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Summary 
Historically, lattices and lattice reduction, the LLL 
algorithm, have played important roles in mathematics and 
cryptography as a problem-solving tool. In this paper, 
among applications of LLL algorithm, we analyze several 
algorithms in order to attack knapsack cryptosystems using 
LLL. A key part of these attacks is to convert knapsack 
problems into lattice ones. In this paper, we show how to do 
these works. We expect that this work gives us insights into 
converting hard problems to lattice problems in a variety of 
cryptographic situations. 
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1. Introduction 

Informally, a lattice is a regular arrangement of points in an 
n-dimensional space. We can define it as an additive 
discrete subgroup of ℝ௡. Graphically, a lattice is the set of 
vertices of an n-dimensional grid. All lattice can be 
represented by a basis which is a set of 𝑛 (൑ 𝑚) linearly 
independent vectors and have infinitely many bases. 
However, some of them are more useful than others. 
The goal of lattice (basis) reduction is given an integer 
lattice basis as input, in order to find a basis with short, 
nearly orthogonal vectors. Lattice reduction is not only an 
important task of lattice research but also a powerful tool 
for cryptology. Many lattice problems can be solved by 
lattice reduction directly, and even some NP-hard lattice 
problems (e.g. SVP, CVP) can be approximately solved by 
reduction. On the other hand, some cryptanalysis can be 
reduced to lattice reduction problems. The mathematical 
point of view, the history of lattice reduction goes back to 
Minkowski's geometry of numbers and the theory of 
quadratic forms developed by Lagrange, Gauss, Hermite, 
Korkine, Zolotare and many others. But the most important 
modern advance in lattice reduction is made by Lenstra, 
Lenstra, Lovasz (LLL). In 1982, they found a lattice basis 
reduction algorithm called LLL that finds a moderately 
small and orthogonal basis in polynomial time [12]. And 
this algorithm approximates the shortest vector in a lattice 
to within some factor. After that time, further refinements 
of the LLL algorithm were proposed by Schnorr [18], [19]. 
The relevance of LLL algorithms to cryptography was 
immediately understood. Typically, in 1982, Shamir [20] 
found a polynomial-time algorithm breaking the Merkle-

Hellman public key cryptosystem [14] based on the subset 
sum problem that had been basically the unique alternative 
to RSA at that time. He used Lenstra's integer programming 
algorithm but, in the same year, Adleman extended Shamir's 
work by treating the cryptographic problem as a lattice 
problem. Further improvements of these attacks were 
obtained by Lagarias and Odlyzko [13], Coster et. Al. [3], 
and more recently Nguyen and Stern proposed in [16] a 
natural generalization of the Lagarias-Odlyzko [13] lattices 
by using orthogonal lattices. 
In this paper, we focus on the transformation of some 
cryptographic problems into lattice reduction problems. 
The most important part is to construct a suitable lattice 
which gives a desired solution when a polynomial time 
lattice reduction, LLL, is applied. Especially, we examine 
the three attacks arising from knapsack cryptosystem: 
Shamir's attack, low-density attack, secret key recovery 
attack using orthogonal lattice. 

1.1 Organization 

In Section 2, we introduce some definitions and concepts 
about lattice, knapsack cryptosystem and simultaneous 
Diophantine approximation. In Section 3, 4, 5, we look into 
basic idea of the attack methods and how the attacks are 
converted to lattice problems. In Section 6, we present some 
concluding remark about a common property of lattices 
appeared in 3, 4, 5. 

2. Preliminaries 

2.1 Lattice and Lattice Basis Reduction 

We need some description about lattice which is subset of 
the vector space ℝ௡ and the LLL algorithm. We write all 
vectors as rows and denote vector by bold face lowercase 
letter, ‖𝒗‖ the Euclidean norm induced by inner product 
〈 , 〉. 
 
Definition 2.1. Let ሼ𝒃ଵ, … , 𝒃௡ሽ be a linearly independent set 
of vectors in ℝሺ𝑛 ൑ 𝑚ሻ  . The lattice L generated by 
ሼ𝒃ଵ, … , 𝒃௡ሽ is the set L: ൌ ሼ∑ 𝑙௜𝒃௜

௡
௜ୀଵ ∶  𝑙௜  ∈ ℤሽ  of integer 

linear combinations of the 𝒃௜. 
The set of vectors ሼ𝒃𝟏, … , 𝒃௡ሽ is called a lattice basis.  The 
dimension of lattice L is n. If n = m then L is said to be a 
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full rank lattice. We say that L is a sublattice of a lattice in  
𝑅௠ if contains L and if both have the same dimension. 
 
Definition 2.2. A basis matrix B of a lattice L is an n ൈ m 
matrix formed by taking the rows to be basis vectors 𝑏௜ ൌ
 ൫𝑏௜,ଵ, … , 𝑏௜,௠൯.  
 
Thus 𝐵௜,௝  be the j-th entry of the row vector 𝒃௜  and L ൌ
ሼ𝑥𝐵 ∶  𝑥 ∈ ℤ௡ሽ. By assumption, the rows of a basis matrix 
are always linearly independent. The determinant of a 
lattice L is the volume of the fundamental parallelepiped 
of any basis. Therefore, it depends on the basis. However, 
it is well-defined regardless of basis, we can define the 
determinant of L as following. 
 
Definition 2.3. Let L be a lattice inℝ௠ of rank n with basis 
matrix B. The n ൈ n Gram matrix of B is B𝐵௧ . This is a 
matrix whose ሺ𝑖, 𝑗ሻ entry is 〈𝑏௜, 𝑏௝〉. Then 

detሺLሻ ≔ √𝐵𝐵௧ 
 
In particular, if L is a full rank lattice then detሺ𝐿ሻ ൌ
 |detሺ𝐵ሻ|. 
 
Definition 2.4. Let L ⊂  ℝ௠  be a lattice of rank n. The 
successive minima of L are 𝜆ଵ, … , 𝜆௡  ∈ ℝ such that, for 
1 ൑ i ൑ n, 𝜆௜ is minimal such that there exist i number of 
linearly independent vectors 𝒗ଵ, … , 𝒗௜  ∈ 𝐿  with ฮ𝒗௝ฮ  ൑
 𝜆௜ for 1 ൑ j ൑ i. 
 
It follows that 0 ൏  𝜆ଵ  ൑  𝜆ଶ  ൑ ⋯  ൑  𝜆௡ . In general, there 
is not a basis consisting of vectors whose lengths are equal 
to the successive minim. All base of L spans the same R-
vector subspace of ℝ௠  which we denote by 𝑆𝑝௅ . The 
dimension of 𝑆𝑝௅  over ℝ is equal to the dimension of L. 
Define the lattice 𝐿ത ≔  𝑆𝑝௅  ∩ ℤ௠. L is a sublattice of Lത. 
We say that L is a complete lattice, if L ൌ  𝐿ത. In particular, 
𝐿ത is a complete lattice. 
 
Definition 2.5. Let L ∈  ℤ௠ be a lattice. F ൌ  ሺ𝑆𝑝௅ሻୄ be the 
orthogonal vector subspace with respect to the inner product. 
We define the orthogonal lattice to be 𝐿ୄ ≔ 𝐹 ∩ ℤ௠. Thus, 
𝐿ୄ is a complete lattice in ℤ௠ with dimension m െ n if n is 
the dimension of L. 
 
Theorem 2.6. [16] Let L ∈  ℤ௠ be a complete lattice. Then 
detሺ𝐿ୄሻ ൌ detሺLሻ and detሺሺ𝐿ୄሻୄሻ ൌ 𝑑𝑒𝑡ሺ𝐿ୄሻ ൌ detሺ𝐿തሻ. 
 
As we have mentioned in introduction, computational 
problems of lattices can be easy if one has a basis that is 
orthogonal, or “sufficiently close to orthogonal”. Therefore, 
we need an efficient lattice basis reduction algorithm for 
solving lattice problems. Now, we present the important 
definition of LLL reduced basis from [12] and some parts 

of its consequences. Recall that if 𝒃𝟏, … , 𝒃௡  is a set of 
vectors in Rm then one can define the Gram-Schmidt 
orthogonalization 𝒃𝟏

∗, … , 𝒃௡
∗. We use the notation 𝜇௜,௝ ൌ

 〈𝒃𝒊, 𝒃𝒋
∗〉 / 〈𝒃𝒋

∗, 𝒃𝒋
∗〉. 

 
Definition 2.7. Let ሼ𝒃𝟏, … , 𝒃௡ሽ be an ordered basis for a 
lattice L and ሼ𝒃𝟏

∗, … , 𝒃௡
∗ሽ  be its Gram-Schmidt 

orthogonalization. Let 𝐵௜ ൌ  ‖𝒃௜
∗‖ଶ ൌ  〈𝒃௜

∗, 𝒃௜
∗〉  for 1 ൑

i ൑ n. The basis ሼ𝒃𝟏, … , 𝒃௡ሽ is called LLL reduced with 
factor 1/4 ൏ 𝑖 ൏ 1  if the following two conditions hold 
(typically, δ ൌ 3/4). 

1. ห𝜇௜,௝ห  ൑ 1/2 for 1 ൑ j ൏ i ൑ n 
2. 𝐵௜  ൒  ሺ𝛿 െ 𝜇௜,௜ିଵ

ଶሻ𝐵௜ିଵ 

 
Remark 2.8. The condition 2 means an LLL-reduced basis 
is close to orthogonal, since a lattice basis is close to 
orthogonal" if the lengths of the Gram-Schmidt vectors do 
not decrease too rapidly. 
 
The following Theorem shows that an LLL-reduced lattice 
basis does have good properties. 
 
Theorem 2.9. Let ሼ𝒃𝟏, … , 𝒃௡ሽ be an LLL-reduced basis of a 
lattice L. Then 
        1. ‖𝒃𝟏‖ ൑  2ሺ௡ିଵሻ/ଶ𝜆ଵ 
        2. ฮ𝒃𝒋ฮ ൑  2ሺ௡ିଵሻ/ଶ𝜆௜ for 1 ൑ j ൑ i ൑ n 

3.  2ሺଵି௜ሻ/ଶ𝜆௜ ൑  ‖𝒃𝒊‖  ൑  2ሺ௡ିଵሻ/ଶ𝜆௜   
4. detሺ𝐿ሻ ൏  ∏ ‖𝒃𝒊‖  ൑௡

௜ୀଵ  2௡ሺ௡ିଵሻ/ସdet ሺ𝐿ሻ 
5. ‖𝒃𝟏‖ ൑  2ሺ௡ିଵሻ/ସdet ሺLሻଵ/௡ 

 
Lenstra, Lenstra and Lovasz [12] proves polynomial 
termination for any lattice in ℝ௡ but only gives a precise 
complexity for lattices in ℤ௡. 
 
Theorem 2.10. Let L be a lattice in ℤ௠  with basis 
ሼ𝒃𝟏, … , 𝒃௡ሽ and ‖𝑏௜‖ଶ  for 1 ൑ i ൑ n where X ∈ ℕ. Then 
the LLL algorithm requires O൫𝑛ଷmlogሺXሻ൯  arithmetic 
operations on integers of size O൫nlogሺXሻ൯ . Using naive 
arithmetic gives running time Oሺ𝑛ହmlogሺXሻଷሻ  bit 
operations. 
 

2.2 Knapsack Cryptosystem 

The Merkle-Hellman knapsack cryptosystem [14] was one 
of the earliest public key cryptosystems invented by Ralph 
Merkle and Martin Hellman in 1978. Its ideas are elegant, 
and far simpler and more efficient than RSA. Although the 
underlying problem is NP-complete by the modular 
multiplication transformation, it has surprisingly been 
broken by Shamir [20] because of the special structure of 
the private key. After that a lot of knapsack-type 
cryptosystems had been proposed due to their NP-
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completeness nature and high speed in encryption and 
decryption. Unfortunately, most of them are shown 
vulnerable to various attacks: the low-density attacks ([1], 
[13], [3]), the simultaneous Diophantine approximation 
attack [11] and the orthogonal lattice attack [16] and so on. 
For more details of the rise and fall of knapsack 
cryptosystems, we refer readers to the survey papers [10], 
[17]. 
Among knapsack or knapsack-type cryptosystems, we look 
into the Merkle-Hellman knapsack cryptosystem [14]. 
Firstly, the knapsack problem (or subset sum problem) is 
described as follows. 
 
Given 𝐚 ൌ  ሺ𝑎ଵ, … , 𝑎௡ሻ  ∈  𝑁௡  and a target integer s, 
determine if there exist 𝑥ଵ, … , 𝑥௡  ∈  ሼ0, 1ሽ  satisfying, 
𝑥ଵ𝑎ଵ ൅ ⋯ ൅  𝑥௡𝑎௡ ൌ 𝑠. 
 
The following decisional version of the problem is 
equivalent to following search version. 
 
Given 𝐚 ൌ  ሺ𝑎ଵ, … , 𝑎௡ሻ  ∈  𝑁௡  and a target integer s, find 
exist 𝑥ଵ, … , 𝑥௡  ∈  ሼ0, 1ሽ satisfying, 𝑥ଵ𝑎ଵ ൅ ⋯ ൅ 𝑥௡𝑎௡ ൌ 𝑠. 
 
The general knapsack problem is an NP-complete problem, 
so it is considered very hard. However, some knapsack 
problems are very easy to solve. Suppose the weights 
𝑎ଵ, … , 𝑎௡ are super-increasing, 𝑎௡ ൐  𝑎ଵ ൅ ⋯ ൅ 𝑎௝ିଵ  for 
each 1 ൏ j ൑ n . Then we can easily find 𝑥௡ , since 𝑥௡  

⇔   𝑠 ൐  𝑎ଵ ൅ ⋯ ൅ 𝑎௡ିଵ. Having determined 𝑥௡ ,  we are 
reduced to the lower dimensional knapsack problem 𝑥ଵ𝑎ଵ ൅
⋯ ൅ 𝑥௡ିଵ𝑎௡ିଵ ൌ 𝑠 െ 𝑥௡𝑎௡, so we can recover 𝑥௡ିଵ, … , 𝑥ଵ 
recursively. Unfortunately, since 𝑎ଵ, … , 𝑎௡  are public, an 
attacker can decrypt the message easily. But the solution 
was proposed by Merkle and Hellman in [14]. They devised 
a method to convert super-increasing sequences into hard 
knapsacks that look like random. Their knapsack 
cryptosystem is of the following form. 
 
Key-Gen(1௡): Choose a super-increasing 𝑏ଵ, … , 𝑏௡ and M, 
W∈ Z with 𝑀 ൐  𝑏ଵ ൅ ⋯ ൅ 𝑏௡ and gcd(M, W) = 1, and a 
permutation π on the integers ሼ1, … , 𝑛ሽ. 
Then secret key is 𝑏ଵ,…,𝑏௡ , M, W, π  and public key is 
𝑎ଵ, … , 𝑎௡ with a௝  ≡ 𝑊𝑏గሺ௝ሻ 𝑚𝑜𝑑 𝑀 
 
Encryption: For plaintext x ൌ  ሼ𝑥ଵ, … , 𝑥ሽ  ∈  ሼ0, 1ሽ௡ , 
ciphertext is s ൌ 𝑥ଵ𝑎ଵ ൅ ⋯ ൅ 𝑥௡𝑎௡ . 
 
Decryption: c ≡  𝑊ିଵ𝑠 ≡  ∑ 𝑏గషభሺ௝ሻ𝑥గషభሺ௝ሻ 𝑚𝑜𝑑 𝑀௡

௝ୀଵ . 
The modulus is large, so c exactly equals the sum. Also 
𝑏ଵ, … , 𝑏௡ is super-increasing, so one can easily recover the 
plaintext x. 
 
Typically, the size of each 𝑏௜  is n ൅ i bits, for 1 ൑ i ൑ n, 
the size of M is 2n ൅ 1 bits. In the original Merkle-Hellman 

cryptosystem n = 100. A characteristic of knapsack 
cryptosystem is density. The density of a knapsack is 
defined to be d ൌ n/N where N ൌ  max

௜
log 𝑎௜. The density 

is approximately the information rate. A cryptosystem's 
density has a great effect on its vulnerability. When the 
density is small (namely, less than 0.94…), one can solve 
the knapsack problem directly by using a lattice reduction 
with high probability. Such attack is called low-density 
attack. However, this attack is not still effective against 
high-density knapsacks. Therefore, some knapsack 
cryptosystems with high density have been proposed [21]. 

3. Attacks of Knapsack Cryptosystem 

3.1 Shamir's attack 

At Crypto'82, Adi Shamir [14] gave the first attack on the 
original knapsack cryptosystem. We now present his idea to 
compute both M  and U ൌ  𝑊ିଵ mod M . Without loss of 
generality, we assume that no permutation is used in 
Merkle-Hellman knapsack cryptosystem. The starting point 
is to note that for 1 ൑ i ൑ n1, there are integers 𝑘௜ such that 

𝑎௜𝑈 െ 𝑘௜𝑀 ൌ  𝑏௜ 
and 0 ൑ 𝑘௜ ൏ 𝑎௜. Hence, 

0 ൑  
𝑈
𝑀

െ 
𝑘௜

𝑎௜
ൌ  

𝑏௜

𝑎௜𝑀
 

Since 𝑏௜’s are super increasing, we have 𝑏௜ ൏  ெ

ଶ೙ష೔ and so 

0 ൑  
௎

ெ
െ 

௞೔

௔೔
ൌ  

ଵ

௔೔ଶ೙ష೔. In particular,  

𝑈
𝑀

െ 
𝑘ଵ

𝑎ଵ
ൌ  

1
𝑎ଵ2௡ିଵ 

is very small. 
We now observe that to break the Merkle-Hellman 
knapsack cryptosystem, it is sufficient to find any pair (u, 
m) of positive integers such that 𝑢𝑎௜ 𝑚𝑜𝑑 𝑚  is another 
super increasing sequence which gives the original plaintext. 
To see this, we write 𝑢 ൌ  𝜆𝑈, 𝑚 ൌ  𝜆𝑀 ൅  𝜀 where ε is a 
small error and λ is a scaling factor. Substituting into (1), 
we obtain  

𝑢𝑎௜ െ 𝑚𝑘௜ ൌ  𝜆ሺ𝑈𝑎௜ െ 𝑀𝑘௜ሻ ൅  𝜀𝑘௜ ൌ  𝜆𝑏௜ ൅  𝜀𝑘௜ 
The right side of (3) is just the super increasing sequence of 
𝜆𝑏௜ that is perturbed by the quantities 𝜀𝑘௜, so it will be super 
increasing whenever ε is small enough.  
We don’t know U, M, 𝑘௜ and 𝑏௜, but 𝑎௜. However, we can 
see the size of ai’s and U are the same as M’s and 𝑏௜ ൑ 2௡ା௜. 
Subtracting the case 𝑖 ൌ 1  of equation (2) from the i-th 
gives  

𝑘ଵ

𝑎ଵ
െ 

𝑘௜

𝑎௜
ൌ  

𝑏௜

𝑎௜𝑀
െ

𝑏ଵ

𝑎ଵ𝑀
ൌ  

𝑎ଵ𝑏௜ െ 𝑎௜𝑏ଵ

𝑎ଵ𝑎௜𝑀
 

and so, for 2 ൑ 𝑖 ൑ 𝑛 

|𝑎௜𝑘ଵ െ 𝑎ଵ𝑘௜| ൌ   
|𝑎ଵ𝑏௜ െ  𝑎௜𝑏ଵ|

𝑀
൏  

2𝑀𝑏௜

𝑀
ൌ 2𝑏௜ 

In particular, for 2 ൑ 𝑖 ൑ 5, 
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|𝑎௜𝑘ଵ െ 𝑎ଵ𝑘௜| ൏ 2𝑏௜ ൑ 2௡ା଺ 
the size of each of them is 2n bits, so the size of 𝑎ଵ𝑘௜ and 
𝑎௜𝑘ଵis 4n bits. But the size of the difference of two such 
terms to be n + 6 bits, which requires some very special 
structure. From above observations, Shamir showed how to 
find the 𝑘௜’s (1 ൑ 𝑖 ൑ 𝑛) in polynomial time by invoking 
H.W. Lenstra’s theorem that the integer programming 
problem in a fixed number of variables can be solved in 
polynomial time [15].  
We now present a method using lattices. That is another 
way to find the integer 𝑘ଵ when only the integers 𝑎ଵ, … , 𝑎௡ 
are given. If we write the equation (4),  

ฬ
𝑎௜

𝑎ଵ
െ

𝑘௜

𝑘ଵ
ฬ ൏  

𝑀
𝑎ଵ𝑘ଵ2௡ି௜ିଵ 

and we see that this problem is precisely simultaneous 
Diophantine approximation. The simultaneous Diophantine 
approximation problem states that, given rational numbers 
𝑟ଵ, … , 𝑟௡, 𝜀 ൐ 0  and an integer 𝑄 ൒ 𝜀ି௡  find integers 
𝑝ଵ, … , 𝑝௡ and q such that 0 ൑ 𝑞 ൑ 𝑄, and  

ฬ𝑟௜ െ 
𝑝௜

𝑞
ฬ ൏

𝜀
𝑞

 

for all 1 ൑ 𝑖 ൑ 𝑛 . There exists a solution to the 
simultaneous Diophantine approximation problem if 𝑄 ൒
𝜀ି௡ . And a solution can be obtained from lattice basis 
reduction algorithm (LLL). Let’s consider following matrix, 
A, form a lattice L:  

𝐴 ൌ

⎝

⎜
⎛

𝜀/𝑄
0
0
⋮
0

 

𝑟ଵ
െ1
0
⋮
0

 

𝑟ଶ
0

െ1
⋮
0

 

⋯
⋯
⋯
⋱
⋯

 

𝑟௡
0
0
⋮

െ1⎠

⎟
⎞

=

⎝

⎜
⎛

𝒂ଵ
𝒂ଶ
𝒂ଷ
⋮

𝒂௡ାଵ⎠

⎟
⎞

 

After computing LLL-reduced basis of L, let 𝒃ଵ be the first 
LLL-reduced vector. Then the 𝒃𝟏 can be used to solve the 
simultaneous Diophantine approximation problem. Since 
𝒃𝟏 ∈ L, there exist integers 𝑝ଵ, … , 𝑝௡ and q such that  

𝒃𝟏 ൌ q𝒂ଵ ൅ 𝑝ଵ𝒂ଶ ൅ ⋯ ൅ 𝑝௡ିଵ𝒂௡ ൅  𝑝௡𝒂௡ାଵ

ൌ ൬
𝑞𝜀
𝑄

, 𝑞𝑟ଵ െ 𝑝ଵ, … , 𝑞𝑟௡ െ 𝑝௡ ൰  

All |𝑞𝑟௜ െ 𝑝௜| ’s is small, since 𝒃ଵ  is short. Hence, all 
|𝑟௜ െ 𝑝௜/𝑞| ’s ais small. This observation illustrates the 
relation between the lattice reduction algorithms and the 
simultaneous Diophantine approximation problem. More 
precisely, we can find an approximation satisfying some 
condition as following.  
Theorem 3.1. [6] Let 𝑟ଵ, … , 𝑟௡  ∈  ℚ be given as rational 
numbers with numerator and denominator bounded in 
absolute value by X. Let 0 ൏  𝜀 ൏ 1, 𝑄 ൌ  2௡ሺ௡ାଵሻ/ସ𝜀ି௡ . 
One can compute in polynomial-time integers 𝑞, 𝑝ଵ, … , 𝑝௡ 
such that 0 ൏  𝑞 ൏ 2௡ሺ௡ାଵሻ/ସ𝜀ି௡  and  |𝑟௜ െ  𝑝௜/𝑞| ൏ 𝜀/𝑞  
for all 1 ൑ 𝑖 ൑ 𝑛.  
Hence, now consider the following basis matrix where 1 ൑
ℎ ൑ 𝑛, 0 ൏ 𝜆 ൏ 1 is a parameter analogous to 𝜀/𝑄. 

𝐴 ൌ

⎝

⎜
⎛

𝜆
0
0
⋮
0

 

𝑎ଶ
െ𝑎ଵ

0
⋮
0

 

𝑎ଷ
0

െ𝑎ଵ
⋮
0

 

⋯
⋯
⋯
⋱
⋯

 

𝑎௛
0
0
⋮

െ𝑎ଵ⎠

⎟
⎞

 

This lattice contains the vector ሺ𝜆𝑘ଵ, 𝑘ଵ𝑎ଶ െ 𝑘ଶ𝑎ଵ, 𝑘ଵ𝑎ଷ െ
𝑘ଷ𝑎ଵ, … , 𝑘ଵ𝑎௛ െ 𝑘௛𝑎ଵ ሻ  which is short by (). After 
performing lattice basis reduction on A, we obtain a guess 
for 𝑘ଵ  from the first vector of LLL reduced basis. 
Informally, if ൫𝑘ଶ/𝑘ଵ, 𝑘ଷ/𝑘ଵ, … , 𝑘௛/𝑘ଵ ൯  is a very good 
approximation of ൫𝑎ଶ/𝑎ଵ, 𝑎ଷ/𝑎ଵ, … , 𝑎௛/𝑎ଵ ൯ and is uniquely 
determined by (), then we can get the desired solution vector 
with suitable parameters λ and h. A formal analysis of this 
method is given by Lagarias [11]. As with other attacks on 
knapsack cryptosystems, the results are heuristic in the 
sense that they are proved by considering a random 
knapsack instance. Lagarias [11] suggest that one can take 

ℎ ൐ ଵ

ௗ
൅ 1  for almost all random vector 

൫𝑎ଶ/𝑎ଵ, 𝑎ଷ/𝑎ଵ, … , 𝑎௛/𝑎ଵ ൯  has a very good simultaneous 
Diophantine approximation, where d is the density of the 
instance. In practice, this method works for rather small 
values of h. 
 

3.2 Low-density attack 

Recall that, given a set of positive integers 
ሼ𝑎ଵ, … , 𝑎௡ሽ  or a vector ሺ𝑎ଵ, … , 𝑎௡ሻ  and positive 
integer s, we try to determine whether there exists a 
subset of A with its sum being s, or finding a vector 
𝒆 ൌ  ሺ𝑒ଵ, … , 𝑒௡ሻ  ∈  ሼ0, 1ሽ௡ satisfying  

෍ 𝑎௜𝑒௜

௡

௜ୀଵ

ൌ 𝑠 

 

Brickell [2] and Lagarias and Odlyzko [13] 
independently proposed algorithms to solve subset 
sum problems using lattice reductions. But their 
underlying ideas are similar. Both methods almost 
always solve the problem in polynomial time if the 
density of the subset sum problem is less than 0.6463. 
A observation is that the solution vector 𝒆 ∈  ሼ0, 1ሽ௡ 
is a short vector. So we need to construct a lattice that 
contains the solution vector 𝒆. Then we must be able 
to get the the solution vector after performing lattice 
reduction algorithm, LLL. How can we make a such 
lattice from above observation? Lagarias and Odlyzko 
considered following ሺ𝑛 ൅ 1ሻ ൈ ሺ𝑛 ൅ 1ሻ matrix B: 
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𝐵 ൌ

⎝

⎜
⎛

1
0
⋮
0
0

   

0
1
⋮
0
0

  

⋯
⋯
⋱
⋯
⋯

  

0
0
⋮
1
0

 

െ𝑎ଵ
െ𝑎ଶ

⋮
െ𝑎௡

𝑠 ⎠

⎟
⎞

=

⎝

⎜
⎛

𝒃ଵ
𝒃ଶ
⋮

𝒃௡
𝒃௡ାଵ⎠

⎟
⎞

 

Let L is a lattice generated by the matrix B. Then 

𝑒ଵ𝒃ଵ ൅  𝑒ଶ𝒃ଶ ൅  ⋯ ൅  𝑒௡𝒃௡ ൅  𝒃௡ାଵ = 
ሺ𝑒ଵ, 𝑒ଶ, … , 𝑒௡, 𝑠 െ ∑ 𝑎௜𝑒௜

௡
௜ୀଵ  ሻ 

ൌ  ሺ𝑒ଵ, 𝑒ଶ, … , 𝑒௡, 0ሻ  ∈ 𝐿. 

It suffices to find 𝒆෤ ൌ ሺ𝑒ଵ, 𝑒ଶ, … , 𝑒௡, 0ሻ  ∈ 𝐿. More 
precisely, let’s consider the algorithm they proposed. 

Table 1. SV algorithm 

Finding a solution of subset sum problem  

Input: ሺ𝑎ଵ , 𝑎ଶ , … , 𝑎௡ሻ  ∈ ℕ௡, 𝑠 ∈ ℕ 

Output: ሺ𝑒ଵ, 𝑒ଶ, … , 𝑒௡ሻ ∈  ℕ௡ such that  

෍ 𝑎௜𝑒௜

௡

௜ୀଵ

ൌ 𝑠 

1. Take the following vectors 𝒃ଵ, 𝒃ଶ, … , 𝒃௡ାଵ as a 
basis for an ሺ𝑛 ൅ 1ሻ dimensional integer lattice 𝐿 :

2. Find an LLL reduced basis 
𝒃 ∗ଵ, 𝒃 ∗ଶ, … , 𝒃 ∗௡ାଵ of 𝐿.  

3. Check if any 𝒃∗
௜ ൌ ൫𝑏௜,ଵ

∗  𝑏௜,ଶ
∗ , … , 𝑏௜,௡ାଵ

∗ ൯ has all 
𝑏௜,௝

∗ ൌ 0 or λ for some fixed λ for 1 ൑ 𝑗 ൑ 𝑛. For 
any such 𝒃 ∗௜ , check whether 𝑥௝ ൌ λିଵ𝑏௜,௝

∗  for 
1 ൑ 𝑗 ൑ 𝑛 gives a solution. 

4. Repeat steps 1- 3 with 𝑠  replaced by 𝑠’ ൌ
∑ 𝑎௜

௡
௜ୀଵ െ 𝑠. Then stop. 

We immediately obtain polynomially bounded 
running time since SV algorithm is essentially two 
applications of the LLL algorithm. And if this 
algorithm produces a solution to (7) we say it succeeds; 
otherwise, it fails. Therefore, we want to be appeared 
the vectors 𝒆෤  or 𝜆𝒆෤  in LLL reduced basis of L. An 
ideal case is that the vector 𝒆෤  is a shortest vector of L 
generated by B and the first LLL-reduced vector is 
also a shortest vector of L. In other words, we try to 
reduce the subset sum problem to the shortest vector 
problem.  

There are two problems on this idea. First, the NP-
hardness of SVP(under randomized reductions) means 
that there is no polynomial-time algorithm that solves 

SVP. However, this is acceptable up to reasonably 
high dimensions n. Because it turns out that in practice, 
one can hope that standard lattice reduction algorithm, 
LLL behave like SVP-oracles, up to reasonably high 
dimensions (by experimental result). Second, there 
may exist many short vectors that are shorter than 𝒆෤  
according to 𝑎௜’s. For example, if 𝑎ଵ ൌ  𝑎ଶ ൅ 1, then 
ሺ1, െ1, 0, … , 0, െ1ሻ  ∈ 𝐿 . Hence, we see that this 
approach to solve the subset sum problem is very 
heuristic. Informally, such short vectors (like example) 
do not arise for the small n, the large M. (Recall the 
ai ’s are randomly chosen from ሾ1, 𝑀 െ 1ሿ ). As 
mentioned earlier, Lagarias and Odlyzko showed that 
the subset sum problem can be reduced to SVP if the 
density of the subset sum problem is less than 0.6463.  

Theorem 3.2. [13] if the density is bounded by 
0.6463... then the lattice oracle (LLL) is guaranteed to 
find the solution vector with high probability.  

The matrix used in this theorem 3.2. is as follows: 

⎝

⎜
⎛

1
0
⋮
0
0

    

0
1
⋮
0
0

    

⋯
⋯
⋱
⋯
⋯

    

0
0
⋮
1
0

   

𝑁𝑎ଵ
𝑁𝑎ଶ

⋮
𝑁𝑎௡
𝑁𝑠 ⎠

⎟
⎞

 

Here the constant 𝑁  makes proof easier than 
Lagarias and Odlyzko's original proof. In fact, above 
proof is a simple version of the original proof due to 
[4]. 

The core part in the proof is counting lattice points 
in a sphere. Since the number of lattice points in 
spheres in n-dimensional space gives the result 
1.54724 …ିଵ ൎ 0.6463 . For detail see ([13], 
Theorem 3.2). Hence if we can reduce the constant 
1.54724 …, the condition 0.6463 will increase. We 
can see this can be done by reducing ‖𝒆‖. Then how 
can we do this by modifying the lattice (7)? 

Coster, Joux, LaMacchia, Odlyzko, Schnorr, and 
Stern improved the bound to 0.9408 [3] by using 
following matrix: 

⎝

⎜
⎛

1
0
⋮
0

1/2

    

0
1
⋮
0

1/2

    

⋯
⋯
⋱
⋯
⋯

    

0
0
⋮
1

1/2

   

𝑁𝑎ଵ
𝑁𝑎ଶ

⋮
𝑁𝑎௡
𝑁𝑠 ⎠

⎟
⎞
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The only different point is the last row vector 
ሺ1/2,1/2, … ,1/2, 𝑁𝑠ሻ . This leads to following 
consequence. 

Theorem 3.4 [3] Let 𝐴 be a positive integer, and let 
𝑎ଵ, … , 𝑎௡  be random integers with 0 ൏ 𝑎௜ ൑ 𝐴  for 
1 ൑ 𝑖 ൑ 𝑛. Let 𝑒 ൌ ሺ𝑒ଵ, … , 𝑒௡ሻ ∈ ሼ0,1ሽ௡ be arbitrary, 
and let 𝑠 ൌ ∑ 𝑒௜𝑎௜

௡
௜ୀଵ . If the density 𝑑 ൏  0.9408 …, 

then the subset sum problem defined by 𝑎ଵ, … , 𝑎௡ and 
𝑠 may “almost always” be solved in polynomial time 
with a single call to a lattice oracle. 
This theorem shows a improvement of the density 
bound from 0.6463 … to 0.9408 … by modifying last 
row vector in the lattice basis. In fact, this problem is 
closely connected to lattice covering problems. From 
analysis of proof, we see that it needs to cover the 
vertices of the n-cube (representing the possible 𝑒 
solution vectors) within a polynomial number of n-
dim spheres of radius √α𝑛 . In fact, Lagarias and 
Odlyzko used two n-dim spheres of radius ඥ𝑛/2 that 
are centered at (0, 0,..., 0) and (1, 1, ... , 1) respectively, 
and Coster et al. used one n-dim sphere of radius 

ඥ𝑛/4 centered at ሺ1/2, 1/2, … , 1/2ሻ to cover all the 
points. And they showed that the asymptotic bound 
0.9408 … can not be improved in their way. (see for 
detail [3] proposition 5.1) 

3.3 Secret key recovery attack using orthogonal lattice 

For any integer lattice 𝐿 in ℤ௡, the orthogonal lattice 
𝐿ୄ as the set of integer vectors orthogonal to 𝐿, that is, 
the set of 𝒙 ∈ ℤ௡ such that the dot product ⟨𝒙, 𝒚⟩ ൌ 0 
for all 𝒚 ∈ 𝐿. As mentioned earlier, the lattice 𝐿ୄ has 
dimension 𝑛 െ 𝑑𝑖𝑚ሺ𝐿ሻ. Thus, if a lattice in ℤ௡ is low-
dimensional, its orthogonal lattice is high-dimensional 
with a volume at most equal. Hence the successive 
minima of the orthogonal lattice are likely to be much 
shorter than the ones of the original lattice. That 
property of orthogonal lattices has led to effective 
(though heuristic) lattice-based attacks on various 
cryptographic schemes. In particular, it was used to 
find secret key in [22], [23]. 

The main idea of those attack is to find a LLL 
reduced basis of ሺ𝑛 െ 2ሻ  dimensional orthogonal 
lattice from secret key 𝒃 ൌ ሺ𝑏ଵ, 𝑏ଶ, … , 𝑏௡ሻ and public 
key 𝒂 ൌ ሺ𝑎ଵ, 𝑎ଶ, … , 𝑎௡ሻ. However, we do not know 
the secret key, so we need following heuristic. 

Heuristic 1. Let 𝒃ଵ, 𝒃ଶ, … , 𝒃௡ିଵ   be an LLL 
reduced basis of 𝒂ୄ . Then the first 𝑛 െ 2  vectors 
𝒃ଵ, 𝒃ଶ, … , 𝒃௡ିଶ is orthogonal to 𝒃. 

By Heuristic 1, with a computing orthogonal lattice 
algorithm, we get a 2 -dimensional lattice 
ሺ𝒃ଵ, 𝒃ଶ, … , 𝒃௡ିଶሻୄ  which contain  𝒃 . Let 𝒄ଵ, 𝒄ଶ  be a 
LLL reduced basis ሺ𝒃ଵ, 𝒃ଶ, … , 𝒃௡ିଶሻୄ . Then 𝒃  is 
written, 

𝒃 ൌ  𝑥ଵ𝒄ଵ  ൅  𝑥ଶ𝒄ଶ where 𝑥ଵ, 𝑥ଶ ∈ ℤ 

Then 𝒃 is founded by exhaustive search in [22], by 
Lagrange-Gauss algorithm as shortest vector of the 
lattice generated by 𝒄ଵ, 𝒄ଶ  in [23]. These leads to 
compute a LLL reduced basis of 𝐿ୄ from a lattice 𝐿. 
We can compute a LLL-reduced basis of 𝐿ୄ  simply 
and efficiently due to Nguyen and Stern in [16]. Now 
we describe the method to compute an LLL-reduced 
basis of an orthogonal lattice. 

Let 𝒃ଵ, 𝒃ଶ, … , 𝒃௡ିଵ be a basis of 𝐿, and 𝐵 ൌ ൫𝑏௜,௝൯ 
be its corresponding 𝑑 ൈ 𝑛 matrix. Let 𝑐 be a positive 
integer constant will be chosen later. DefineΩto be the 
lattice in ℤ௡ାௗ  generated by the following 𝑛 ൈ ሺ𝑑 ൅
𝑛ሻ matrix 𝐵ୄ : 

𝐵ୄ  ൌ  

⎝

⎜⎜
⎛

𝑁𝑏ଵ,ଵ

𝑁𝑏ଵ,ଶ

𝑁𝑏ଵ,ଷ
⋮

𝑁𝑏ଵ,௡

    

𝑁𝑏ଶ,ଵ

𝑁𝑏ଶ,ଶ

𝑁𝑏ଶ,ଷ
⋮

𝑁𝑏ଶ,௡

    

⋯
⋯
⋯
⋱
⋯

   

𝑁𝑏ௗ,ଵ

𝑁𝑏ௗ,ଶ

𝑁𝑏ௗ,ଷ
⋮

𝑁𝑏ௗ,௡

    

0
0
0
⋮
1

    

0
0
0
⋮
1

   

⋯
⋯
⋯
⋱
⋯

   

0
0
0
⋮
1⎠

⎟⎟
⎞

 

Let 𝑃← and 𝑃→ be the two projections that map any 
vector of ℤௗା௡ to respectively the vector of ℤௗ made 
of its first 𝑑 coordinates, and the vector of ℤ௡  of its 
last 𝑛  coordinates, all with respect to the canonical 
basis. The following algorithm gives an LLL-reduced 
basis of 𝐿ୄ. 

Table 2. Table Label Computing LLL-
reduced basis of 𝑳ୄ 

Computing LLL-reduced basis of 𝐿ୄ 

Input: a basis ሺ𝒃ଵ, 𝒃ଶ, … , 𝒃ௗሻ of a lattice 𝐿 ∈ ℤ௡ 

Output: 𝑃→ሺ𝒙ଵሻ, 𝑃→ሺ𝒙ଶሻ, … , 𝑃→ሺ𝒙௡ିௗሻ 

1. Select a sufficiently large 𝑁. 

2. Construct the 𝑛 ൈ ሺ𝑛 ൅ 𝑑ሻ integral matrix 𝐵ୄ. 

3. Compute an LLL-reduced basis $ሺ𝒙ଵ, 𝒙ଶ, . . . , 𝒙௡ 
of 𝐵ୄ. 
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4. Set 𝑃→ሺ𝒙௜ሻ as the last 𝑛 coefficients vector for 
each LLL-reduced vector 𝒙௜. 

 

Theorem 3.5. For any integer lattice 𝐿  in ℤ௡ , the 
algorithm gives a LLL-reduced basis of the orthogonal 
lattice 𝐿ୄ correctly in polynomial time. 

Proof. Let 𝒙 be a vector of 𝐿 and denote.𝒚 ൌ 𝑃→ሺ𝒙ሻ. 
Then 𝑃←ሺ𝒙ሻ ൌ 𝑁ሺ⟨𝒚, 𝒃ଵ⟩, ⟨𝒚, 𝒃ଶ⟩, … , ⟨𝒚, 𝒃ௗ⟩ሻ. Hence, 
𝒚 ∈ 𝐿ୄ if and only if  𝑃←ሺ𝒙ሻ ൌ 0. Furthemore, If |𝒙| ൑
𝑁, then 𝑃←ሺ𝒙ሻ ൌ 0. Now let 𝒙ଵ, 𝒙ଶ, … , 𝒙௡ be an LLL-
reduced basis of 𝐵ୄ . Then for sufficiently large 𝑁 , 
‖𝒙௜‖ ൑ 𝑁  for all 𝑖 , so 𝒙௜ ∈ 𝐿ୄ . Clearly, 
𝑃→ሺ𝒙ଵሻ, 𝑃→ሺ𝒙ଶሻ, … , 𝑃→ሺ𝒙௡ሻ  are linearly independent. 
And these vectors generate 𝐿ୄ since for all 𝒉 ∈  𝐿ୄ, 
ሺ0, . . . , 0, ℎଵ, . . . , ℎ௡ሻ  ∈  𝐵ୄ. 

4. Concluding Remarks 

In this paper, we examined lattices-based 
cryptanalysis used for attacking knapsack 
cryptosystems. Designing of proper lattices as 
examined previous section gives us unexpected 
attack methods. Additionally, the lattices also can 
be used to find not only small dependence of 
numbers, but also vectors and solutions of other 
cryptographic problems. Indeed, all of those 
attack techniques are also developed as 
orthogonal lattice attacks for AGCD problem and 
dual attacks for LWE one recently. We expect this 
survey gives an insight for cryptanalysis of lattice 
crypto world. 
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