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Abstract

A celebrated reliability model is the binary k-out of-n system,
which is a dichotomous system that is successful if and only if at least
k out of its n components are successful. In contrast to general
reliability systems whose handling entails exponential complexity, this
system possesses an elegant quadratic-time algorithm for evaluating
its reliability. The aim of this paper is to extend the utility of this
algorithm to the reliability analysis of a homogeneous binary-imaged
multi-state coherent generalized k-out-of-n system, which is still
described as a non-repairable system with independent non-identical
components. The paper characterizes such a system via switching-
algebraic expressions of either system success or system failure at each
non-zero level, or equivalently, via, minimal upper vectors or maximal
lower vectors. We also adapt the afore-mentioned quadratic-time
algorithm to compute the reliability and unreliability at each non-zero
system level. We point to the inconvenience of using fixed-point
reliability values for systems with good components, and recommend
using floating-point unreliability values in this case.

Keywords— System reliability, Multi-state system, k-out-of-n
system, Minimal upper vector, Maximal lower vector. Quadratic-
time algorithm.

Introduction

A binary k-out-of-n:G (k-out-of-n:F) system is a dichotomous
system that is successful (failed) if and only if at least k out of
its n components are successful (failed) [1-15]. The k-out-of-
n:G system is dual to the k-out-of-n:F system, and equivalent to
the (n-k+1)-out-of-n:F system [3, 9, 16, 17]. We might omit the
G and F designations, and refer collectively to these two dual
systems as binary k-out-of-n systems or as partially-redundant
systems [17]. The binary k-out-of-n system has many attractive
features and applications, and a symmetric structure that has
many convenient mathematical descriptions. Binary k-out-of-n
systems play a central role (and constitute a basis) for the
general class of binary coherent systems [18]. While virtually
all nontrivial network reliability problems are known to be NP-
hard for general networks, the regular structure of the k-out-of-
n system allows the existence of efficient algorithms for its
reliability analysis. Notable among these algorithms are the
Belfore algorithm [12], which is of O(n(logz n)?) complexity,
and the AR algorithm [3, 7, 9, 16], which has O(n?) complexity.
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Though the former algorithm is asymptotically more
efficient, it experiences a lengthy overhead, since it is based on
a recursive application of the Fast Fourier Transform (FFT) for
computing generating function products. The AR algorithm is
much simpler, and it has a nice interpretation in terms of a very
regular signal flow graph, which turns out to be a reduced
ordered binary decision diagram (ROBDD) [19, 20],
representing a monotone symmetric switching function.

This paper shifts interest to the more-powerful modeling
paradigm of a multi-state system (MSS), in which there are
multiple levels of system capacity or performance and/or
different component performance levels and multiple
component failure modes having different impacts on the
system performance [21, 22]. Specifically, we study a multi-
state generalized k-out-of-n:G system [23-38], which is a multi-
state system whose multi-valued success is greater than or equal
to a certain value j (lying between 1 (the lowest non-zero
output level) and M (the highest output level)) whenever at
least k,,, components are in state m or above for all m such that
1 < m < j. We further assume that the k,, values are constant
orincreasing, i.e., weassumethat k; < k, < ky < - < k.
This means that the system considered is binary-imaged [39]
and hence it is possible to compute its probability of success at
each non-zero level using the AR algorithm.

The organization of the remainder of this paper is as follows.
Section 2 offers a mathematical description of a binary-imaged
multi-state coherent k-out-of-n system, while Sec. 3 reviews the
AR algorithm for computing the reliability of a binary k-out-of-
n system, and visualizes it through a regular Mason signal flow
graph (SFG) [40-43]. Section 4 introduces a generalized multi-
state k-out-of-n system (with increasing or constant k) that is
used as a running example for this paper. Section 5 presents a
switching-algebraic characterization of the example system via
minimal sum-of-products formulas of the success and failure at
each non-zero system level, and then adds two other equivalent
characterizations in terms of minimal upper vectors and
maximal lower vectors. Section 6 applies the AR algorithm to
compute the reliability and unreliability at each non-zero system
level. Section 6 also points to the inconvenience of using fixed-
point reliability values for systems with good components, and
recommends using floating-point unreliability values in this
case. Section 7 concludes the paper.
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Description of a binary-imaged multi-state
coherent k-out-of-n system

The model considered herein is one of a multi-state system with
multistate components, specified by the multi-valued structure
or success function S(X) [21, 22]

S: {0’ 1:"'lm1} X {0’ 1:""m2} X .. X {01 1;"'lmn} -
{0‘ 1’ o ) M}' (1)

Though the number of system states (M + 1) and the numbers of
component states (m; + 1), (m, + 1),--+, (m, + 1) might
differ, we consider herein a homogeneous system, in which these
numbers have a common value. We use the symbol X, {= j} to
denote the binary success of component k at level j [21, 22, 36]

Xk{2 ]} = Xk{j'j + 1' [ mk} = V:il]( Xk{i} = Xk{]} \

The complement of X, {=j} is called the binary failure of
component k at level j, and is given by [21, 22, 36]

1} =Xfk< (-1} ©)

The symbol X, {j} denotes a binary variable representing instant
j of the multivalued variable X, [21, 22, 36]

X} = X2 3 Xd< G+ D} =X} Xd=2 G+ D} =
XS Xd> (- D} =X 3 Xl G- D} (4)

Similar definitions can be given to S{= j} (the binary system
success at level j), S{<j} (the binary system failure at level j),
and S{j} (the binary variable representing instant j of the
multivalued system structure function S). As usual, we designate
the expectations E{S{= j}} and E{X{= j}} by R;and p{= j}.

A binary-imaged multi-state system is a system whose
success at level j is a function only of component successes at
the same level (i.e., it is an MSS such that S{= j} is a function
of X{= j} only), or equivalently, it is a system whose failure at
level j is a function only of component failures at the same level
(i.e., it is an MSS such that S{< (j — 1)} is a function of
X{< (G— 1)} only) [21, 22]. For a binary-imaged system,
elements of the set of MUVs 6(j) are vectors of j or 0
components only, and elements of the set of MLVs o(j) are
vectors of j or M components only [21, 22].

A multi-state generalized k-out-of-n: G system is a multi-
state system whose multi-valued success is greater than or equal
to a certain value j (lying between 1 (the lowest non-zero output
level) and M (the highest output level)) whenever at least k,,,
components are in state m or above for all m suchthat 1 < m <
j [24-27, 36]. This system is binary imaged if the k,, values are
constant or increasing, i.e., if k; < k, < k; <.+ < k, [24-
26].

The AR Algorithm for computing the Reliability
of binary k-out-of-n systems

The AR algorithm for computing the reliability R(k, n, p) of
a k-out-of- n:G binary system is an iterative (non-recursive)
algorithm of quadratic temporal complexity, that is governed
by the two-dimensional recursive relation [3, 7, 9, 15-18]

R(k,n,p) = (1 —py) *R(kn—1,p/pn) + pn *
Rk—1,n—-1,p/pn), 1<k<n, (5a)

together with the boundary conditions

R(k,n,p) = 1.0,

0,n>0 (5b)
R(k,n,p) = 0.0, (

+1),n=>0, (5¢)

Note that R(k,n,p) is the Complementary Cumulative
Distribution Function (CCDF) of the generalized binomial
distribution. The unreliability U(k,n,p) = 1.0 — R(k,n, p) is
therefore the Cumulative Distribution Function (CDF) of the
generalized binomial distribution [44-46]. It obeys a recursive
relation that is similar to the recursive relation (5a), but with the
values in the boundary conditions (5b) and (5¢) complemented,
i.e.

U(k,n,p) = (1 —p,) *U(k,n—1p/py) + pn * Utk —

1L,n—1,p/py), 1<k<n, (6a)
Ukk,np)=00, k=0n=0, (6b)
Uk np)=10, k=(m+1),n=0, (6¢)

The set of relations (5) and (6) were first derived by
Rushdi [3] by utilizing properties of monotone symmetric
switching (two-valued Boolean) functions. Many authors (see,
e.g., [13, 23, 25]) mysteriously credit (5) also to an extremely
short (albeit fruitful) exchange by Barlow and Heidtmann [2],
though this exchange is confined to the generating-function
paradigm, with no mention whatsoever of recursion or
boundary conditions. Recently, many authors [47-50] began to
realize that (5) and (6) are both derived for the first time in, and
only in, [3].

Rushdi and Rushdi [16] provided a much simpler
novel proof of (5) or (6) via the celebrated total probability
theorem [51-53]. In this proof, the underlying mutually-
exclusive and exhaustive events are the two complementary
events: {component n is not working} and {component n is
working}, with respective probabilities q, and p,. A k-out-of-
n event becomes a k-out-of-(n—1) event under the condition
that component n is not working, and becomes a (k—1)-out-of-
(n—1) event under the condition that component n is working.
This is still true when the concerned events are qualified by the
adverb "at least". Recently, Efrem and Panagopoulos [50]
prided themselves in exploring the power and beauty of
recursion, as they (obviously independently) rediscovered the
afore-mentioned simpler proof of (5) via the law/theorem of
total probability.
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Figure 1 shows a regular Mason signal flow graph (SFG)
that illustrates the computation of R(k,n,p). Note that in
column I, each diagonal arrow has a transmittance equal to p,
while each horizontal arrow carries a transmittance equal to its
complement g; = (1.0 — pi). There are two types of nodes: (a)
Source nodes of known values which are either black or white.
A black node has a value of 1.0 while a white node has a value
of 0.0, and (b) Non-source nodes drawn as shaded ones, which
include (at least) one sink node whose value is the final result
sought. Figure 1 first appeared in Rushdi [3], and can be viewed
in the Boolean domain as an SFG for a monotone symmetric
switching function representing the success function of a k-out-
of-n system. In such a graph, algebraic multiplication and
addition are replaced by their logical counterparts (ANDing and
ORing), and the graph can be identified to be an early precursor
of a Reduced Ordered Binary Decision Diagram (ROBDD),
which is currently known to be the state-of-the art data structure
for encoding and manipulating switching functions. Moreover,
Fig. 1 has certain similarities and minor dissimilarities with al-
Karkhi's Triangle (Pascal's Triangle), which is constructed for the
binomial (combinatorial) coefficient (n choose k) c(k, n) via al-
Karkhi's (Pascal's) identity [17]

ckkn)=ckn—1)+ckk—1,n—-1), 0<k<n, (7a)
together with the boundary conditions

c(kkn)=1, (k=0 or k=n) and n > 0. (7b)
Subject to the condition of constant or increasing k (k; <

k, < kg <.+ < ky), thereliability at level j of a multi-state
generalized k-out-of-n:G system has a binary image given by

E{S{= j}(k;, n, X{= j})} = R;(k;, n, p{= }}), (8)

which depends solely on k; and p{= j}. The system success
S{= j}(k]-,n, X{=j}) at level j can be expressed by a single
monotone symmetric switching function [3, 9, 36], of a
characteristic set {m|k; <m < n} = {k;,k; + 1,...,n} and
arguments X{> j}, and, hence, of the form

S{z j}(kj,n X{= j}) = Sy(n; {m|k; <m <n};X{zj}) =
Sy(n; {k]-, kj+1,.., n}; X{= j}), 9)

thanks to the fact that

ki <k} = {Sy(n; {mlk <m<n}X(=j}) =
Sy(n; {m| kj;; <m <n}X{= G+ D})}, (10)

which is true, since for all j and k
Xelz 3 = Xli} v X2 G+ D} = X {= (+ D} (11)
Therefore, the reliability R;(kj,n,p{=j}) is directly

computable by the iterative AR algorithm, since it is governed
by the two-dimensional recursive relation in (5), i.e.,

R;(kj,n,p{=j}) = puf< i} *Rj(kjn — 1L, p/pa{=}) +

pal{=j} *Ri(kj— Ln—1,p/pa{=j}), 1<k <n, (12a)
together with the boundary conditions

Rj(kj,n,p{=j}) =10, kj=0n>0, (12b)
Rj(k;n,p{=j}) =0.0, kj=(n+1),n>0, (12c)

A running multi-state example

We now present an example borrowed from Huang and Zuo
[23]. This example deals with a production management
problem of a plant having five production lines for a specific
product. The plant has four different production levels: full
scale for maximum or extensive customer demand (state 3),
average scale for normal or usual customer demand (state 2),
and low scale for low customer demand (state 1), and zero scale
when the plant is shut down, and no customer demand
whatsoever is met. All the five production lines have to work
full scale (at state 3) for the system to be in state 3. At least three
lines have to work at least at the average scale for the system to
be at least in sate 2. At least 2 lines have to work at the low
scale (state 1) for the system to be in state 1 or above. Such a
system can be represented by an increasing multi-state k-out-
of-n:G system model with k; = 2, k, = 3, and k; = 5. Table 1
summarizes the verbal description of system behavior at
various levels. Table 2 lists the probabilities of the various
states of the multistate components, as given in the original
problem [23]. Table 3 transforms the information in Table 2 so
as to suit our purposes by stating the success and failure
probabilities at the various levels of the multistate components.

A switching-algebraic characterization

This section presents a switching-algebraic characterization
of the example system via minimal sum-of-products formulas
of the success and failure at each non-zero system level, and
then adds two other equivalent characterizations in terms of
minimal upper vectors and maximal lower vectors. Table 4
displays expressions of system success S{=j} and system
failure {S < (j — 1)} = {S < j} at every non-zero level j for
j =1,2,and 3. As expected, the number of minimal paths for
level j (the number of prime implicants of the switching
function S{> j}) is the binomial coefficient c(k;, n) [9, 17, 54].
Hence, for j = 1,2, and 3, we have the numbers of minimal
paths given by c(2,5) = 10, c¢(3,5) = 10, and ¢(5,5) = 1.
On the other hand, the number of minimal cutsets for level j
(the number of prime implicants of the switching function
S{< (j—1)}) is the binomial coefficient c(n —k; + 1,n) =
(k; —1,n) [9, 17, 54]. Hence, for j = 1,2, and 3, we have the
numbers of minimal cutsets given by c(1,5) =5, c¢(2,5) =
10, and c(4,5) = 5.

We now clarify a subtle relation between a minimal upper
vector (MUV) at a certain level and a prime implicant of
success (minimal path) at that level, and a similarly subtle
analogous or ‘dual’ relation between a maximal lower vector
(MLV) at a certain level and a prime implicant of failure
(minimal cutset) at that level [21, 22]. We stress that, contrarily
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to widespread belief, the MUVs and MLVs do not exactly play
the role of (or might be considered synonymous to) minimal
paths and minimal cutsets, respectively. In fact, a minimal path
constitutes all the upper vectors extending (inclusively) from a
particular MUV to the all-highest vector, while a minimal cutset
comprises all the lower vectors extending (inclusively) from the
all-0 vector to a particular MLV. Therefore, the mapping from
a minimal upper vector (MUV) at a certain level and a prime
implicant of success at that level is one-to-one and onto.
Likewise, the mapping from a maximal lower vector (MLV) at
a certain level and a prime implicant of failure at that level is
also one-to-one and onto. This clarification might be
conveniently visualized via a multi-valued Karnaugh map [55],
as shown in [21, 22]. Based on this clarification, Table 5
displays the minimal upper vectors (MUVs) and the maximal
lower vectors (MLVs) for our running example. For the current
binary-imaged system, elements of the set of MUVs 6(j) are
vectors of j or 0 components only, and elements of the set of
MLVs o (j) are vectors of j or M components only [21, 22].

Application of the AR algorithm to the running
example
Based upon the recursive relation (12a) and boundary
conditions (12b) and (12c), a quadratic time non-recursive
algorithm for computing Rj(k]-,n, p{=j}) (and U (kj, n, p{=
j})) can be immediately constructed. This algorithm has a pictorial
interpretation in terms of an SFG generalizing the one in Fig. 1,
by replacing the graph transmissions p, and q, preceding each
column n by the qualified symbols p,{=j} and p,{<i}.
respectively, as shown in Figs. 2-4, which demonstrate the
required k; values of 2,3, and 5. The algorithm constructs an
array of values inclusively bounded in the xy-plane by the four
straight lines, x =1, x=k;, x=y, x = (y -n+ kj), which
are the edges of a parallelogram with corners (x,y) at (1,1),
(kj, k;), (kj,n), and (1,n —k; + 1). The algorithm has three
versions depending on the order of traversing or sweeping the
aforementioned parallelogram elements, namely:
6.1. The vertical-sweep version
Nodes are visited column-wise, starting from the leftmost
column (y = 1) and ending at the rightmost column (y = n).
Within each column y, the bottom node (x = min(y,k;)) is
visited first, and then followed by upper nodes till the top node
(x =min(1,y —n + k;)) is reached.
6.2. The horizontal-sweep version
Nodes are visited row-wise, starting from the topmost
row (x = 1) and ending at the bottom row (x = k;). Within each
row x, the algorithm proceeds from the left diagonal (y = x) to
the right diagonal (y = x + n —k;).

6.3. The diagonal-sweep version
Nodes are visited diagonal-wise, starting from the leftmost
diagonal (y — x = 0) and ending at the rightmost one (y — x =
n—k; ). Within each diagonal, the algorithm proceeds
downwards from the top row (x =1) to the bottom row

(x =k).

There exists a "dual” version of the AR algorithm that
computes the unreliability U;(kj,n, p{= j}) instead of the
reliability R;(kj,n,p{=j}) with no change whatsoever in
complexity [3, 9, 16, 17]. All we need in any of Figs. 2-4 is to
switch every black node (of value 1.0) to a white one (of value
0.0), and vice verse, thereby switching the value of every node in
the entire SFG to the complementary (to one) value. Examples of
the resulting SFG are shown in Figs. 5-7, which are “node-wise”
complementary to Figs. 2-4.

The parallelogram of nodes in each of Figs. 2-7 has a height of k;,
a width of (n —k; + 1), and an area of k;(n —k; + 1). For
k; = n (a series system at level j), the area of the parallelogram
diminishes as it degenerates into a straight-line segment of n
nodes on the diagonal (x = y), for which it is far better to use the
reliability version of the algorithm than the unreliability one.
Dually, for k; = 1 (a parallel system at level j), the parallelogram
again degenerates, but this time into a straight-line segment of n
nodes on the horizontal line (x = 1), for which it is far better to
use the unreliability version of the algorithm than the reliability
one.

We now utilize graphical means to discuss the use of the
two versions of the AR algorithm for analyzing our running
example. Figure 8 demonstrates the actual computations
implemented on the SFG of Fig. 2 to obtain E{s{z
1}}(2, 5,p{= 1}) of system success at level 1. The figure
manifests the inconvenience of representing ultra-reliabilities
in fixed-point format. Figure 9 (in a totally complementary
fashion) illustrates the actual computations implemented on the
SFG of Fig. 5 to obtain the expectation E{s{< 1}}(2, 5, p{=
1}) of system failure at level 1. The figure demonstrates the
numerical convenience of dealing with probability of failure
rather than that of success when dealing with ultra-reliable
systems. Every node value in the figure is complementary to the
corresponding node in Fig. 8. The tasks achieved by Fig. 8 and
9 for level 1 are attained by Figs. 10 and 11, respectively, for
level 2, and Figs. 12 and 13, respectively, for level 3. Figure 10
indicates the actual computations implemented on the SFG of
Fig. 3 to obtain E{s{= 2}}(3,5, p{= 2}). Again, the figure
manifests the inconvenience of representing ultra-reliabilities
in fixed-point format. Figure 11 clarifies the actual
computations implemented on the SFG of Fig. 6 to obtain the
expectation E{s{< 23}}(2, 5, p{= 2}) of system failure at level
2. Again, the figure demonstrates the numerical convenience
of dealing with probability of failure rather than that of success
when dealing with ultra-reliable systems. Every node value in
the figure is complementary to the corresponding node in Fig.
10. Now, Fig. 12. Demonstrates the actual computations
implemented on the SFG of Fig. 4 to obtain E{s{z
3}}(5, 5,p{= 3}). This reliability figure neatly recovers the
celebrated reliability-product formula of a series system.
Dually, the unreliability version of the AR algorithm is equally
efficient in obtaining the dual (albeit much less known)
unreliability-product formula of a parallel system. Figure 13
shows the actual computations implemented on the SFG of Fig.
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7 to obtain the expectation E{s{< 3}}(5, 5, p{= 3}) of system
failure at level 3. Every node value in the figure is
complementary to the corresponding node in Fig. 12. This kind
of unreliability computation is not recommended for the present
series system (but is preferable for a parallel system).

For further clarification, we give a more detailed explanation
for our analysis of level 3. Figure 4 shows the SFG used by the
AR algorithm to compute the reliability at level 3 for our
running example, namely R;(5,5, p{= 3}). The algorithm
recovers the celebrated product formula for a series (h-out-of-n:G)
system, viz.

R3(5,5,p{= 3}) = p:i{= 3} * po{= 3} = p3{= 3} * pu{=
3} = ps{=3}. (13

Figure 12 demonstrates the actual numerical computation
performed in (13), i.e.,

R4 (5,5, p{= 3}) = (0.80) * (0.81)  (0.82) * (0.83)
(0.84) = 0.370464192. (14)

Figure 7 shows the SFG used by the AR algorithm to compute the
unreliability at level 3 for our running example, namely
U;(5,5, p{= 3}). The algorithm produces the much involved
formula

U3(5,5,p{= 3}) = ps{< 3} + ps{= 3}(p.{< 3} + pu{=
3}(p3{< 3} + pa{=3}(p2{< 3} + p2{= 3}(p1{< 3} +
p1{= 3}(0))))). (15)

Figure 13 demonstrates the actual numerical computation
performed in (15), i.e.,

U5(5,5,p{= 3)) = (0.16) + (0.84) ((0.17) +

(0.83) ((018) + (0.82)((019) + (0.81)(0.20 + 0))) ) =
0.62953580, (16)

Finally, we have two options to obtain the probabilities
of various system states via

E{S{0}} = 1.0 — E{S{= 1}} = E{s{< 1}}, (17)
E{S{1}} = E{S{= 1}} — E{S{= 2}} = E{S{< 2}} -
E{s{< 1}, (18)
E{S{2}} = E{S{= 2}} — E{S{= 3}} = E{s{< 3}} -
E{S{< 2}}, (19)
E{s(3}} = E{S{= 3}} = 1.0 — E{S{< 3}}. (20)

Table 6 reports the numerical values obtained by our
method (twice) compared to that in [23]. It is important to note the
very small probability of E{S{0}} cannot be approximated as zero
(as done in [23]). Such a catastrophic approximation amounts to a
relative error of 100% [51, 52]. In fact, in rare-event assessment,
one should be concerned with relative error, not absolute error
(i.e., one needs to know whether the probability is of order 10~
or 1078, not that it is just close to 0 [56-60].

Conflict of interest
The authors assert that no conflict of interest exists

Acknowledgments

This work is generously funded by the Deanship of Scientific
Research (DSR), King Abdulaziz University, Jeddah, Kingdom
of Saudi Arabia. Therefore, the authors acknowledge, with sincere
thanks and deep gratitude, the DSR for their financial, technical,
and moral support. The first-named author (AMR) benefited
greatly from (and is sincerely grateful for) his earlier
collaboration and enlightening discussions with Engineer
Mahmoud Ali Rushdi, Munich, Germany, and with Engineer
Fares Ghaleb, Jeddah, Saudi Arabia.

References
[1] P.J.Boland, and F. Proschan, “The reliability of k out of n systems,” The
Annals of Probability, vol. 11, no. 3, pp. 760-764, 1983.

[2] R.E.Barlow, and K. D. Heidtmann, “Comment and Reply on ‘Computing
k-out-of-n system reliability,”” IEEE Transactions on Reliability, vol. R-
33, no. 4, pp. 322-323, 1984.

[3] A. M. Rushdi, “Utilization of symmetric switching functions in the
computation of k-out-of-n system reliability,” Microelectronics and
Reliability, vol. 2, no. 5, pp. 973-987, 1986.

[4] A. M. Rushdi, “Efficient computation of k-to-C-out-of-n system
reliability,” Reliability Engineering, vol. 17, no. 3, pp. 157 -163, 1987.
Erratum: ibid., vol. 19, no. 4, p. 321, 1987.

[5] A. M. Rushdi, and F. M.-A. Dehlawi, “Optimal computation of k-to-£-
out-of-n system reliability,” Microelectronics and Reliability, vol. 27, no.
5, pp. 875-896, 1987. Erratum: ibid., vol. 28, no. 4, p. 671, 1988.

[6] A.M. Rushdi, “Threshold systems and their reliability,” Microelectronics
and Reliability, vol. 30, no. 2, pp. 299-312, 1990.

[7] A. M. Rushdi, “Comment on: ‘An efficient non-recursive algorithm for
computing the reliability of k-out-of-n systems,”” |IEEE Transactions on
Reliability, vol. 40, no. 1, pp. 60-61, 1991.

[8] K. B. Misra, Reliability Analysis and Prediction: A Methodology
Oriented Treatment, Elsevier Science Publishers, Amsterdam, The
Netherlands, 1992.

[91 A. M. Rushdi, Reliability of k-out-of-n Systems, Chapter 5 in: K. B. Misra
(Editor), New Trends in System Reliability Evaluation, Vol. 16,
Fundamental Studies in Engineering, Elsevier Science Publishers,
Amsterdam, The Netherlands, pp. 185-227, 1993.

[10] A. M. Rushdi, and K. A. Al-Hindi, “A table for the lower boundary of the
region of useful redundancy for k-out-of-n systems,” Microelectronics
and Reliability, vol. 33, no. 7, pp. 979-992, 1993.

[11] A. M. Rushdi, and A. O. Al-Thubaity, “Efficient computation of the
sensitivity of k-out-of-n system reliability,” Microelectronics and
Reliability, vol. 33, no. 7, pp. 1963-1979, 1993.

[12] L. A. Belfore, Il, “An O(n(logzn)?) Algorithm for computing the
reliability of k-out-of-n:G & k-to-1-out-of-n:G systems,” IEEE
Transactions on Reliability, vol. 44, no. 1, pp. 132-136, 1995.

[13] W. Kuo, and M. J. Zuo, The k-out-of-n System Model, Chapter 7 in:
Optimal Reliability Modelling: Principles and Applications, Wiley, New
York, NY, USA, pp. 231-280, 2003.

[14] S. V. Amari, M. J. Zuo, and G. Dill, O(kn) Algorithms for Analyzing
Repairable and Non-repairable k-out-of-n:G Systems, Chapter 21 in:
Misra, K. B. (Editor), Handbook of Performability Engineering, Springer,
London, UK, pp. 309-320, 2008.

[15] M. A. M. Rushdi, O. M. Ba-Rukab, and A. M. Rushdi, “Multi-
dimensional recursion relations and mathematical induction techniques:
The case of failure frequency of k-out-of-n systems,” Journal of King
Abdulaziz University: Engineering Sciences, vol. 27, no. 2, pp. 15-31,
2016.



256

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020

A. M. Rushdi, and M. A. Rushdi, Switching-Algebraic Analysis of System
Reliability. Chapter 6 in M. Ram and P. Davim (Editors), Advances in
Reliability and System Engineering, Management and Industrial
Engineering  Series, Springer International Publishing, Cham,
Switzerland, pp. 139-161, 2017.

A. M. A. Rushdi, “Partially-redundant systems: Examples, reliability, and
life expectancy,” International Magazine on Advances in Computer
Science and Telecommunications, vol. 1, no. 1, pp. 1-13, 2010.

A. M. Rushdi, and A. M. Alturki, “Unification of mathematical concepts
and algorithms of k-out-of-n system reliability: A perspective of
improved disjoint products,” Journal of Engineering Research, vol. 6, no.
4, pp. 1-31, 2018.

A. M. A. Rushdi, and H. A. Bjaili, “An ROBDD algorithm for the
reliability of double-threshold systems,” British Journal of Mathematics
and Computer Science, vol. 19, no. 6, pp. 1-17, 2016.

A. M. A. Rushdi, and A. M. Alturki, “Computation of k-out-of-n system
reliability via reduced ordered binary decision diagrams,” Journal of
Advances in Mathematics and Computer Science, vol. 23, no. 3, pp. 1-9,
2017.

A. M. A. Rushdi, and F. A. M. Ghaleb, “Reliability characterization of
binary-imaged multi-state coherent threshold systems,” International
Journal of Mathematical, Engineering and Management Science
(IIMEMS), vol. 5, no. 6, 2020.

A. M. A. Rushdi, and F. A. M. Ghaleb, “Boolean-based symbolic analysis
for the reliability of coherent multi-state systems of heterogeneous
components,” Journal of King Abdulaziz University: Computing and
Information Technology, vol. 9, no. 1, 2020.

J. Huang, and M. J. Zuo, “Multi-state k-out-of-n system model and its
applications,” In Proceedings of the IEEE Annual Reliability and
Maintainability Symposium 2000, pp. 264-268, 2000.

J. Huang, M. J. Zuo, and Y. Wu, “Generalized multi-state k-out-of-n: G
systems,” IEEE Transactions on reliability, vol. 49, no. 1, pp. 105-111,
2000

M. J. Zuo, J. Huang, and W. Kuo, Multi-state k-out-of-n systems. Chapter
1 in Pham, H. (Editor), Handbook of Reliability Engineering, Springer,
London: pp. 3-17, 2003.

J. Huang, and M. J. Zuo, “Dominant multi-state systems,” |IEEE
Transactions on Reliability, vol. 53, no. 3, pp. 362-368, 2004.

Z. Tian, M. J. Zuo, and R. C. Yam, “Multi-state k-out-of-n systems and
their performance evaluation,” I|[E Transactions, vol. 4, no. 1, pp. 32-44,
2008.

Z. Tian, R. C. Yam, M. J. Zuo, and H. Z. Huang, “Reliability bounds for
multi-state k-out-of-n systems,” IEEE Transactions on Reliability,
vol. 57, no. 1, pp. 53-58, 2008.

S. V. Amari, M. J. Zuo, and G. Dill, “A fast and robust reliability
evaluation algorithm  for  generalized multi-state  k-out-of-n
systems,” IEEE Transactions on Reliability, vol. 58, no. 1, pp. 88-97,
2009.

X. Zhao, and L. Cui, “Reliability evaluation of generalised multi-state k-
out-of-n systems based on FMCI approach,” International Journal of
Systems Science, vol. 41, no. 12, pp. 1437-1443, 2010.

S. K. Chaturvedi, S. H. Basha, S. V. Amari, and M. J. Zuo, “Reliability
analysis of generalized multi-state k-out-of-n systems,” Proceedings of
the Institution of Mechanical Engineers, Part O: Journal of Risk and
Reliability, vol. 226, no. 3, pp. 327-336, 2012.

G. Levitin, “Multi-state vector-k-out-of-n systems,” IEEE Transactions
on Reliability, vol. 62, no. 3, pp. 648-657, 2013.

V. V. Singh, and M. Ram, “Multi-state k-out-of-n type system
analysis,” Mathematics in Engineering, Science and Aerospace, vol. 5,
no. 3, pp. 281-292, 2014.

Y. Mo, L. Xing, S. V. Amari, and J. B. Dugan, “Efficient analysis of
multi-state k-out-of-n systems,” Reliability Engineering & System Safety,
vol. 133, pp. 95-105, 2015.

A. M. A. Rushdi, and M. A. Al-Amoudi, “Switching-algebraic analysis
of multi-state system reliability,” Journal of Engineering Research and
Reports, vol. 3, no. 3, pp. 1-22, 2018.

(36]

(37]

(38]

(39]

[40]

[41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

(52]

(53]

[54]

[55]

A. M. A. Rushdi, “Utilization of symmetric switching functions in the
symbolic reliability analysis of multi-state k-out-of-n
systems,” International Journal of Mathematical, Engineering and
Management Science (IIMEMS), vol. 4, no. 2, pp. 306-326, 2019.

A. M. A. Rushdi, and M. A. Al-Amoudi, “Reliability analysis of a multi-
state system using multi-valued logic,” IOSR Journal of Electronics and
Communication Engineering (IOSR-JECE), vol. 14, no. 1, pp. 1-10, 2019.

A. M. A. Rushdi, and A. B. Alsayegh, “Reliability analysis of a
commodity-supply multi-state system using the map method,” Journal of
Advances in Mathematics and Computer Science, vol. 31, no. 2, pp. 1-17,
2019.

J. I. Ansell, and A. Bendell, “On alternative definitions of multistate
coherent systems,” Optimization, vol. 18, no. 1, pp. 119-136, 1987.

S. J. Mason, “Feedback theory: some properties of signal flow graphs,”
Proceedings of the IRE, vol. 41, no. 9, pp. 1144-1156, 1953.

S. J. Mason, “Feedback theory: further properties of signal flow graphs,”
Proceedings of the IRE, vol. 44, no. 7, pp. 920-926, 1956.

M. M. Hassoun, “Hierarchical symbolic analysis of large-scale systems
using a Mason's signal flow graph model,” Proceedings of the IEEE
International Symposium on Circuits and Systems (ISCAS 1991), pp. 802-
805, 1991.

F. Golnaraghi, and B. C. Kuo, Automatic Control Systems, 9th Ed., Wiley,
New York, NY, USA, 2010.

A. M. Rushdi, and A. M. Al-Qasimi, “Efficient computation of the PMF
and the CDF of the generalized binomial distribution,” Microelectronics
and Reliability, vol. 34, no. 9, pp. 1489-1499, 1994.

A. M. Al-Qasimi, and A. M. A. Rushdi, “A tutorial on how to efficiently
calculate and format tables of the binomial distribution,” King Abdulaziz
University: Engineering Sciences, vol. 19, no. 1, pp. 3-17, 2008.

A. M. A. Rushdi, and M. A., Al-Amoudi, “Recursively-defined
combinatorial functions: the case of binomial and multinomial
coefficients and probabilities,” Journal of Advances in Mathematics and
Computer Science, vol. 27, no. 4, pp. 1-16, 2018.

W. Wei, K. Coolen, F. T. Nobibon, and R. Leus, ‘“Minimum-cost
diagnostic  strategies for k-out-of-n  systems with imperfect
tests,” Discrete Applied Mathematics, vol. 222, pp. 185-196, 2017.

A. J. Endharta, W. Y. Yun, and Y. M. Ko, “Reliability evaluation of
circular k-out-of-n: G balanced systems through minimal path
sets,” Reliability Engineering & System Safety, vol. 180, pp. 226-236,
2018.

Y. Shi, W. Zhu, Y. Xiang, and Q. Feng, “Condition-based maintenance
optimization for multi-component systems subject to a system reliability
requirement,” Reliability Engineering & System Safety, vol. 202, Article
107042, 2020.

C. N. Efrem, and A. D. Panagopoulos, "On the computation and
approximation of outage probability in satellite networks with smart
gateway diversity,” arXiv preprint arXiv:2003.06786, 2020, Available at
https://arxiv.org/pdf/2003.06786.pdf.

R. A., Rushdi & A. M. Rushdi, “Karnaugh-map utility in medical studies:
The case of Fetal Malnutrition,” International Journal of Mathematical,
Engineering and Management Sciences (IJMEMS), vol. 3, no. 3, pp. 220-
244, 2018.

R. A. M. Rushdi, and A. M. A. Rushdi, Mathematics and Examples for
Avoiding Common Probability Fallacies in Medical Disciplines. Chapter
11 in Current Trends in Medicine and Medical Research, Vol. 1, Book
Publishers International, Hooghly, West Bengal, India, 2019.

A. M. A. Rushdi, and H. A. Seraj, “Solutions of ternary problems of
conditional probability with applications to mathematical epidemiology
and the COVID-19 pandemic, ” International Journal of Mathematical,
Engineering and Management Sciences, vol. 5, no. 5, pp. 787-811, 2020.

R. A. Boedigheimer, and K. C. Kapur, “Customer-driven reliability
models for multistate coherent systems,” IEEE Transactions on
Reliability, vol. 43, no. 1, pp. 46-50, 1994.

A. M. A. Rushdi, “Utilization of Karnaugh maps in multi-value
qualitative comparative analysis,” International Journal of Mathematical,
Engineering and Management Sciences, vol. 3, no. 1, pp. 28-46, 2018.



https://arxiv.org/pdf/2003.06786.pdf

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.9, September 2020 257

[56] A. R. Sampson, and R. L. Smith, “Assessing risks through the
determination of rare event probabilities,” Operations Research, vol. 30,
no. 5, pp. 839-866, 1982.

[57] J. Collet, “Some remarks on rare-event approximation,” IEEE
Transactions on Reliability, vol. 45, no. 1, pp. 106-108, 1996.

[58] L. de Haan, and A. K. Sinha, “Estimating the probability of a rare
event,” The Annals of Statistics, vol. 27, no. 2, pp. 732-759, 1999.

[59] Z. 1. Botev, and D. P. Kroese, “An efficient algorithm for rare-event
probability estimation, combinatorial optimization, and

counting,” Methodology and Computing in Applied Probability, vol. 10,
no. 4, pp. 471-505, 2008.

[60] P. Goodwin, and G. Wright, “The limits of forecasting methods in
anticipating rare events,” Technological Forecasting and Social Change,
vol. 77, no. 3, pp. 355-368, 2010.

AL yguall cil3g Aaanally Sauatedl c¥Lall &il3 Ly 5,30 ol olaill 2ulgas Julas

faliall S5 @il e (Gl a3l (e CBlgs  Jidl dasi (SLa ¢ gk azma e
arushdi@kau.edu.sa, salhuzali0003@stu.kau.edu.sa, nalzahrani0588 @stu.kau.edu.sa, aalsayegh0009@stu.kau.edu.sa

Lagaad! Auyall aSLeod! 21589 5um «jupadloee clldl Anols Aotid] 2 cliolnly 2L S Awti]l s

QA.ULL«.A.H

oo 4ilsSe (e 0 o e 2 JBYI e i 13) Jaddg 13) iy S allas gag (Al 3,850 lall allazll ga 8y5ediall Zulgaadl z 3l sl o))

485501 sda (e Budl AT By (o ASY 7 liws ¥ Aal Auayles allasd) |ia clliey Ul 10aad Lazdlae cdlais (&) Aaladl ddgnall Aalasl e (aaill

Livato Jl5s ¥ g ly AL yguo 13 Ludlmin 4isS (e Muad ¥l stain Gunie pas i 5319 allas Adgne bty p9a2) Ape)ylgiel e Busls auess 58

aiid ol plasll 7 Leid By Jyod s ol i M5 (e pllasll fia Jie 48)501 sla jeed Alatune LeSTy Aayllate st ligSe 95 Dladl sl st allas 4ily

el Anp s Aedyles Gudaty Uanl agas Zualac¥l Lol cileziall of &yaa¥l Llall cilziall Jloatuly (258150 8y94my ol «Graio e Goiue IS ic

13 Aalas¥ Adgnad ALl &y dadl Aodladl 13 @udl) plaiad § AesMadl pie ) s plail) (Graim a2 Gotun IS e Audsandl pucg Aulgaall ol
Ul sia § Aaslall &y dall Lodladl o3 Adgandl pue @b alusiuly gosig bl oilisall

EV R AN N

o3l B3 aiylys o lae¥l a1 Al (yina¥l AT dmndl Lz ,8ls0) allaall (Ll sate allaidl celaall 2l ae

TABLE 1. BEHAVIOR AT VARIOUS LEVLES
Level Description
1 2-out-of-5:G (4-out-of-5:F)
2 3-out-0f-5:G (3-out-of-5:F)
3 Series (5-out-0f-5:G) (1-out-of-5:F)

TABLE 2. PROBABILITIES OF THE VARIOUS STATES OF THE
MULTISTATE COMPONENTS
i 1 2 3 4 5

pi{3} 0.80 | 0.81 | 0.82 | 0.83 | 0.84
pi{2} 0.10 | 0.11 | 0.11 | 0.11 | 0.10
pi{1} 0.05 | 0.04 | 0.05 | 0.03 | 0.02
pi{0} 0.05 | 0.04 | 0.02 | 0.03 | 0.04
3

Z pi{j} 1.00 | 1.00 | 1.00 | 1.00 | 1.00

j=0

TABLE 3. SUCCESS AND FAILURE PROBABILITIES AT THE VARIOUS

LEVELS OF THE MULTISTATE COMPONENTS

Level i 1 2 3 4 5
3 p{=3} | 080 | 081 | 082 | 083 | 084
pf<3} | 020 | 019 | 018 | 017 | 0.6
2 pi{=2} [ 090 | 092 | 093 | 094 | 0.94
pf<2} | 010 | 008 | 007 | 0.06 | 0.06
1 p{=1 | 095 | 096 | 098 | 097 | 096
p{<1} | 005 | 004 | 002 | 003 | 0.04
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TABLE 4. EXPRESSIONS OF SYSTEM SUCCESS AND SYSTEM FAILURE AT EVERY NON-ZERO LEVELJ{1=1,2,3}

(2-out-of-5:G)
(4-out-of-5:F)

VX, {= 13X {= 1}
vX,{= 1}X,{= 1}
vX,{= 1}X{= 1}
vXa{> 11X, (> 1}
vXa{> 11Xs{> 1}
VX, {> 11X{> 13

Level j System success at level j System failure at level j
Sz1}=X{=1}X,{= 1}
v, {= 1}x,{= 1}
v, {= 1}x,{= 1} s{< 0}
1 vX {= 1}X{= 1} = X, {< 0}X,{< 0}X;{< 0}X,{< 0}

vX {< 0}1X,{< 0}X5{< 0}Xs{< 0}
vX {< 0}1X,{< 0}X,{< 0}Xs{< 0}
vX {< 0}1X5{< 0}X,{< 0}Xs{< 0}
VX, {< 0}X5{< 03X, {< 0}X.{< 0}

2
(3-out-of-5:G)
(3-out-of-5:F)

S{= 2}

= X1{= 2}X,{= 2}X;{= 2}
vXi{= 2}X,{= 2}X,{= 2}
vXi{= 2}X,{= 2}Xs{= 2}
vXi{= 2}X:{= 2}X,{= 2}
vXi{= 2}X:{= 2}Xs{= 2}
vXi{= 2}X,{= 2}Xs{= 2}
vX,{= 2}X:{= 2}X,{= 2}
vX,{= 2}X:{= 2}X:{= 2}
vX,{= 2}X,{= 2}X:{= 2}
vX3{= 2}X,{> 2}X:{= 2}

S 1} =X {< X, {< 1}X;{< 1}
vX, {< X, {< 1}X,{< 1}
vX {< X, {< 1}X:{< 1}
vX, {< 3X{< 1}X,{< 1}
vX {< X{< 1}X:{< 1}
vX {< 13X {< 1}X:{< 1}
vX,{< 13X:{< 1}X,{< 1}
vX,{< 11X:{< 1}X:{< 1}
vX,{< 13X, {< 1}X:{< 1}
vXs{< 13X, {< 1}X:{< 1}

3
Series
(5-out-of-5:G)
(1-out-of-5:F)

S{= 3} = X,{= 3}X,{= 3}
X3{= 3}X,{= 3}Xs{= 3}

S{< 2} = X, {< 2}vX,{< 2WvX.{< 2}
VX (< 2 vX (< 2}

TABLE 5. THE MINIMAL UPPER VECTORS (MUVS) AND THE
MAXIMAL LOWER VECTORS (MLVS)
MUVs MLVs
(1,1,0,0,0),
(1,0,1,0,0),
(1,0,0,1,0),
(10,001, {(0,0,0,0,3), TABLE6.  THEPROBABLITY IN EACH STATE ACCORDING TO
(0.11.00) (0,0,0,3,0), TWO METHODS
8D =1 (01010) 5(0) = {(0,0,3,0,0),
01.001), (0,3,0,0,0), Sg'f;fg‘ 3 2 1 0 Total
POy (3,0,0,0,0), .
(0,0,1,1,0), Probabil
0.0101), i 23] 03705 | 06260 | 0.0035 0 1.0000
(0,0,0,1,1),
(22,2,0,0), (1,1,1,33), Probabil
g;gggg 813;3 ity, | 0.370464 | 0.626015 | 0.003512 | 0.000007 | 1.000000
(2.0.2.2,0), (13.113), present | 192 792 848 168 000
(2,0,2,0,2), (131,31), results
02 =1 (20,022), oM =1 (13311),
(0,2,2,2,0), (3.1,1,1,3),
0,2,2,0,2), (3,1,1,31),
0,2,0,2,2), (3.1,3,1,1),
(0,0,2,2,2), (33,1,1,1),
((2,3,3,3,3,3),1
(3,2,3333),
03) ={(33333)} | o2 ={ (33.233),
(33,3,23),
(33,3,3.2),
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n=20 n=1 n=2 n=3 n=4 n=>5
k=0
k=1
psi= j}
k:2 . ) . B
p2A<j} p3{<j} pa{<j} ps{<j}

Fig. 2. A signal flow graph implementing the reliability version of the AR algorithm for computing the expectation
E{s{z j}}(z, 5,p{= j}) of system success at level j when k; = 2andn = 5.

n=0 n=1 n=2 n=3 n=4 n=>5
k=0
k=1
k=2
Q pA<j}
p3{<j} pa{<j} ps{<j}

Fig. 3. A signal flow graph implementing the reliability version of the AR algorithm for computing the expectation
E{s{= j}}(3,5,p{= j}) of system success at level j when k; = 3and n = 5.
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n=2 n=3 n=4 n=>5
k=0
k=1 .
pi{<j}
k=2 Co>
p2A< ]}
k=3 0
Q p3{<j}
k=4 0 :
Q paf<j}
k=5 0
C ps{<j}

Fig. 4. A signal flow graph implementing the reliability version of the AR algorithm for computing the expectation
E{s{= j}}(5,5,p{= j}) of system success at level j when k; = 5and n = 5.

n=20 n=1 n=2 n=3 n=4 n=>5
k=0
k=1
k=2
p2{<J} ps{</} pa{< j} ps{<j}

FIG. 5. A SIGNAL FLOW GRAPH IMPLEMENTING THE UNRELIABILITY VERSION OF THE AR ALGORITHM FOR COMPUTING THE
EXPECTATION E{s{< j}}(2, 5, p{= j}) OF SYSTEM FAILURE AT LEVEL j WHEN k; = 2 AND n = 5. EVERY NODE VALUE IN THE
FIGURE IS COMPLEMENTARY TO THE CORRESPONDING NODE VALUE IN FIG. 2.
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n=20 n=1 n=2 n=3 n=4 n=>5

k=0
k=1
k=2 -

p2{<j}

ps{=j}
k=3 _
p3{<j} pa{<j} psi<j}

Fig. 6. A signal flow graph implementing the unreliability version of the AR algorithm for computing the expectation
E{s{< j}}(3, 5,p{= j}) of system failure at level j when k; = 3 and n = 5. Every node value in the figure is complementary to the corresponding node value in
Fig. 3.

n=20 n=1 n=2 n=3 n=4 n=>5

k=0

k=1

k=2

k=3

k=4

k=5

Fig. 7. A signal flow graph implementing the unreliability version of the AR algorithm for computing the expectation
E{S{< j}} (5,5, p{= j}) of system failure at level j when k; = 5and n = 5. Every node value in the figure is complementary to
the corresponding node value in Fig. 4.
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k=0

k=1

k=2 @ 0.04
. 0.02 0.03 0.04

Fig. 8. Actual computations implemented on the SFG of Fig. 2 to obtain E{s{z 1}}(2, 5, p{= 1}) of system success at level 1.
The figure manifests the inconvenience of representing ultra-reliabilities in fixed-point format.

n=0 n=1 n=2 n=3 n=4 n=>5

=1

0.96

S
0.04 0.02 0.03 0.04

Fig. 9. Actual computations implemented on the SFG of Fig. 5 to obtain the expectation E{s{< 1}}(2, 5, p{= 1}) of system
failure at level 1. The figure demonstrates the numerical convenience of dealing with probability of failure rather than that of
success when dealing with ultra-reliable systems. Every node value in the figure is complementary to the corresponding node

value in Fig. 8.
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k=0

A 4

SENO.

0.94 0.94
= (O
0.07 6 0.06

Fig. 10. Actual computations implemented on the SFG of Fig. 3 to obtain E{s{z 2}}(3, 5,p{= 2}). Again, the figure manifests
the inconvenience of representing ultra-reliabilities in fixed-point format.

n=0 n=1 n=2 n=3 n=4 n=>5
k=0
0.93

0.94

0.0016952

S

0.08

0.93 0.94 0.94
0.07 0.06

0.06

Fig. 11. Actual computations implemented on the SFG of Fig. 6 to obtain the expectation E{s{< 2}}(2, 5, p{= 2}) of system
failure at level 2 . Again, the figure demonstrates the numerical convenience of dealing with probability of failure rather than that
of success when dealing with ultra-reliable systems. Every node value in the figure is complementary to the corresponding node
value in Fig. 10.
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n=4 n=>5
k=0
=1 (0D
- D
=z (CoOm
0.83
=t (o) — 0.4410288
. 0.84
s (o) — 0.370464192

Fig. 12. Actual computations implemented on the SFG of Fig. 4 to obtain E{s{z 3}}(5, 5, p{= 3}). This reliability figure neatly
recovers the celebrated reliability-product formula of a series system. Dually, the unreliability version of the AR algorithm is
equally efficient in obtaining the dual (albeit much less known) unreliability-product formula of a parallel system.

n=0 n=1 n=2 n=3 n=4 n=>5

0.82

0.18 0.83

@
@

= @— 0.64
-

0.6
016 29535808

Fig. 13. Actual computations implemented on the SFG of Fig. 7 to obtain the expectation E{s{< 3}}(5, 5, p{= 3}) of system
failure at level 3. Every node value in the figure is complementary to the corresponding node in Fig. 12. This kind of unreliability
computation is not recommended for the present series system (but is preferable for a parallel system).

k=3

k=5




