exact solution using an exact 
method for the MTSP. The well-known exact methods for the 
TSP and associated problems are branch and bound [10] and 
lexisearch [11] approaches. The lexisearch approach is found 
better than the branch and bound approach for the TSP [12]. 
As MTSP is a generalization of TSP, so, we also propose to 
develop a lexisearch algorithm using path representation for a 
tour to obtain exact solution to the MTSP and compare the 
proposed algorithm against existing exact methods on some 
instances from TSPLIB [13] with various number of salesmen. 
Experimental study shows the usefulness of the proposed 
algorithm. Finally, solutions to some symmetric TSPLIB 
instances are presented. 

This paper is prepared as: Section 2 reports a literature 
survey for the MTSP. The problem definition and its 
transformation are presented in Section 3, whereas Section 4 
reports a lexisearch algorithm for finding exact solution to the 
MTSP.  Experimental study for the proposed algorithm is 
presented in Section 5, whereas conclusions, discussions and 
future work are reported in Section 6. 

2. Literature Survey 

The MTSP is not well-studied like the usual TSP. Among 
the literatures for the problem, most of them are for heuristic 
algorithm. As this study proposes exact algorithm to solve the 
MTSP, we give a literature survey on exact algorithms. 
However, gravitational emulation local search [14], two-phase 
heuristic algorithm [15], genetic algorithms [16] are some 
well-known heuristics methods proposed for solving the 
problem.  

As mentioned above, very few literatures are available for 
the exact algorithms. Laporte and Nobert [17] proposed the 
first exact method by relaxing some constraints of the problem 
to solve the problem directly, without transforming to the 
usual TSP.  



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020 
 

 

66

Exact algorithm based on Branch-and-Bound method to 
find exact solution of the problem have been proposed in [18]. 
The algorithm uses a Lagrangean dual inside branch-and-
bound algorithm and a sub-gradient technique to solve the 
dual function. Further, a greedy algorithm is applied to assess 
the points of the function. The method is tested on randomly 
created symmetric and Euclidean problem instances of sizes 
up to 100 and 59 respectively. 

Gavish and Srikanth [19] reported a branch-and-bound 
method, where lower bounds are calculated using Lagrangean 
relaxation problem. Computational experiences have been 
reported for non-Euclidean and Euclidean problem instances. 
The results show that the Euclidean problem instances are 
harder than non-Euclidean ones. Comparative study show that 
their algorithm is better than the algorithms in [17, 18]. 

Husban [20] reported a mathematical model for the MTSP 
and then developed a branch-and-bound method for finding 
exact solution to the problem. The computational experience 
showed that for any problem size, the solution time decreases 
as the number of salesmen increases. 

Gromicho et al. [21] reported a branch-and-bound 
algorithm using a quasi-assignment relaxation method. An 
additional bounding technique is also used to find strong 
lower bounds that improved the lower bound effectively. The 
proposed algorithm is applied on asymmetric instances up to 
size n=120 with number of salesmen ranging from 2 to 12. 
The proposed algorithm is found better than the standard 
branch-and-bound method. 

Vali and Salimifard [22] formulated the problem using a 
constraint programming (CP) model and then used CP 
optimizer for finding exact solution to the problem. As 
reported, the proposed method performed very well compared 
to some existing algorithms. 

Recently, Thenepallea and Singamsettya [23] introduced an 
open close MTSP with single depot (OCMTSP) in which 
salesmen are classified into internal and external ones, who 
are located at depot. The goal is to suggest the optimal tour so 
that beginning from the depot all salesmen visit the set of cities, 
each city by only one salesman with the additional condition 
that only internal salesmen must come back to the depot while 
the external salesmen are not required to return. A lexisearch 
algorithm, based on pattern recognition technique, was 
developed to find exact optimal solutions. As claimed, the 
algorithm provided sub-optimal and optimal solutions within 
reasonable solution times. 

In this work, we propose to develop a lexisearch algorithm 
that uses path representation for a tour to obtain exact solution 
to the MTSP. The usefulness of the proposed lexisearch 
algorithm is shown by comparing with an existing exact 
algorithm [23] and CPLEX on various sized asymmetric 
instances from TSPLIB website with various number of 
salesmen. Experimental study shows the usefulness of the 
proposed algorithm. Finally, solutions to some symmetric 
TSPLIB instances are presented. 

 

 

3. Problem Definition and its Transformation to 
the TSP 

The MTSP is an utmost challenging multidisciplinary 
optimization problem. The problem can be stated as: Given n 
cities (nodes), labelled as 1, 2, …., n, and m salesmen placed 
at a single depot in a network with the specified distance 
between cities i and j, dij, i, j=1,2,...,n, where the depot is city 
1 and the remaining cities are called intermediate cities. 
Starting from the depot, the problem is to visit all the 
intermediate cities by exactly one salesman and then return to 
the depot such that the tours have no common cities (except 
the depot city) and the total distance covered by all salesmen 
is minimized. In addition, if the MTSP involves capacity 
constraints along with each salesman, it converts to the 
capacitated vehicle routing problem (VRP). Clearly, if m = 1, 
the MTSP converts to the usual TSP. The problem can be 
expressed as an integer linear programming as below [18].  

Define a binary variable, xij, is equal to 1 (one), when the edge 
(i, j) belongs to a tour, otherwise 0 (zero). 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 ൌ ෍ ෍ 𝑑௜௝𝑥௜௝

௡

௝ୀଵ

௡

௜ୀଵ

,     𝑑௜௝ ൌ ∞ 𝑓𝑜𝑟 𝑖 ൌ 𝑗 

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜  

ሺ𝑎ሻ ෍ 𝑥௜௝

௡

௜ୀଵ

ൌ ൜
𝑚           𝑖𝑓 𝑗 ൌ 1                                
1            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑖𝑛 ሼ2, 3, . . . , 𝑛ሽ     

ሺ𝑏ሻ ෍ 𝑥௜௝

௡

௝ୀଵ

ൌ ൜
𝑚           𝑖𝑓 𝑖 ൌ 1                                
1            𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑖𝑛 ሼ2, 3, . . . , 𝑛ሽ     

ሺ𝑐ሻ 𝑥௜௝ ൌ ሺ0, 1ሻ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 𝑖𝑛 ሼ1, 2, . . . , 𝑛ሽ 

ሺ𝑑ሻ 𝑋 ൌ ൫𝑥௜,௝൯ ∈ 𝑆 

The aim is to minimize the objective function, z, which is 
defined as the total distance covered by the salesmen. The 
equalities in (a) and (b) represent the number of salesmen 
allocated to permit multiple departures and arrivals (i.e. visits) to 
the depot from where the salesmen start, (c) confirms that the 
variables xi,j are integer, representing whether edge (i, j) is 
present in the tour. The set S in equality (d) denotes a set of 
constraints which exclude subtour solutions satisfying the 
assignment restrictions. The distance matrix may be 
represented as cost/ time matrix. The TSPs are divided into 
two types, based on the structure of distance matrix, such as 
symmetric and asymmetric.  If dij = dji,  i, j, then it is 
symmetric, otherwise, asymmetric. 

For n-city usual TSP, there are likely (n-1)! number of 
routes, and the computational effort is directly proportional to 
the problem size. So, it is too hard, if not impossible, to solve 
large sized problems. Additionally, the MTSP requires first to 
decide the cities allocated to a salesman, then to arrange the 
optimal order of the cities within each salesman’s tour, so, it 
is harder than the usual TSP. Since, the usual TSP is NP-hard, 
hence, the MTSP is also NP-hard [9]. To our awareness, there 
is no polynomial-time algorithm present to solve the MTSP. 
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3.1. The TSP Transformation for the MTSP 

The MTSP may be transformed into the TSP by considering 
only one salesman. Also, it may be treated as a reduction of 
the VRP by removing the capacity constraints [24]. The 
problem with n cities and m salesmen is transformed into the 
usual TSP with n+m-1 cities by adding m-1 dummy depots 
(n+1, …, n+m-1), where large (infinite) distances are given to 
depot-to-depot distances to restrict such travels and zero 
distances are given between dummy depots and other cities. 
Solutions for the usual TSP and the MTSP are same [25]. 
According to research in [26] this conversion is not proper and 
results in a useless growth in the distance matrix. Further, they 
proposed a conversion in which the given matrix is augmented 
with m−1 dummy columns and rows so that each dummy 
column and row is a copy of the first column and row of the 

give matrix. In [27], it is shown that the n-city and m-salesman 
asymmetric MTSP can be transformed into a usual (n+m−1)-
city asymmetric TSP. A similar transformation for the 
symmetric MTSP into a (n+m+4)-city symmetric TSP is 
proposed in [28]. Also, a transformation into a (n+m-1)-city 
symmetric TSP is described in [29]. An improved conversion 
of a symmetric MTSP into a symmetric TSP is proposed in 
[30].  

We are also going to transform the MTSP to the usual TSP 
by introducing m-1 artificial depots. An example of the MTSP 
with n = 7, m = 2 is shown in Fig. 1(a) and its transformation 
to the usual TSP is shown in Fig. 1(b). Also, the original 
distance matrix and the modified distance matrix with one 
artificial depot city 8, for a 7-city and 2-salesman problem, are 
showed in Tables 1 and 2 respectively. 

 
Figure 1.  Example of solution of the MTSP and its transformation to the TSP with artificial city 8 

Table 1. The distance matrix. 

City 1 2 3 4 5 6 7 
1 999 74 20 46 7 90 41 
2 23 999 93 67 66 5 56 
3 19 46 999 65 82 57 34 
4 74 41 59 999 41 61 91 
5 48 17 53 7 999 63 84 
6 91 79 70 63 62 999 72 
7 54 33 92 68 90 84 999 

Table 2. The modified distance matrix with row minima 
(RM) and column minima (CM) 

City 1 2 3 4 5 6 7 8 RM
1 999 74 20 46 7 90 41 999 7 
2 23 999 93 67 66 5 56 23 5 
3 19 46 999 65 82 57 34 19 19 
4 74 41 59 999 41 61 91 74 41 
5 48 17 53 7 999 63 84 48 7 
6 91 79 70 63 62 999 72 91 62 
7 54 33 92 68 90 84 999 54 33 
8 999 74 20 46 7 90 41 999 7 
CM 0 0 8 0 0 0 10 0 199

3.2. Bias Removal 

The bias removal phase is found effective for the TSP [31] 
and clustered TSP [32]. As the MTSP is a generalization of 
the usual TSP and so, bias removal is supposed to be effective 
for the MTSP also. The bias removal procedure of the distance 
matrix can be stated as: first, each row-minimum is subtracted 
from its associated row elements. Next, apply the same 
procedure on the resultant matrix column-wise. The sum of 
the row-minimums and the consequent column-minimums is 
known as ‘bias’ of the given matrix [33]. Table 2 shows this 

bias computation. So, bias of the matrix = row-minimums + 
column-minimums = 181 + 18 = 199. The resultant distance 
matrix is a non-negative with minimum one zero in every row 
and in every column as showed in Table 3. In an assignment 
problem as well as in a TSP, if a constant is added or 
subtracted to all elements of a column (or row) in the matrix, 
then an allocation that reduces the total distance on one matrix 
also reduces the total distance on the other one. As the MTSP 
is a generalization of the TSP, thus, it is enough to solve the 
problem with regard to the reduced distance matrix. 

Table 3. The reduced distance matrix. 

City 1 2 3 4 5 6 7 8 
1 992 67 5 39 0 83 24 992
2 18 994 80 62 61 0 41 18
3 0 27 972 46 63 38 5 0 
4 33 0 10 958 0 20 40 33
5 41 10 38 0 992 56 67 41
6 29 17 0 1 0 937 0 29
7 21 0 51 35 57 51 956 21
8 992 67 5 39 0 83 24 992

3.3. Alphabet Table 

Alphabet matrix, denoted by A=[a(i, j)], is an nൈn square 
matrix created by locations of elements of n ൈ n reduced 
distance matrix, 𝐷ᇱ ൌ ሾ𝑑௜௝

ᇱ ሿ , after arranging the elements in 
non-decreasing order. Alphabet table, denoted by ሾ𝑎ሺ𝑖, 𝑗ሻ െ
𝑑′௜,௔ሺ௜,௝ሻሿ, is a mixture of elements (cities) of the matrix A and 
their distances in the reduced distance matrix [34]. Table 4 
represents the alphabet table created for the reduced matrix 
given in Table 3, where C is a city and D is its distance from 
the corresponding city in the 1st column. 
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Table 4. The alphabet table. 

City C-D C-D C-D C-D C-D C-D C-D C-D
1 5-0 3-5 7-24 4-39 2-67 6-83 1-992 8-992
2 6-0 1-18 8-18 7-41 5-61 4-62 3-80 2-994
3 1-0 8-0 7-5 2-27 6-38 4-46 5-63 3-972
4 2-0 5-0 3-10 6-20 1-33 8-33 7-40 4-958
5 4-0 2-10 3-38 1-41 8-41 6-56 7-67 5-992
6 3-0 5-0 7-0 4-1 2-17 1-29 8-29 6-937
7 2-0 1-21 8-21 4-35 3-51 6-51 5-57 7-956
8 5-0 3-5 7-24 4-39 2-67 6-83 1-992 8-992

4. A Lexisearch Algorithm for the MTSP  

The lexisearch algorithm is effectively developed for 
several complex problems [31-37], where all feasible 
solutions are organized in an order like words in any 
dictionary, in a way that a partial word denotes a block of 
words and the block leader. Lower bounds are calculated for 
the objective function on these blocks which are compared 
with current 'best solution'. In this block, if no better solution 
(word) than the present 'best solution' is found, then jump over 
from the present block into the next block. But, if the bound 
shows an opportunity to have better solution in this block, then 
go to its subblock by joining the present leader with the 
suitable letter and then calculate its lower bound.  

4.1. Block Leader 

A partial word (incomplete tour) containing some cities is 
called the block leader of words. For the MTSP, each city, 
including dummy depot, is treated as a letter in any alphabet. 
Therefore, all words (solutions) in the dictionary is subdivided 
into blocks. A word block B having a three-length leader (0, 
1, 2) contains all words starting with the words of these 
three letters (0, 1, 2) as a string. The block A having the 
two-length leader (0, 1) is the next superblock of the block 
B including the block B as its subblock. Next, the block C 
having a four-length leader (0, 1, 2, k) is one of the 
subblocks of block B that contains several four-length 
subblocks, one for a letter k. Block B is the next superblock 
of the block C [33]. 

4.2. Lower Bound 

Calculating and finding a compact lower bound for a block 
leader on the objective function for the MTSP is very hard. 
Therefore, the lower bound used for the TSP [31] and 
clustered TSP [32] is considered here, that is stated as follows. 
Let the incomplete tour be (1=0, 1, 2) and city 3 be chosen 
for joining. Before joining, bound for the block leader (0, 1, 
2, 3) is calculated.  For that, computation starts from second 
row and continues to the last row of the alphabet table and 
sum up the distances of first legitimate cities (the cities which 
are not available in the present tour), including city 1, in every 
row, except 1-th and 2-th rows. The calculated total distance 
is the bound for this leader (0, 1, 2, 3). 

4.3. The Proposed algorithm 

In general, there are two methods of expressing salesman’s 
tour in lexisearch algorithm (LSA), which are adjacency and 
path representations. In [23], for solving an open close MTSP 
with single depot (OCMTSP) adjacency representation is used. 
We are using the path representation for solving the MTSP. It 
is applied on the simple TSP [31] and with precedence 

constraints [37], and clustered TSP [32], and found very 
effective results. 

Suppose there are n cities and m salesmen in the network, 
and D=[dij] is the n-th order distance matrix. After adding m-
1 dummy depot cities, the number of cities becomes n+m-1 
and so, new size of the problem becomes, n = n+m-1. 
Accordingly, the given matrix is modified.  The proposed 
LSA for the MTSP is a modification of the LSA for the TSP 
[31] which is stated as follows. 

Step 0: Calculate bias of the given distance matrix, construct 
reduced distance matrix and then the alphabet table 
based on the reduced matrix. Fix best solution value 
(BS) = L (very large number). As city 1 is the depot 
city, calculation is started from first row of the 
alphabet table. Set k=1, tour value (Sol) = 0, and then 
go to step 1. 

Step 1: Go to kth element of the first row (say city q) with 
distance as present city distance (Dist). If (Sol + Dist) 
< BS, go to step 2 else, go to step 9. 

Step 2: If the city q forms a subtour or the present city and city 
q are both depot cities, drop it, set k=k+1 and go to 
step 7 else, go to step 3. 

Step 3: If all cities of the transformed problem are visited, add 
the edge connecting the city q to city 1, compute Sol 
and go to step 4 else, go to step 5. 

Step 4: If (Sol ≥ BS) then go to step 9 else, replace BS = Sol 
and go to step 9. 

Step 5: Calculate the lower bound (LB) of the present leader 
on the objective function and go to step 6. 

Step 6: If (Sol + Dist + LB) ≥ BS then drop the city q, set 
k=k+1 and go to step 7; else, accept the city q, 
compute Sol and go to step 8. 

Step 7: If (k < n), go to step 1 else, go to step 9. 

Step 8: Go to subblock, i.e., go to qth row, put k = 1 and go to 
step 1. 

Step 9: Jump this block by dropping the city q and return to 
the previous city in the tour (say, city p), i.e., go to the 
pth row of the alphabet table and set k = k + 1 where 
k was the index of the last visited city in that row. If 
city p = 1 and k = n, go to step 10 else, go to step 7. 

Step 10: Now BS is the optimal solution value with regard to 
the reduced distance matrix, and BS = BS + bias is the 
optimal solution value with regard to the original 
distance matrix and go to step 11.  

Step 11: Current word is the optimal tour sequence with regard 
to the modified distance matrix. Then tours of the 
salesmen with regard to the original problem is found 
and then stop. 

4.4. Illustration of the algorithm 

Steps of the proposed LSA is explained using a 7-city and 
2-salesman problem instance with the given distance matrix in 
Table 1. The modified distance matrix, reduced distance 
matrix and alphabet table are shown in the corresponding 
Tables 2, 3 and 4. The flow of LSA at several steps is 
presented in Table 5, where 54(0) denotes present city 
distance d54 = 0, and (0) +5, GS denote (0) is the tour value 
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that includes present city distance, 5 is the lower bound and 
conclusion is GS. The symbols used in the table are as follows:  

GS: Go to subblock, i.e., join first legal letter to the present 
leader. GS for ab is abc as augmented leader. 

JB: Jump over the block, i.e., jump over the next block of 
same length by replacing its last letter by the next letter in 
the alphabet table. JB for ab is ac. 

JO: Jump out to the immediate higher order block by 
dropping its last letter and then jumping out the block. JO 
for abcd is abd. 

Let BS = 999 and Sol = 0. Consider the alphabet table and 
start from its 1st row. We have a(1,1) = 5 with Dist = d15 = 0 
which does not form subtour and (Sol + Dist) < BS. Next, LB 
for the leader (1, 5) is calculated, which guides us whether city 
5 can be accepted. 

𝐿𝐵 ൌ 𝑑ଶ,௔ሺଶ,ଵሻ ൅ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑ସ,௔ሺସ,ଵሻ ൅ 𝑑ହ,௔ሺହ,ଵሻ ൅ 𝑑଺,௔ሺ଺,ଵሻ

൅ 𝑑଻,௔ሺ଻,ଵሻ ൅ 𝑑଼,௔ሺ଼,ଶሻ 
   ൌ 𝑑ଶ,଺ ൅ 𝑑ଷ,ଵ ൅ 𝑑ସ,ଶ ൅ 𝑑ହ,ସ ൅ 𝑑଺,ଷ ൅ 𝑑଻,ଶ ൅ 𝑑଼,ଷ 

      ൌ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 5 ൌ 5. 

Table 5. Search Table 

1(1)2 23 34 45 56 67 78 81(1) 

1 5(0) 54(0) 42(0) 26(0) 63(0) 38(0) 87(24) 71(21) 
(0) +5, GS (0) +5, GS (0) +26, GS (0) +26, GS (0) +45, GS (0) +45, GS (24) +21, GS BS=45, JO 
     37(5)   
     (5) +1013, JB, JO   
    67(0) 78(21) 83(5) 31(0) 
    (0) +26, GS (21) +5, GS (26) +0, GS BS=26, JO 
   28(18)     
   (18) +26, JB     
   27(41), JO     
  43(10)      
  (10) +24, JB      
  46(20)      
  (20) +23, JB,JO      
 52(10)       
 (10) +36, JB       
 53(38), JO       
13(5) 38(0) 85(0) 54(0) 42(0)    
(5) +0, GS (5) +0, GS (5) +0, GS (5) +0, GS (5) +21, JB    
    46(20)    
    (25) +18, JB, JO    
   52(10)     
   (15) +41, JB, JO     
  87(24), JO      
 37(5) 72(0) 26(0) 65(0)    
 (10) +0, GS (10) +0, GS (10) +0, GS (10) +72, JB    
    64(1)    
    (11) +41, JB, JO    
 32(27), JO       
17(24) 72(0) 26(0) 63(0) 38(0) 85(0)   
(24) +0, GS (24) +0, GS (24) +0, GS (24) +0, GS (24) +0, GS (24) +33, JB   
     83(5), JO   
   65(0)     
   (24) +15, JB     
   64(1)     
   (25) +38, JB,JO     
14(39), STOP        

As (Sol + Dist + LB) = 5 + 0 + 0 = 5 < BS, the city 5 is 
accepted and the tour becomes {15} having Sol = Sol + Dist 
= 0 + 0 = 0. Now go to 5th row of alphabet table and choose 
city ‘a(5,1) = 4’ as it is legitimate city. So, Dist = d54 = 0 and 

(Sol + Dist) < BS. Lower bound for the leader (1, 5, 4) is 
computed as follows. 

𝐿𝐵 ൌ 𝑑ଶ,௔ሺଶ,ଵሻ ൅ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑ସ,௔ሺସ,ଵሻ ൅ 𝑑଺,௔ሺ଺,ଵሻ ൅ 𝑑଻,௔ሺ଻,ଵሻ

൅ 𝑑଼,௔ሺ଼,ଶሻ 
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   ൌ 𝑑ଶ,଺ ൅ 𝑑ଷ,ଵ ൅ 𝑑ସ,ଶ ൅ 𝑑଺,ଷ ൅ 𝑑଻,ଶ ൅ 𝑑଼,ଷ

ൌ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 5 ൌ 5. 

As (Sol + Dist + LB) = 5 + 0 + 0 = 5 < BS, the city 4 is 
accepted and the tour becomes {154} having Sol = Sol + 
Dist = 0 + 0 = 0. Now go to 4th row of alphabet table and 
choose the city ‘a(4,1) = 2’. So, Dist = d42 = 0 and (Sol + 
Dist) < BS. Lower bound for (1, 5, 4, 2) is 

𝐿𝐵 ൌ 𝑑ଶ,௔ሺଶ,ଵሻ ൅ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑଺,௔ሺ଺,ଵሻ ൅ 𝑑଻,௔ሺ଻,ଶሻ ൅ 𝑑଼,௔ሺ଼,ଶሻ 
   ൌ 𝑑ଶ,଺ ൅ 𝑑ଷ,ଵ ൅ 𝑑଺,ଷ ൅ 𝑑଻,ଶ ൅ 𝑑଼,ଷ

ൌ 0 ൅ 0 ൅ 0 ൅ 21 ൅ 5 ൌ 26. 

As (Sol + Dist + LB) = 26 + 0 + 0 = 26 < BS, the city 2 is 
accepted and the tour becomes {1542} having Sol = 
Sol + Dist = 0 + 0 = 0. Now go to 2rd row of alphabet table 
and choose the city ‘a(2,1) = 6’ having Dist = d26 = 0.  As 
(Sol + Dist) < BS, then bound for (1, 5, 4, 2, 6) is computed. 

𝐿𝐵 ൌ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑଺,௔ሺ଺,ଵሻ ൅ 𝑑଻,௔ሺ଻,ଶሻ ൅ 𝑑଼,௔ሺ଼,ଶሻ

ൌ 𝑑ଷ,ଵ ൅ 𝑑଺,ଷ ൅ 𝑑଻,ଵ ൅ 𝑑଼,ଷ

ൌ 0 ൅ 0 ൅ 21 ൅ 5 ൌ 26. 

Since (Sol + Dist + LB) = 26 + 0 + 0 = 26 < BS, the tour 
becomes {15426} having Sol = Sol + Dist = 0 + 0 
= 0. Then choose the city ‘a(6,1) = 3’ having Dist = d63 = 0. 
As (Sol + Dist) < BS, bound for (1, 5, 4, 2, 6, 3) is computed. 

𝐿𝐵 ൌ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑଻,௔ሺ଻,ଶሻ ൅ 𝑑଼,௔ሺ଼,ଷሻ ൌ 𝑑ଷ,ଵ ൅ 𝑑଻,ଵ ൅ 𝑑଼,଻

ൌ 0 ൅ 21 ൅ 24 ൌ 45 

As (Sol + Dist + LB) = 45 + 0 + 0 = 45 < BS, the tour 
becomes {154263} having Sol = Sol + Dist = 0 
+ 0 = 0. Next, choose the city ‘a(3,2) = 8’ having Dist = d38 
= 0. As (Sol + Dist) < BS, bound for (1, 5, 4, 2, 6, 3, 8) is 
computed. 

𝐿𝐵 ൌ 𝑑଻,௔ሺ଻,ଶሻ ൅ 𝑑଼,௔ሺ଼,ଷሻ ൌ 𝑑଻,ଵ ൅ 𝑑଼,଻ ൌ 21 ൅ 24 ൌ 45. 

Since (Sol + Dist + LB) = 45 + 0 + 0 = 45 < BS, the tour 
becomes {1542638} having Sol = Sol + Dist = 
0 + 0 = 0. Next, choose the city ‘a(8,3) = 7’ having Dist = 
d87 = 24. As (Sol + Dist) < BS, bound for (1, 5, 4, 2, 6, 3, 8, 
7) is computed. 

𝐿𝐵 ൌ 𝑐଻,௔ሺ଻,ଶሻ ൌ 𝑐଻,ଵ ൌ 21. 

Since (Sol + Dist + LB) = 21 + 0 + 24 = 45 < BS, the tour 
becomes {15426387} having Sol = Sol + 
Dist = 0 + 24 = 24. As the present city is the final city in this 
tour, thus, return to the depot (city 1) having Dist = d71 = 21. 
As (Sol + Dist) < BS, the first complete tour becomes 
{154263871} having Sol = 45. Now 
replace BS = 45 and jump out to the next super block, i.e., 
{154263} having Sol = 0. Now try to find another 
complete tour with cheaper tour value.  

Continuing this way, the optimal tour 
{154267831} having BS = 26 is found. 
Therefore, the optimal tour value with regard to the given 
matrix, BS = bias + BS = 199 + 26 = 255. Our preliminary 
study shows that our algorithm obtains final solution quickly, 
but for verifying its optimality, it takes long time. So, if there 
is no any improvement of the solution is found within 180 
seconds then jump out to the next super block. 

5. Computational Experience 

Our LSA is encoded in Visual C++. In order to establish 
the efficiency of LSA, computational experience is carried out 
on a set of benchmark TSPLIB instances [13] with different 
number of salesmen and run on a Laptop with i3-3217U 
CPU@1.80 GHz and 4 GB RAM under MS Windows 7. Four 
asymmetric TSPLIB instances, that is, br17, ftv33, ftv35 and 
ftv38, each one with 2, 3 and 4 salesmen, are considered for 
the comparative study. A comparative study of our proposed 
algorithm (LSA) against CPLEX and Benders method 
reported in [38], and an existing lexisearch algorithm that used 
adjacency representation (LSA2) [23] is showed in Table 6. 
Solutions obtained by these algorithms as well as best known 
solution reported (within brackets) for 1-salesman instances in 
TSPLIB and computational time (in seconds) whenever the 
final/best solution is obtained for first time (FTime) and the 
complete time (CTime) by our proposed LSA, are reported. 

It is seen from the Table 6 that the obtained solutions for 
br17 and ftv33 (with 2, 3 and 4 salesman), and ftv35 (with 2 
salesmen) using all four algorithms are same. For ftv35 (with 
3 salesmen), obtained solutions by Benders method, LSA2 
and our proposed LSA are same 1511, while solution obtained 
by CPLEX is 1541, a higher value. So, the proposed algorithm 
(LSA) finds the exact solution.  

For ftv35 (with 4 salesmen), solutions obtained by 
Benders method and our LSA are same 1551, whereas, 
solution by LSA2 is 1532. Now, the question is that whether 
1551 or 1532 is optimal. The answer is as follows. The 
differences between optimal solutions for ftv35 with 2 
salesmen and 1 salesman is (1489-1473=) 16, and for ftv35 
with 3 salesman and 2 salesmen is (1511-1489=) 22. It seems 
that as number of salesmen increases these differences also 
increase. So, the optimal solution for the ftv35 with 4 
salesmen must be at least 1511 + 22 = 1533, and so, 1532 
cannot be optimal solution. Hence, our solution 1551 is 
optimal.  

For ftv38 with 2 salesmen, solutions obtained by Benders 
method and LSA2 are same 1505, whereas, solutions by 
CPLEX and our proposed LSA are 1551 and 1546 
respectively. Now, as the solution of the instance ftv38 with 
one salesman is 1530, so the solution of ftv38 with 2 salesmen 
cannot be less than 1530, so, 1505 cannot be optimal. Also, 
between 1551 and 1546, the solution 1546 is better. Hence, 
our solution is the optimal.  

For ftv38 with 3 salesmen, solutions obtained by Benders 
method and LSA2 are same 1521, whereas, solutions by 
CPLEX and our proposed LSA are same 1567. For this case 
also, as the solution of the instance ftv38 with one salesman is 
1530, so the solution of ftv38 with 3 salesmen cannot be less 
than 1530, so, 1521 cannot be optimal. Hence, our solution 
1567 is the optimal.  

For ftv38 with 4 salesmen, solutions obtained by Benders 
method, LSA2 and our LSA are same 1546, 1532 and 1608 
respectively. For this case also, as the solution of the instance 
ftv38 with 3 salesmen is 1567, so the solution of ftv38 with 4 
salesmen cannot be less than 1567, so, solutions 1532 and 
1546 cannot be optimal. Hence, our solution 1608 is the 
optimal. 
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Table 6: A comparative study of different algorithms on asymmetric TSPLIB instances 

Instance n m 
Solution by Results by our proposed LSA 

CPLEX  Benders method LSA2 Solution FTime CTime 
br17 17 2 39 39 39 39 6.94 48.94 
(39)  3 42 42 42 42 0.00 45.01 

  4 47 47 47 47 0.13 45.13 
ftv33 34 2 1302 1302 1302 1302 171.83 211.37 

(1286)  3 1328 1328 1328 1328 288.14 557.89 
  4 1367 1367 1367 1367 93.41 768.85 

ftv35 36 2 1489 1489 1489 1489 88.69 345.46 
(1473)  3 1541 1511 1511 1511 297.66 864.74 

  4 --- 1551 1532* 1551 519.32 1189.49 
ftv38 39 2 1551 1505* 1505* 1546 369.72 908.37 

(1530)  3 1567 1521* 1521* 1567 340.86 1751.81 
  4 -- 1546* 1532* 1608 607.37 2230.53 

Average       232.01 747.30 
*Note: Solutions are not exact optimal 

 

 

 

Additionally, to visualize effectiveness of our proposed 
algorithm, LSA, against CPLEX, Benders and LSA2 
algorithms on the above considered four TSPLIB instances, 
results are depicted in line diagrams. The total travel distances 
for br17, ftv33, ftv35, and ftv38 with different number of 
salesmen are showed in Figures 2, 3, 4 and 5 respectively. The 
Figures 2 and 3 show that all the four algorithms obtained 
same solutions on br17 and ftv33 with 2, 3, and 4 salesmen 
respectively. The Figure 4 shows that all algorithms obtained 
same solutions on ftv35 with 2 salesmen, but for ftv35 with 3 
salesmen, except for CPLEX, all other three algorithms 
obtained same solution, and CPLEX could not obtain optimal 

solution. It is seen from Figure 5 that for ftv38 with 2 salesmen, 
the proposed LSA obtained better solution than that by 
CPLEX. However, for ftv38 with 3 salesmen, our LSA and 
CPLEX obtained same solution. It is already found that for 
ftv38 with 2, 3 and 4 salesmen, Benders method and LSA2 
obtained solutions less than optimal solutions, hence, their 
results are not depicted in Figure 5. It is clear from these 
figures that our proposed LSA obtained better solution than 
solutions by CPLEX, Benders method and LSA2. 

On the other hand, as regard the CTime, using the proposed 
LSA, it is observed that for any instance when the number of 
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salesmen increases the computational time increases. It shows 
that the structure of multi-salesman problem instance is 
getting harder as the number of salesmen increases. However, 
for the instance br17 with 2-salesman computational time is 
48.94 seconds while with three and four salesmen 
computational times are 45.01 and 45.13 seconds respectively. 
It means that the structures of br17 with 3 and 4 salesmen are 
less complex than br17 with 2-salesmen.  Generally, a LSA 
first obtains a solution and then confirms its optimality, 
meaning that the remaining subproblems are rejected [31, 34]. 
On average computational time, the Table 6 reports that LSA 
obtains a solution within a maximum 31% of complete 
computational time. So, LSA spends minimum 69% of 
complete computational time on verifying the solutions. Thus, 
for these asymmetric TSPLIB instances, LSA spends less time 
on obtaining solution, and hence, a large amount of 
subproblems are thrown. 

Table 7 reports solutions for few symmetric instances 
from TSPLIB of sizes varies from 14 to 42 with 1, 2, 3 and 4 
salesmen. For dantzig42, solutions obtained within two hours 
of computational time are reported.  The table shows that for 
any instance when the number of salesmen increases solutions 
as well as computational time (CTime) also increase. For most 
of the instances, it is found that computational time for solving 
an one salesman instance is lesser than its corresponding 
multi-salesmen instances. Thus, for symmetric instances, the 
MTSP is harder than the usual TSP. However, for ulysses22 
and bayg29 with single salesman LSA spend more time than 
with two salesmen. Generally, for the MTSP instances when 
number of salesmen increases time also increases. On average, 
LSA obtains a best solution within maximum 57% of the 
complete time for the symmetric instances. That means, LSA 
spends minimum 43% of complete computational time on 
verifying the solutions. Overall, LSA expends less time on 
obtaining solution while many subproblems are rejected.

Table 7. Results by LSA on few symmetric TSPLIB instances 

Instance n m Sol FTime CTime Instance n m Sol FTime CTime
burma14 14 1 3323 0.00 0.01 ulysses16 16 1 6859 0.19 0.67 
(3323)  2 3372 0.01 0.02 (6859)  2 6960 0.67 2.01 

  3 3547 0.00 0.12   3 7112 1.03 8.63 
  4 3731 0.00 0.67   4 7335 3.97 33.28 

gr17 17 1 2085 0.00 0.60 gr21 21 1 2707 0.01 0.04 
(2085)  2 2188 0.00 1.21 (2707)  2 2839 0.02 0.09 

  3 2322 0.63 7.92   3 3022 0.21 1.01 
  4 2504 5.85 56.95   4 3233 2.18 14.65 

ulysses22 22 1 7013 81.88 123.99 gr24 24 1 1272 30.56 44.95 
(7013)  2 7107 60.76 111.74 (1272)  2 1389 68.77 116.61

  3 7259 95.15 173.62   3 1523 358.28 441.59
  4 7519 42.82 417.26   4 1695 491.78 548.46

fri26 26 1 937 28.35 76.93 bayg29 29 1 1610 72.64 105.94
(937)  2 1070 152.62 194.07 (1610)  2 1652 12.55 64.26 

  3 1214 320.41 335.32   3 1718 45.53 252.99
  4 1375 701.56 775.02   4 1792 205.07 492.76

bays29 29 1 2020 0.20 77.06 *dantzig42 42 1 699 446.49 --- 
(2020)  2 2074 199.79 283.56 (699)  2 701 518.94 --- 

  3 2139 143.88 455.43   3 703 632.17 --- 
  4 2244 323.94 824.49   4 710 895.71 --- 

Average FTime  = 95.87 (*except dantzig42) Average CTime = 167.89  

6. Conclusions and Future Research 

In this work, a lexisearch algorithm (LSA) using path 
representation is presented to obtain exact solution to the 
single-depot MTSP. Steps of LSA are illustrated through an 
example of 7-city and 2-salesman problem instance. Next, a 
comparative study of the proposed LSA is carried with three 
existing exact algorithms, namely, CPLEX and Benders 
method reported in [38], and another lexisearch algorithm 
(LSA2) in [23] on four asymmetric TSPLIB instances with 2, 
3, and 4 salesmen. The proposed LSA could obtain exact 
solution for all instances, other algorithms could not obtain 
exact solutions for all instances. Finally, solutions to few 
symmetric instances from TSPLIB of sizes varies from 14 to 
42 with 1, 2, 3 and 4 salesmen are reported. 

Computational experience shows that for most of the 
instances, computational efforts for solving a single salesman 
instance is less than its corresponding multi-salesman problem 
instances. For any problem instance with multi-salesman, 
when the number of salesmen increases the solutions as well 
the computational times also increase. It is found that for large 
sized problem instances, proposed LSA is not effective. 
However, this study suggests an alternate exact algorithm to 
apply on other complex optimization problems. 

It is also found that LSA first obtains a solution very 
quickly while spends long computational time to verify its 
optimality. So, there must be some technique to verify the 
obtained solution for its optimality quickly.  Hence, an 
effective data-guided technique could be suggested that might 
decrease computational effort for verifying the optimality of 
the quickly obtained solution and might obtain exact solutions 
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for other instances as shown for the TSP [31], bottleneck TSP 
[39] and quadratic assignment problem [40], which is under 
next investigation. 
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