
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

65

Manuscript received September 5, 2020
Manuscript revised September 20, 2020

DOI: 10.22937/IJCSNS.2020.20.09.9

An Exact Algorithm for the Single-Depot Multiple Travelling

Salesman Problem

Zakir Hussain Ahmeda and Ibrahim Al-Dayelb

Department of Mathematics and Statistics, College of Science, Al Imam Mohammad Ibn Saud Islamic University (IMSIU),

Riyadh, Kingdom of Saudi Arabia,

Abstract: We consider the single-depot multiple travelling salesman
Problem (MTSP) that is a generalization of the benchmark travelling
salesman problem (TSP). The problem outlines that there are
multiple salesmen m who should visit n cities so that each salesman
must start from and end at single depot. The objective of the problem
is to obtain the lowest total distance covered by all salesmen so that
each city is visited only once by one salesman only. It is NP-hard,
and it has numerous real-life applications. Though exact solutions
can be found for small sized problem instances, yet there are certain
circumstances where exact solutions are very essential. Hence, we
propose to develop a lexisearch algorithm that uses path
representation for a tour to find exact solution to the MTSP. The
usefulness of the proposed exact algorithm is shown by comparing
with an existing exact algorithm on various sized asymmetric
instances from TSPLIB website with various number of salesmen.
Experimental study shows the usefulness of the proposed algorithm.
Finally, solutions to some symmetric TSPLIB instances are presented.

Keywords: Multiple travelling salesman problem; NP-hard; Optimal;
Exact; Bound; Lexisearch algorithm.

1. Introduction

The travelling salesman problem (TSP) is a multidisciplinary
benchmark problem that aims to obtain a least cost
Hamiltonian circuit/cycle in a network. It may be defined as:
Given n cities and distances among them. Starting from and
ending at a single depot city, a salesman should visit all the
cities exactly once so that the total distance (cost) covered by
the salesman is minimum. Though this problem has been
extensively studied by many researchers and proposed many
useful algorithms to solve it, yet there are certain
circumstances where more than one salesman is required.
Hence, the multiple TSP (MTSP) is defined where all
salesmen must start from and end at a single depot city. Each
city, excluding the depot, is visited only once by one salesman
only so that the total distance covered by all salesmen is
minimum.

The MTSP has many practical applications, for example,
school bus scheduling [1], interview scheduling [2], mission
planning [3], crew scheduling [4], job scheduling [5], global
navigation satellite surveying system networks [6], and
vehicle scheduling and print press scheduling [7].

The problem has many variations such as single-depot,
multi-depot, closed or open tours, etc [8]. Also, number of
salesmen might be prefixed or permitted to vary, lower and
upper bounds can be fixed on the number of salesmen as well
as costs can be fixed related to the salesmen. We consider the
single-depot closed tour problem that restricts all salesmen to
begin from a single depot and finish their tours at the same
depot.

The MTSP is NP-hard [9], and there is no any known
polynomial-time algorithm available for the solving the
problem. Since, the problem is a TSP variant, the solution
methods available for the usual TSP can also be applied to the
MTSP. There are two kinds of algorithms available to solve
the TSP and the MTSP such as heuristic and exact algorithms.
Exact algorithms find exact solutions, whereas, heuristic
algorithms obtain near exact solutions very quickly without
assuring their optimality. As the problem size increases
finding its exact solution using exact algorithm is too tough, if
not impossible. However, small and medium sized problem
instances can be solved easily, and there are some
circumstances where finding exact optimal solutions are
required.

In this study, we try to obtain exact solution using an exact
method for the MTSP. The well-known exact methods for the
TSP and associated problems are branch and bound [10] and
lexisearch [11] approaches. The lexisearch approach is found
better than the branch and bound approach for the TSP [12].
As MTSP is a generalization of TSP, so, we also propose to
develop a lexisearch algorithm using path representation for a
tour to obtain exact solution to the MTSP and compare the
proposed algorithm against existing exact methods on some
instances from TSPLIB [13] with various number of salesmen.
Experimental study shows the usefulness of the proposed
algorithm. Finally, solutions to some symmetric TSPLIB
instances are presented.

This paper is prepared as: Section 2 reports a literature
survey for the MTSP. The problem definition and its
transformation are presented in Section 3, whereas Section 4
reports a lexisearch algorithm for finding exact solution to the
MTSP. Experimental study for the proposed algorithm is
presented in Section 5, whereas conclusions, discussions and
future work are reported in Section 6.

2. Literature Survey

The MTSP is not well-studied like the usual TSP. Among
the literatures for the problem, most of them are for heuristic
algorithm. As this study proposes exact algorithm to solve the
MTSP, we give a literature survey on exact algorithms.
However, gravitational emulation local search [14], two-phase
heuristic algorithm [15], genetic algorithms [16] are some
well-known heuristics methods proposed for solving the
problem.

As mentioned above, very few literatures are available for
the exact algorithms. Laporte and Nobert [17] proposed the
first exact method by relaxing some constraints of the problem
to solve the problem directly, without transforming to the
usual TSP.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

66

Exact algorithm based on Branch-and-Bound method to
find exact solution of the problem have been proposed in [18].
The algorithm uses a Lagrangean dual inside branch-and-
bound algorithm and a sub-gradient technique to solve the
dual function. Further, a greedy algorithm is applied to assess
the points of the function. The method is tested on randomly
created symmetric and Euclidean problem instances of sizes
up to 100 and 59 respectively.

Gavish and Srikanth [19] reported a branch-and-bound
method, where lower bounds are calculated using Lagrangean
relaxation problem. Computational experiences have been
reported for non-Euclidean and Euclidean problem instances.
The results show that the Euclidean problem instances are
harder than non-Euclidean ones. Comparative study show that
their algorithm is better than the algorithms in [17, 18].

Husban [20] reported a mathematical model for the MTSP
and then developed a branch-and-bound method for finding
exact solution to the problem. The computational experience
showed that for any problem size, the solution time decreases
as the number of salesmen increases.

Gromicho et al. [21] reported a branch-and-bound
algorithm using a quasi-assignment relaxation method. An
additional bounding technique is also used to find strong
lower bounds that improved the lower bound effectively. The
proposed algorithm is applied on asymmetric instances up to
size n=120 with number of salesmen ranging from 2 to 12.
The proposed algorithm is found better than the standard
branch-and-bound method.

Vali and Salimifard [22] formulated the problem using a
constraint programming (CP) model and then used CP
optimizer for finding exact solution to the problem. As
reported, the proposed method performed very well compared
to some existing algorithms.

Recently, Thenepallea and Singamsettya [23] introduced an
open close MTSP with single depot (OCMTSP) in which
salesmen are classified into internal and external ones, who
are located at depot. The goal is to suggest the optimal tour so
that beginning from the depot all salesmen visit the set of cities,
each city by only one salesman with the additional condition
that only internal salesmen must come back to the depot while
the external salesmen are not required to return. A lexisearch
algorithm, based on pattern recognition technique, was
developed to find exact optimal solutions. As claimed, the
algorithm provided sub-optimal and optimal solutions within
reasonable solution times.

In this work, we propose to develop a lexisearch algorithm
that uses path representation for a tour to obtain exact solution
to the MTSP. The usefulness of the proposed lexisearch
algorithm is shown by comparing with an existing exact
algorithm [23] and CPLEX on various sized asymmetric
instances from TSPLIB website with various number of
salesmen. Experimental study shows the usefulness of the
proposed algorithm. Finally, solutions to some symmetric
TSPLIB instances are presented.

3. Problem Definition and its Transformation to
the TSP

The MTSP is an utmost challenging multidisciplinary
optimization problem. The problem can be stated as: Given n
cities (nodes), labelled as 1, 2, …., n, and m salesmen placed
at a single depot in a network with the specified distance
between cities i and j, dij, i, j=1,2,...,n, where the depot is city
1 and the remaining cities are called intermediate cities.
Starting from the depot, the problem is to visit all the
intermediate cities by exactly one salesman and then return to
the depot such that the tours have no common cities (except
the depot city) and the total distance covered by all salesmen
is minimized. In addition, if the MTSP involves capacity
constraints along with each salesman, it converts to the
capacitated vehicle routing problem (VRP). Clearly, if m = 1,
the MTSP converts to the usual TSP. The problem can be
expressed as an integer linear programming as below [18].

Define a binary variable, xij, is equal to 1 (one), when the edge
(i, j) belongs to a tour, otherwise 0 (zero).

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑧 ൌ ෍ ෍ 𝑑௜௝𝑥௜௝

௡

௝ୀଵ

௡

௜ୀଵ

, 𝑑௜௝ ൌ ∞ 𝑓𝑜𝑟 𝑖 ൌ 𝑗

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

ሺ𝑎ሻ ෍ 𝑥௜௝

௡

௜ୀଵ

ൌ ൜
𝑚 𝑖𝑓 𝑗 ൌ 1
1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 𝑖𝑛 ሼ2, 3, . . . , 𝑛ሽ

ሺ𝑏ሻ ෍ 𝑥௜௝

௡

௝ୀଵ

ൌ ൜
𝑚 𝑖𝑓 𝑖 ൌ 1
1 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 𝑖𝑛 ሼ2, 3, . . . , 𝑛ሽ

ሺ𝑐ሻ 𝑥௜௝ ൌ ሺ0, 1ሻ 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖, 𝑗 𝑖𝑛 ሼ1, 2, . . . , 𝑛ሽ

ሺ𝑑ሻ 𝑋 ൌ ൫𝑥௜,௝൯ ∈ 𝑆

The aim is to minimize the objective function, z, which is
defined as the total distance covered by the salesmen. The
equalities in (a) and (b) represent the number of salesmen
allocated to permit multiple departures and arrivals (i.e. visits) to
the depot from where the salesmen start, (c) confirms that the
variables xi,j are integer, representing whether edge (i, j) is
present in the tour. The set S in equality (d) denotes a set of
constraints which exclude subtour solutions satisfying the
assignment restrictions. The distance matrix may be
represented as cost/ time matrix. The TSPs are divided into
two types, based on the structure of distance matrix, such as
symmetric and asymmetric. If dij = dji,  i, j, then it is
symmetric, otherwise, asymmetric.

For n-city usual TSP, there are likely (n-1)! number of
routes, and the computational effort is directly proportional to
the problem size. So, it is too hard, if not impossible, to solve
large sized problems. Additionally, the MTSP requires first to
decide the cities allocated to a salesman, then to arrange the
optimal order of the cities within each salesman’s tour, so, it
is harder than the usual TSP. Since, the usual TSP is NP-hard,
hence, the MTSP is also NP-hard [9]. To our awareness, there
is no polynomial-time algorithm present to solve the MTSP.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020 67

3.1. The TSP Transformation for the MTSP

The MTSP may be transformed into the TSP by considering
only one salesman. Also, it may be treated as a reduction of
the VRP by removing the capacity constraints [24]. The
problem with n cities and m salesmen is transformed into the
usual TSP with n+m-1 cities by adding m-1 dummy depots
(n+1, …, n+m-1), where large (infinite) distances are given to
depot-to-depot distances to restrict such travels and zero
distances are given between dummy depots and other cities.
Solutions for the usual TSP and the MTSP are same [25].
According to research in [26] this conversion is not proper and
results in a useless growth in the distance matrix. Further, they
proposed a conversion in which the given matrix is augmented
with m−1 dummy columns and rows so that each dummy
column and row is a copy of the first column and row of the

give matrix. In [27], it is shown that the n-city and m-salesman
asymmetric MTSP can be transformed into a usual (n+m−1)-
city asymmetric TSP. A similar transformation for the
symmetric MTSP into a (n+m+4)-city symmetric TSP is
proposed in [28]. Also, a transformation into a (n+m-1)-city
symmetric TSP is described in [29]. An improved conversion
of a symmetric MTSP into a symmetric TSP is proposed in
[30].

We are also going to transform the MTSP to the usual TSP
by introducing m-1 artificial depots. An example of the MTSP
with n = 7, m = 2 is shown in Fig. 1(a) and its transformation
to the usual TSP is shown in Fig. 1(b). Also, the original
distance matrix and the modified distance matrix with one
artificial depot city 8, for a 7-city and 2-salesman problem, are
showed in Tables 1 and 2 respectively.

Figure 1. Example of solution of the MTSP and its transformation to the TSP with artificial city 8

Table 1. The distance matrix.

City 1 2 3 4 5 6 7
1 999 74 20 46 7 90 41
2 23 999 93 67 66 5 56
3 19 46 999 65 82 57 34
4 74 41 59 999 41 61 91
5 48 17 53 7 999 63 84
6 91 79 70 63 62 999 72
7 54 33 92 68 90 84 999

Table 2. The modified distance matrix with row minima
(RM) and column minima (CM)

City 1 2 3 4 5 6 7 8 RM
1 999 74 20 46 7 90 41 999 7
2 23 999 93 67 66 5 56 23 5
3 19 46 999 65 82 57 34 19 19
4 74 41 59 999 41 61 91 74 41
5 48 17 53 7 999 63 84 48 7
6 91 79 70 63 62 999 72 91 62
7 54 33 92 68 90 84 999 54 33
8 999 74 20 46 7 90 41 999 7
CM 0 0 8 0 0 0 10 0 199

3.2. Bias Removal

The bias removal phase is found effective for the TSP [31]
and clustered TSP [32]. As the MTSP is a generalization of
the usual TSP and so, bias removal is supposed to be effective
for the MTSP also. The bias removal procedure of the distance
matrix can be stated as: first, each row-minimum is subtracted
from its associated row elements. Next, apply the same
procedure on the resultant matrix column-wise. The sum of
the row-minimums and the consequent column-minimums is
known as ‘bias’ of the given matrix [33]. Table 2 shows this

bias computation. So, bias of the matrix = row-minimums +
column-minimums = 181 + 18 = 199. The resultant distance
matrix is a non-negative with minimum one zero in every row
and in every column as showed in Table 3. In an assignment
problem as well as in a TSP, if a constant is added or
subtracted to all elements of a column (or row) in the matrix,
then an allocation that reduces the total distance on one matrix
also reduces the total distance on the other one. As the MTSP
is a generalization of the TSP, thus, it is enough to solve the
problem with regard to the reduced distance matrix.

Table 3. The reduced distance matrix.

City 1 2 3 4 5 6 7 8
1 992 67 5 39 0 83 24 992
2 18 994 80 62 61 0 41 18
3 0 27 972 46 63 38 5 0
4 33 0 10 958 0 20 40 33
5 41 10 38 0 992 56 67 41
6 29 17 0 1 0 937 0 29
7 21 0 51 35 57 51 956 21
8 992 67 5 39 0 83 24 992

3.3. Alphabet Table

Alphabet matrix, denoted by A=[a(i, j)], is an nൈn square
matrix created by locations of elements of n ൈ n reduced
distance matrix, 𝐷ᇱ ൌ ሾ𝑑௜௝

ᇱ ሿ , after arranging the elements in
non-decreasing order. Alphabet table, denoted by ሾ𝑎ሺ𝑖, 𝑗ሻ െ
𝑑′௜,௔ሺ௜,௝ሻሿ, is a mixture of elements (cities) of the matrix A and
their distances in the reduced distance matrix [34]. Table 4
represents the alphabet table created for the reduced matrix
given in Table 3, where C is a city and D is its distance from
the corresponding city in the 1st column.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

68

Table 4. The alphabet table.

City C-D C-D C-D C-D C-D C-D C-D C-D
1 5-0 3-5 7-24 4-39 2-67 6-83 1-992 8-992
2 6-0 1-18 8-18 7-41 5-61 4-62 3-80 2-994
3 1-0 8-0 7-5 2-27 6-38 4-46 5-63 3-972
4 2-0 5-0 3-10 6-20 1-33 8-33 7-40 4-958
5 4-0 2-10 3-38 1-41 8-41 6-56 7-67 5-992
6 3-0 5-0 7-0 4-1 2-17 1-29 8-29 6-937
7 2-0 1-21 8-21 4-35 3-51 6-51 5-57 7-956
8 5-0 3-5 7-24 4-39 2-67 6-83 1-992 8-992

4. A Lexisearch Algorithm for the MTSP

The lexisearch algorithm is effectively developed for
several complex problems [31-37], where all feasible
solutions are organized in an order like words in any
dictionary, in a way that a partial word denotes a block of
words and the block leader. Lower bounds are calculated for
the objective function on these blocks which are compared
with current 'best solution'. In this block, if no better solution
(word) than the present 'best solution' is found, then jump over
from the present block into the next block. But, if the bound
shows an opportunity to have better solution in this block, then
go to its subblock by joining the present leader with the
suitable letter and then calculate its lower bound.

4.1. Block Leader

A partial word (incomplete tour) containing some cities is
called the block leader of words. For the MTSP, each city,
including dummy depot, is treated as a letter in any alphabet.
Therefore, all words (solutions) in the dictionary is subdivided
into blocks. A word block B having a three-length leader (0,
1, 2) contains all words starting with the words of these
three letters (0, 1, 2) as a string. The block A having the
two-length leader (0, 1) is the next superblock of the block
B including the block B as its subblock. Next, the block C
having a four-length leader (0, 1, 2, k) is one of the
subblocks of block B that contains several four-length
subblocks, one for a letter k. Block B is the next superblock
of the block C [33].

4.2. Lower Bound

Calculating and finding a compact lower bound for a block
leader on the objective function for the MTSP is very hard.
Therefore, the lower bound used for the TSP [31] and
clustered TSP [32] is considered here, that is stated as follows.
Let the incomplete tour be (1=0, 1, 2) and city 3 be chosen
for joining. Before joining, bound for the block leader (0, 1,
2, 3) is calculated. For that, computation starts from second
row and continues to the last row of the alphabet table and
sum up the distances of first legitimate cities (the cities which
are not available in the present tour), including city 1, in every
row, except 1-th and 2-th rows. The calculated total distance
is the bound for this leader (0, 1, 2, 3).

4.3. The Proposed algorithm

In general, there are two methods of expressing salesman’s
tour in lexisearch algorithm (LSA), which are adjacency and
path representations. In [23], for solving an open close MTSP
with single depot (OCMTSP) adjacency representation is used.
We are using the path representation for solving the MTSP. It
is applied on the simple TSP [31] and with precedence

constraints [37], and clustered TSP [32], and found very
effective results.

Suppose there are n cities and m salesmen in the network,
and D=[dij] is the n-th order distance matrix. After adding m-
1 dummy depot cities, the number of cities becomes n+m-1
and so, new size of the problem becomes, n = n+m-1.
Accordingly, the given matrix is modified. The proposed
LSA for the MTSP is a modification of the LSA for the TSP
[31] which is stated as follows.

Step 0: Calculate bias of the given distance matrix, construct
reduced distance matrix and then the alphabet table
based on the reduced matrix. Fix best solution value
(BS) = L (very large number). As city 1 is the depot
city, calculation is started from first row of the
alphabet table. Set k=1, tour value (Sol) = 0, and then
go to step 1.

Step 1: Go to kth element of the first row (say city q) with
distance as present city distance (Dist). If (Sol + Dist)
< BS, go to step 2 else, go to step 9.

Step 2: If the city q forms a subtour or the present city and city
q are both depot cities, drop it, set k=k+1 and go to
step 7 else, go to step 3.

Step 3: If all cities of the transformed problem are visited, add
the edge connecting the city q to city 1, compute Sol
and go to step 4 else, go to step 5.

Step 4: If (Sol ≥ BS) then go to step 9 else, replace BS = Sol
and go to step 9.

Step 5: Calculate the lower bound (LB) of the present leader
on the objective function and go to step 6.

Step 6: If (Sol + Dist + LB) ≥ BS then drop the city q, set
k=k+1 and go to step 7; else, accept the city q,
compute Sol and go to step 8.

Step 7: If (k < n), go to step 1 else, go to step 9.

Step 8: Go to subblock, i.e., go to qth row, put k = 1 and go to
step 1.

Step 9: Jump this block by dropping the city q and return to
the previous city in the tour (say, city p), i.e., go to the
pth row of the alphabet table and set k = k + 1 where
k was the index of the last visited city in that row. If
city p = 1 and k = n, go to step 10 else, go to step 7.

Step 10: Now BS is the optimal solution value with regard to
the reduced distance matrix, and BS = BS + bias is the
optimal solution value with regard to the original
distance matrix and go to step 11.

Step 11: Current word is the optimal tour sequence with regard
to the modified distance matrix. Then tours of the
salesmen with regard to the original problem is found
and then stop.

4.4. Illustration of the algorithm

Steps of the proposed LSA is explained using a 7-city and
2-salesman problem instance with the given distance matrix in
Table 1. The modified distance matrix, reduced distance
matrix and alphabet table are shown in the corresponding
Tables 2, 3 and 4. The flow of LSA at several steps is
presented in Table 5, where 54(0) denotes present city
distance d54 = 0, and (0) +5, GS denote (0) is the tour value

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020 69

that includes present city distance, 5 is the lower bound and
conclusion is GS. The symbols used in the table are as follows:

GS: Go to subblock, i.e., join first legal letter to the present
leader. GS for ab is abc as augmented leader.

JB: Jump over the block, i.e., jump over the next block of
same length by replacing its last letter by the next letter in
the alphabet table. JB for ab is ac.

JO: Jump out to the immediate higher order block by
dropping its last letter and then jumping out the block. JO
for abcd is abd.

Let BS = 999 and Sol = 0. Consider the alphabet table and
start from its 1st row. We have a(1,1) = 5 with Dist = d15 = 0
which does not form subtour and (Sol + Dist) < BS. Next, LB
for the leader (1, 5) is calculated, which guides us whether city
5 can be accepted.

𝐿𝐵 ൌ 𝑑ଶ,௔ሺଶ,ଵሻ ൅ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑ସ,௔ሺସ,ଵሻ ൅ 𝑑ହ,௔ሺହ,ଵሻ ൅ 𝑑଺,௔ሺ଺,ଵሻ

൅ 𝑑଻,௔ሺ଻,ଵሻ ൅ 𝑑଼,௔ሺ଼,ଶሻ
 ൌ 𝑑ଶ,଺ ൅ 𝑑ଷ,ଵ ൅ 𝑑ସ,ଶ ൅ 𝑑ହ,ସ ൅ 𝑑଺,ଷ ൅ 𝑑଻,ଶ ൅ 𝑑଼,ଷ

 ൌ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 5 ൌ 5.

Table 5. Search Table

1(1)2 23 34 45 56 67 78 81(1)

1 5(0) 54(0) 42(0) 26(0) 63(0) 38(0) 87(24) 71(21)
(0) +5, GS (0) +5, GS (0) +26, GS (0) +26, GS (0) +45, GS (0) +45, GS (24) +21, GS BS=45, JO
 37(5)
 (5) +1013, JB, JO
 67(0) 78(21) 83(5) 31(0)
 (0) +26, GS (21) +5, GS (26) +0, GS BS=26, JO
 28(18)
 (18) +26, JB
 27(41), JO
 43(10)
 (10) +24, JB
 46(20)
 (20) +23, JB,JO
 52(10)
 (10) +36, JB
 53(38), JO
13(5) 38(0) 85(0) 54(0) 42(0)
(5) +0, GS (5) +0, GS (5) +0, GS (5) +0, GS (5) +21, JB
 46(20)
 (25) +18, JB, JO
 52(10)
 (15) +41, JB, JO
 87(24), JO
 37(5) 72(0) 26(0) 65(0)
 (10) +0, GS (10) +0, GS (10) +0, GS (10) +72, JB
 64(1)
 (11) +41, JB, JO
 32(27), JO
17(24) 72(0) 26(0) 63(0) 38(0) 85(0)
(24) +0, GS (24) +0, GS (24) +0, GS (24) +0, GS (24) +0, GS (24) +33, JB
 83(5), JO
 65(0)
 (24) +15, JB
 64(1)
 (25) +38, JB,JO
14(39), STOP

As (Sol + Dist + LB) = 5 + 0 + 0 = 5 < BS, the city 5 is
accepted and the tour becomes {15} having Sol = Sol + Dist
= 0 + 0 = 0. Now go to 5th row of alphabet table and choose
city ‘a(5,1) = 4’ as it is legitimate city. So, Dist = d54 = 0 and

(Sol + Dist) < BS. Lower bound for the leader (1, 5, 4) is
computed as follows.

𝐿𝐵 ൌ 𝑑ଶ,௔ሺଶ,ଵሻ ൅ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑ସ,௔ሺସ,ଵሻ ൅ 𝑑଺,௔ሺ଺,ଵሻ ൅ 𝑑଻,௔ሺ଻,ଵሻ

൅ 𝑑଼,௔ሺ଼,ଶሻ

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

70

 ൌ 𝑑ଶ,଺ ൅ 𝑑ଷ,ଵ ൅ 𝑑ସ,ଶ ൅ 𝑑଺,ଷ ൅ 𝑑଻,ଶ ൅ 𝑑଼,ଷ

ൌ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 0 ൅ 5 ൌ 5.

As (Sol + Dist + LB) = 5 + 0 + 0 = 5 < BS, the city 4 is
accepted and the tour becomes {154} having Sol = Sol +
Dist = 0 + 0 = 0. Now go to 4th row of alphabet table and
choose the city ‘a(4,1) = 2’. So, Dist = d42 = 0 and (Sol +
Dist) < BS. Lower bound for (1, 5, 4, 2) is

𝐿𝐵 ൌ 𝑑ଶ,௔ሺଶ,ଵሻ ൅ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑଺,௔ሺ଺,ଵሻ ൅ 𝑑଻,௔ሺ଻,ଶሻ ൅ 𝑑଼,௔ሺ଼,ଶሻ
 ൌ 𝑑ଶ,଺ ൅ 𝑑ଷ,ଵ ൅ 𝑑଺,ଷ ൅ 𝑑଻,ଶ ൅ 𝑑଼,ଷ

ൌ 0 ൅ 0 ൅ 0 ൅ 21 ൅ 5 ൌ 26.

As (Sol + Dist + LB) = 26 + 0 + 0 = 26 < BS, the city 2 is
accepted and the tour becomes {1542} having Sol =
Sol + Dist = 0 + 0 = 0. Now go to 2rd row of alphabet table
and choose the city ‘a(2,1) = 6’ having Dist = d26 = 0. As
(Sol + Dist) < BS, then bound for (1, 5, 4, 2, 6) is computed.

𝐿𝐵 ൌ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑଺,௔ሺ଺,ଵሻ ൅ 𝑑଻,௔ሺ଻,ଶሻ ൅ 𝑑଼,௔ሺ଼,ଶሻ

ൌ 𝑑ଷ,ଵ ൅ 𝑑଺,ଷ ൅ 𝑑଻,ଵ ൅ 𝑑଼,ଷ

ൌ 0 ൅ 0 ൅ 21 ൅ 5 ൌ 26.

Since (Sol + Dist + LB) = 26 + 0 + 0 = 26 < BS, the tour
becomes {15426} having Sol = Sol + Dist = 0 + 0
= 0. Then choose the city ‘a(6,1) = 3’ having Dist = d63 = 0.
As (Sol + Dist) < BS, bound for (1, 5, 4, 2, 6, 3) is computed.

𝐿𝐵 ൌ 𝑑ଷ,௔ሺଷ,ଵሻ ൅ 𝑑଻,௔ሺ଻,ଶሻ ൅ 𝑑଼,௔ሺ଼,ଷሻ ൌ 𝑑ଷ,ଵ ൅ 𝑑଻,ଵ ൅ 𝑑଼,଻

ൌ 0 ൅ 21 ൅ 24 ൌ 45

As (Sol + Dist + LB) = 45 + 0 + 0 = 45 < BS, the tour
becomes {154263} having Sol = Sol + Dist = 0
+ 0 = 0. Next, choose the city ‘a(3,2) = 8’ having Dist = d38
= 0. As (Sol + Dist) < BS, bound for (1, 5, 4, 2, 6, 3, 8) is
computed.

𝐿𝐵 ൌ 𝑑଻,௔ሺ଻,ଶሻ ൅ 𝑑଼,௔ሺ଼,ଷሻ ൌ 𝑑଻,ଵ ൅ 𝑑଼,଻ ൌ 21 ൅ 24 ൌ 45.

Since (Sol + Dist + LB) = 45 + 0 + 0 = 45 < BS, the tour
becomes {1542638} having Sol = Sol + Dist =
0 + 0 = 0. Next, choose the city ‘a(8,3) = 7’ having Dist =
d87 = 24. As (Sol + Dist) < BS, bound for (1, 5, 4, 2, 6, 3, 8,
7) is computed.

𝐿𝐵 ൌ 𝑐଻,௔ሺ଻,ଶሻ ൌ 𝑐଻,ଵ ൌ 21.

Since (Sol + Dist + LB) = 21 + 0 + 24 = 45 < BS, the tour
becomes {15426387} having Sol = Sol +
Dist = 0 + 24 = 24. As the present city is the final city in this
tour, thus, return to the depot (city 1) having Dist = d71 = 21.
As (Sol + Dist) < BS, the first complete tour becomes
{154263871} having Sol = 45. Now
replace BS = 45 and jump out to the next super block, i.e.,
{154263} having Sol = 0. Now try to find another
complete tour with cheaper tour value.

Continuing this way, the optimal tour
{154267831} having BS = 26 is found.
Therefore, the optimal tour value with regard to the given
matrix, BS = bias + BS = 199 + 26 = 255. Our preliminary
study shows that our algorithm obtains final solution quickly,
but for verifying its optimality, it takes long time. So, if there
is no any improvement of the solution is found within 180
seconds then jump out to the next super block.

5. Computational Experience

Our LSA is encoded in Visual C++. In order to establish
the efficiency of LSA, computational experience is carried out
on a set of benchmark TSPLIB instances [13] with different
number of salesmen and run on a Laptop with i3-3217U
CPU@1.80 GHz and 4 GB RAM under MS Windows 7. Four
asymmetric TSPLIB instances, that is, br17, ftv33, ftv35 and
ftv38, each one with 2, 3 and 4 salesmen, are considered for
the comparative study. A comparative study of our proposed
algorithm (LSA) against CPLEX and Benders method
reported in [38], and an existing lexisearch algorithm that used
adjacency representation (LSA2) [23] is showed in Table 6.
Solutions obtained by these algorithms as well as best known
solution reported (within brackets) for 1-salesman instances in
TSPLIB and computational time (in seconds) whenever the
final/best solution is obtained for first time (FTime) and the
complete time (CTime) by our proposed LSA, are reported.

It is seen from the Table 6 that the obtained solutions for
br17 and ftv33 (with 2, 3 and 4 salesman), and ftv35 (with 2
salesmen) using all four algorithms are same. For ftv35 (with
3 salesmen), obtained solutions by Benders method, LSA2
and our proposed LSA are same 1511, while solution obtained
by CPLEX is 1541, a higher value. So, the proposed algorithm
(LSA) finds the exact solution.

For ftv35 (with 4 salesmen), solutions obtained by
Benders method and our LSA are same 1551, whereas,
solution by LSA2 is 1532. Now, the question is that whether
1551 or 1532 is optimal. The answer is as follows. The
differences between optimal solutions for ftv35 with 2
salesmen and 1 salesman is (1489-1473=) 16, and for ftv35
with 3 salesman and 2 salesmen is (1511-1489=) 22. It seems
that as number of salesmen increases these differences also
increase. So, the optimal solution for the ftv35 with 4
salesmen must be at least 1511 + 22 = 1533, and so, 1532
cannot be optimal solution. Hence, our solution 1551 is
optimal.

For ftv38 with 2 salesmen, solutions obtained by Benders
method and LSA2 are same 1505, whereas, solutions by
CPLEX and our proposed LSA are 1551 and 1546
respectively. Now, as the solution of the instance ftv38 with
one salesman is 1530, so the solution of ftv38 with 2 salesmen
cannot be less than 1530, so, 1505 cannot be optimal. Also,
between 1551 and 1546, the solution 1546 is better. Hence,
our solution is the optimal.

For ftv38 with 3 salesmen, solutions obtained by Benders
method and LSA2 are same 1521, whereas, solutions by
CPLEX and our proposed LSA are same 1567. For this case
also, as the solution of the instance ftv38 with one salesman is
1530, so the solution of ftv38 with 3 salesmen cannot be less
than 1530, so, 1521 cannot be optimal. Hence, our solution
1567 is the optimal.

For ftv38 with 4 salesmen, solutions obtained by Benders
method, LSA2 and our LSA are same 1546, 1532 and 1608
respectively. For this case also, as the solution of the instance
ftv38 with 3 salesmen is 1567, so the solution of ftv38 with 4
salesmen cannot be less than 1567, so, solutions 1532 and
1546 cannot be optimal. Hence, our solution 1608 is the
optimal.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020 71

Table 6: A comparative study of different algorithms on asymmetric TSPLIB instances

Instance n m
Solution by Results by our proposed LSA

CPLEX Benders method LSA2 Solution FTime CTime
br17 17 2 39 39 39 39 6.94 48.94
(39) 3 42 42 42 42 0.00 45.01

 4 47 47 47 47 0.13 45.13
ftv33 34 2 1302 1302 1302 1302 171.83 211.37

(1286) 3 1328 1328 1328 1328 288.14 557.89
 4 1367 1367 1367 1367 93.41 768.85

ftv35 36 2 1489 1489 1489 1489 88.69 345.46
(1473) 3 1541 1511 1511 1511 297.66 864.74

 4 --- 1551 1532* 1551 519.32 1189.49
ftv38 39 2 1551 1505* 1505* 1546 369.72 908.37

(1530) 3 1567 1521* 1521* 1567 340.86 1751.81
 4 -- 1546* 1532* 1608 607.37 2230.53

Average 232.01 747.30
*Note: Solutions are not exact optimal

Additionally, to visualize effectiveness of our proposed
algorithm, LSA, against CPLEX, Benders and LSA2
algorithms on the above considered four TSPLIB instances,
results are depicted in line diagrams. The total travel distances
for br17, ftv33, ftv35, and ftv38 with different number of
salesmen are showed in Figures 2, 3, 4 and 5 respectively. The
Figures 2 and 3 show that all the four algorithms obtained
same solutions on br17 and ftv33 with 2, 3, and 4 salesmen
respectively. The Figure 4 shows that all algorithms obtained
same solutions on ftv35 with 2 salesmen, but for ftv35 with 3
salesmen, except for CPLEX, all other three algorithms
obtained same solution, and CPLEX could not obtain optimal

solution. It is seen from Figure 5 that for ftv38 with 2 salesmen,
the proposed LSA obtained better solution than that by
CPLEX. However, for ftv38 with 3 salesmen, our LSA and
CPLEX obtained same solution. It is already found that for
ftv38 with 2, 3 and 4 salesmen, Benders method and LSA2
obtained solutions less than optimal solutions, hence, their
results are not depicted in Figure 5. It is clear from these
figures that our proposed LSA obtained better solution than
solutions by CPLEX, Benders method and LSA2.

On the other hand, as regard the CTime, using the proposed
LSA, it is observed that for any instance when the number of

0

10

20

30

40

50

2 3 4

T
ra

ve
l d

is
ta

n
ce

s

Number of salesmen
Figure. 2. Comparison of four algorithms on br17

with different number of salesmen

CPLEX Benders method LSA2 Our LSA

1260

1280

1300

1320

1340

1360

1380

2 3 4

T
ra

ve
l d

is
ta

n
ce

s

Number of salesmen

Figure. 3. Comparison of four algorithms on ftv33
with different number of salesmen

CPLEX Benders method LSA2 Our LSA

1450

1500

1550

2 3

T
ra

ve
l d

is
ta

n
ce

s

Number of salesmen
Figure. 4. Comparison of four algorithms on ftv35

with different number of salesmen

CPLEX Benders method LSA2 Our LSA

1530

1540

1550

1560

1570

2 3

T
ra

ve
l d

is
ta

n
ce

s

Number of salesmen
Figure. 5. Comparison of two algorithms on ftv38

with different number of salesmen

CPLEX Our LSA

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

72

salesmen increases the computational time increases. It shows
that the structure of multi-salesman problem instance is
getting harder as the number of salesmen increases. However,
for the instance br17 with 2-salesman computational time is
48.94 seconds while with three and four salesmen
computational times are 45.01 and 45.13 seconds respectively.
It means that the structures of br17 with 3 and 4 salesmen are
less complex than br17 with 2-salesmen. Generally, a LSA
first obtains a solution and then confirms its optimality,
meaning that the remaining subproblems are rejected [31, 34].
On average computational time, the Table 6 reports that LSA
obtains a solution within a maximum 31% of complete
computational time. So, LSA spends minimum 69% of
complete computational time on verifying the solutions. Thus,
for these asymmetric TSPLIB instances, LSA spends less time
on obtaining solution, and hence, a large amount of
subproblems are thrown.

Table 7 reports solutions for few symmetric instances
from TSPLIB of sizes varies from 14 to 42 with 1, 2, 3 and 4
salesmen. For dantzig42, solutions obtained within two hours
of computational time are reported. The table shows that for
any instance when the number of salesmen increases solutions
as well as computational time (CTime) also increase. For most
of the instances, it is found that computational time for solving
an one salesman instance is lesser than its corresponding
multi-salesmen instances. Thus, for symmetric instances, the
MTSP is harder than the usual TSP. However, for ulysses22
and bayg29 with single salesman LSA spend more time than
with two salesmen. Generally, for the MTSP instances when
number of salesmen increases time also increases. On average,
LSA obtains a best solution within maximum 57% of the
complete time for the symmetric instances. That means, LSA
spends minimum 43% of complete computational time on
verifying the solutions. Overall, LSA expends less time on
obtaining solution while many subproblems are rejected.

Table 7. Results by LSA on few symmetric TSPLIB instances

Instance n m Sol FTime CTime Instance n m Sol FTime CTime
burma14 14 1 3323 0.00 0.01 ulysses16 16 1 6859 0.19 0.67
(3323) 2 3372 0.01 0.02 (6859) 2 6960 0.67 2.01

 3 3547 0.00 0.12 3 7112 1.03 8.63
 4 3731 0.00 0.67 4 7335 3.97 33.28

gr17 17 1 2085 0.00 0.60 gr21 21 1 2707 0.01 0.04
(2085) 2 2188 0.00 1.21 (2707) 2 2839 0.02 0.09

 3 2322 0.63 7.92 3 3022 0.21 1.01
 4 2504 5.85 56.95 4 3233 2.18 14.65

ulysses22 22 1 7013 81.88 123.99 gr24 24 1 1272 30.56 44.95
(7013) 2 7107 60.76 111.74 (1272) 2 1389 68.77 116.61

 3 7259 95.15 173.62 3 1523 358.28 441.59
 4 7519 42.82 417.26 4 1695 491.78 548.46

fri26 26 1 937 28.35 76.93 bayg29 29 1 1610 72.64 105.94
(937) 2 1070 152.62 194.07 (1610) 2 1652 12.55 64.26

 3 1214 320.41 335.32 3 1718 45.53 252.99
 4 1375 701.56 775.02 4 1792 205.07 492.76

bays29 29 1 2020 0.20 77.06 *dantzig42 42 1 699 446.49 ---
(2020) 2 2074 199.79 283.56 (699) 2 701 518.94 ---

 3 2139 143.88 455.43 3 703 632.17 ---
 4 2244 323.94 824.49 4 710 895.71 ---

Average FTime = 95.87 (*except dantzig42) Average CTime = 167.89

6. Conclusions and Future Research

In this work, a lexisearch algorithm (LSA) using path
representation is presented to obtain exact solution to the
single-depot MTSP. Steps of LSA are illustrated through an
example of 7-city and 2-salesman problem instance. Next, a
comparative study of the proposed LSA is carried with three
existing exact algorithms, namely, CPLEX and Benders
method reported in [38], and another lexisearch algorithm
(LSA2) in [23] on four asymmetric TSPLIB instances with 2,
3, and 4 salesmen. The proposed LSA could obtain exact
solution for all instances, other algorithms could not obtain
exact solutions for all instances. Finally, solutions to few
symmetric instances from TSPLIB of sizes varies from 14 to
42 with 1, 2, 3 and 4 salesmen are reported.

Computational experience shows that for most of the
instances, computational efforts for solving a single salesman
instance is less than its corresponding multi-salesman problem
instances. For any problem instance with multi-salesman,
when the number of salesmen increases the solutions as well
the computational times also increase. It is found that for large
sized problem instances, proposed LSA is not effective.
However, this study suggests an alternate exact algorithm to
apply on other complex optimization problems.

It is also found that LSA first obtains a solution very
quickly while spends long computational time to verify its
optimality. So, there must be some technique to verify the
obtained solution for its optimality quickly. Hence, an
effective data-guided technique could be suggested that might
decrease computational effort for verifying the optimality of
the quickly obtained solution and might obtain exact solutions

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020 73

for other instances as shown for the TSP [31], bottleneck TSP
[39] and quadratic assignment problem [40], which is under
next investigation.

Acknowledgment

The authors are very grateful to the honorable anonymous
reviewers for their constructive comments and suggestions
which helped the authors to improve this paper.

References

[1]. R.D. Angel, W.L. Caudle, R. Noonan, and A. Whinston,
Computer assisted school bus scheduling, Management
Science 18 (1972) pp. 279–288.

[2]. K.C. Gilbert, and R.B. Hofstra, A new multiperiod
multiple traveling salesman problem with heuristic and
application to a scheduling problem, Decision Sciences
23(1992) pp. 250–259.

[3]. B.L. Brumitt, and A. Stentz, Dynamic mission planning
for multiple mobile robots, Proceedings of IEEE
International Conference on Robotics and Automation,
Minneapolis, MN, USA, vol. 3 (1996) pp. 2396-2401.

[4]. T. Zhang, W.A. Gruver, and M.H. Smith, Team
scheduling by genetic search, Proceedings of the
second international conference on intelligent
processing and manufacturing of materials, vol. 2
(1999) pp. 839–844.

[5]. A.E. Carter, and C.T. Ragsdale, Scheduling pre-printed
newspaper advertising inserts using genetic algorithms,
Omega 30 (2002) pp. 415–421.

[6]. H.A. Saleh, and R. Chelouah, The design of the global
navigation satellite system surveying networks using
genetic algorithms, Engineering Applications of
Artificial Intelligence 17 (2004) pp. 111–122.

[7]. A.E. Carter, and C.T. Ragsdale, A new approach to
solving the multiple traveling salesperson problem
using genetic algorithms, European Journal of
Operational Research 175 (2006) pp. 245–257.

[8]. T. Bektas, The multiple traveling salesman problem:
An overview of formulations and solution procedures,
Omega 34 (2006) pp. 209–219.

[9]. M. R. Garey, and D.S. Johnson, A guide to the theory
of NP-completeness, computers and intractability, W.
H. Freeman & Co., New York, NY, USA, 1990.

[10]. J.D.C. Little, K.G. Murthy, D.W. Sweeny, and C. Karel,
An algorithm for the travelling salesman problem,
Operations Research 11 (1963) pp. 972-989.

[11]. S.N.N. Pandit, The Loading Problem. Operations
Research 11 (1962) pp. 639-646.

[12]. S.N.N. Pandit and K. Srinivas, A lexisearch algorithm
for the traveling salesman problem, Proceedings of the
IEEE International joint conference on neural networks
3 (1991) pp. 2521-2527.

[13]. G. Reinelt, 1991, TSPLIB, http://comopt.ifi.uni-
heidelberg.de/software/TSPLIB95/

[14]. R.A. Shokouhi, M. Farahnaz, K. Hengameh, and A.R.
Hosseinabadi, Solving multiple traveling salesman
problem using the gravitational emulation local search
algorithm, Applied Mathematics 9(2) (2015) pp. 699–
709.

[15]. X. Xu, H. Yuan, M. Liptrott, and M. Trovati, Two
phase heuristic algorithm for the multiple-travelling
salesman problem, Soft Comput 22 (2018) pp. 6567–
6581.

[16]. M.A. Al-Furhud, and Z.H. Ahmed, Genetic algorithms
for the multiple travelling salesman problem,
International Journal of Advanced Computer Science
and Applications (IJACSA) 11(7) (2020) pp. 553–560.

[17]. G. Laporte, Y. Nobert, A cutting planes algorithm for
the m-salesmen problem, Journal of the Operational
Research Society 31 (1980) pp. 1017–1023.

[18]. A.I. Ali, and J.L. Kennington, The asymmetric m-
traveling salesmen problem: a duality based branch-
and-bound algorithm, Discrete Applied Mathematics
13 (1986) pp. 259–276.

[19]. B. Gavish, and K. Srikanth, An optimal solution
method for large-scale multiple traveling salesman
problems, Operations Research 34(5) (1986) pp. 698–
717.

[20]. A. Husban, An exact solution method for the MTSP,
The Journal of the Operational Research Society 40(5)
(1989) pp. 461-469.

[21]. J. Gromicho, J. Paixão, and I. Branco, Exact solution of
multiple traveling salesman problems. In: Mustafa
Akgül, et al., editors. Combinatorial optimization.
NATO ASI Series, vol. F82. Berlin: Springer; 1992. pp.
291–92.

[22]. M. Vali, and K. Salimifard, A constraint programming
approach for solving multiple traveling salesman
problem, In: The Sixteenth International Workshop
on Constraint Modelling and Reformulation, 28
August 2017, pp. 1-17.

[23]. J.K. Thenepallea, and P. Singamsettya, An open close
multiple travelling salesman problem with single depot,
Decision Science Letters 8 (2019) pp. 121–136.

[24]. H.C. Lau, T.M. Chan, and W.T. Tsui, Application of
genetic algorithms to solve the multi-depot vehicle
routing problem, IEEE Transaction Automatic Science
and Engineering 7 (2010) pp. 383–392.

[25]. S. Gorenstein, Printing press scheduling for multi-
edition periodicals, Management Science 16(6):B
(1970) pp. 373–83.

[26]. J.A. Sveska, and V.E. Huckfeldt, Computational
experience with an m-salesman traveling salesman
algorithm, Management Science 19 (1973) pp.790-799.

[27]. M. Bellmore, and S. Hong, Transformation of
multisalesmen problem to the standard traveling
salesman problem, Journal of Association for
Computing Machinery 21 (1974) pp. 500–504.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

74

[28]. S. Hong, and M.W. Padberg, A note on the symmetric
multiple traveling salesman problem with fixed charges,
Operations Research 25 (1977) pp. 871–874.

[29]. M.R. Rao, A note on multiple travelling salesmen
problem, Operations Research 28 (1980) pp. 628–632.

[30]. R. Jonker, and T. Volgenant, Technical Note—An
Improved Transformation of the Symmetric Multiple
Traveling Salesman Problem, Operations Research
36(1) (1988) pp. 163-167.

[31]. Z.H. Ahmed, A data-guided lexisearch algorithm for
the asymmetric traveling salesman problem,
Mathematical Problems in Engineering (2011) Article
ID 750968, 18 pages.

[32]. Z.H. Ahmed, An exact algorithm for the clustered
traveling salesman problem, Opsearch 50(2) (2013) pp.
215-228.

[33]. Z.H. Ahmed, A sequential constructive sampling and
related approaches to combinatorial optimization, PhD
Thesis, Tezpur University, Assam, India, 2000.

[34]. Z.H. Ahmed, A lexisearch algorithm for the bottleneck
traveling salesman problem, International Journal of
Computer Science and Security 3(6) (2010) pp. 569-
577.

[35]. Z.H. Ahmed, A new reformulation and an exact
algorithm for the quadratic assignment problem, Indian
Journal of Science and Technology 6(4) (2013) pp.
4368-4377.

[36]. Z.H. Ahmed, A lexisearch algorithm for the distance-
constrained vehicle routing problem, International
Journal of Mathematical and Computational Methods 1
(2016) pp. 165-174.

[37]. Z.H. Ahmed, and S.N.N. Pandit, The travelling
salesman problem with precedence constraints,
Opsearch 38 (2001) pp. 299-318.

[38]. C. Changdar, R.K. Pal, and G.S. Mahapatra, A genetic
ant colony optimization based algorithm for solid
multiple travelling salesmen problem in fuzzy rough
environment, Soft Computing 21(16) (2017) pp. 4661-
4675.

[39]. Z.H. Ahmed, A data-guided lexisearch algorithm for
the bottleneck traveling salesman problem,
International Journal Operations Research 12 (2011) pp.
20-33.

[40]. Z.H. Ahmed A data-guided lexisearch algorithm for the
quadratic assignment problem, Indian Journal of
Science and Technology 7(4) (2014) pp. 480–490.

About the authors:

Zakir Hussain Ahmed is a Full
Professor in the Department of
Mathematics and Statistics at Imam
Mohammad Ibn Saud Islamic
University, Riyadh, Kingdom of Saudi
Arabia. From 2004 to 2019, he was in
the Department of Computer Science as
Professor at the same University. He

obtained MSc in Mathematics (Gold Medalist), Diploma in
Computer Application, MTech in Information Technology
and PhD in Mathematical Sciences (Artificial
Intelligence/Combinatorial Optimization) from Tezpur
University (Central), Assam, India. Before joining the current
institution, he served in Tezpur University, Sikkim Manipal
Institute of Technology, Asansol Engineering College, and
Jaypee Institute of Engineering and Technology, India. His
research interests include artificial intelligence, combinatorial
optimization, digital image processing and pattern recognition.
He has several publications in the fields of artificial
intelligence, combinatorial optimization and image processing.

Ibrahim Al-Dayel is the Head and
Assistant Professor in the Department of
Mathematics and Statistics at Imam
Mohammad Ibn Saud Islamic University,
Riyadh, Kingdom of Saudi Arabia. He
obtained PhD in Mathematics from King
Saud University, Riyadh, KSA. His

research interests include manifold, submanifold, Killing and
conformal vector field, Jacobi field and geometry of
hypersurfaces of spheres. He has several publications in these
fields.

