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Abstract 
We study the efficiency of the universal method of scheduling and 
operational planning for objects with a network representation of 
discrete production processes (UMSOP) by means of statistical 
modeling. We claim the efficiency of the method in general and of 
using PSC-algorithms to solve NP-hard single-stage scheduling 
problems used in UMSOP. We present a modification of UMSOP, 
which consists in a proposition to use a new efficient 
approximation algorithm as a part of the operational planning 
model. The algorithm is created for the single-stage scheduling 
problem that allows to solve the operational plan adjusting 
problems more efficiently, comparing to the single-stage 
scheduling problem used in UMSOP. We show that the obtained 
solution is conditionally optimal and give a lower bound to the 
optimal value of this new problem’s functional. 
Key words: 
Scheduling, Operational planning, Discrete production, 
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1.  Introduction 

The problem of efficient planning in systems with a discrete 
nature of network-type production processes is of current 
attentive interest. This is connected to the facts that: 
 discrete network-type production processes are the most 

common (for example, about four of five mechanical 
engineering enterprises are small-series productions); 

 the problem of obtaining an operational plan which is 
optimal in terms of practical criteria for a production of 
such nature is in fact a multi-stage scheduling problem 
(MSSP) of a rather general type. As we know, obtaining 
efficient exact or approximation algorithms for this kind 
of problem is still a quite difficult problem today. 
Researches in this area are widely known, e.g., [1–5]. 

 The purpose of this article is to substantiate 
experimentally the efficiency of the universal method of 
scheduling and operational planning of objects with a 
network representation of discrete production (UMSOP) 

and modify it using the theory of PSC-algorithms for single-
stage intractable scheduling problems [6–9]. 
 The paper contains two main parts. Section 2 presents the 
study of UMSOP’s efficiency on the basis of a computer 
experiment. In Section 3, we give a modification of this 
method to increase its efficiency. 

2.  Study of UMSOP’s Efficiency 

 UMSOP solves the following problem [5]. We need to 
build an operational plan to process a set of interrelated jobs 
at an object specified by a discrete network-type 
technological process. Optimization is based on five 
practical basic criteria given below and their arbitrary linear 
combinations. We also have to solve the operative planning 
problem which is the operational plan adjustment in case of 
its partial failure during execution. The jobs processing is 
considered within the network-type model. Its formal 
representation is a graph with several types of elements (Fig. 
1 which is a shortened and modified version of Fig. 9.6 [5]). 
 In Fig. 1, an arrow entering a circle indicates a completed 
job, an arrow coming out of a circle is a new uncompleted 
job assigned for processing on the element the arrow points 
to; a square is a SMOJ-type element (single machine and 
one job). Other types of job processing elements: SMSJ 
(single machine and sequential jobs), PMCDD (identical 
parallel machines and jobs with a common due date), PMEP 
(identical parallel machines of equal productivities and jobs 
with arbitrary due dates), PMVP (identical parallel 
machines of various productivities and jobs with arbitrary 
due dates). A buffer denotes special precedence relations 
between jobs corresponding, for example, to assembling or 
disassembling procedures. iC  is the completion time of 
product i  corresponding to the completion time of its 
terminal job [5]. 
 The five basic optimality criteria are the following [5]. 
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 Criterion 1 [5]. The enterprise’s total profit maximization 
in the absence of the products’ due dates: 
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Here,  Ti  is the weight coefficient of product i  
determined in an expert way; T  is the planning period, 

niCT i ,1,  ; n  is the number of products, P  is the 
guaranteed minimum income from the sale of all n  
products; E  is the total cost. 
 Criterion 2 [5]. The enterprise’s total profit maximization 
subject to the condition: each product Ii  has a due date 

id  that must not be violated (just in time planning): 
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i  is the income from the sale of the product i  if it 
completes just in time. 
 Criterion 3 [5]. The enterprise’s total profit maximization 
subject to the conditions: each product Ii  has a due date 

id ; the total weighted tardiness of products in regard to 
their due dates must be minimized: 
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where P  is the guaranteed minimum income from the sale 
of all n  products if they are not tardy; E  is the total cost; 

i  is the cost of (penalty for) the tardiness of product i  in 
relation to its due date per time unit. The value of 

 iii dC  ,0max  is the reduction of income P  in the case 
if product i  has the tardiness ii dC  . 
 Criterion 4 [5]. Each product Ii  has a due date id  and 
a given absolute value of profit i  for its processing. The 
profit does not depend on the completion time of the 
product if it is not tardy in regard to its due date. Otherwise, 
the enterprise’s profit for this product is zero. The problem 
is to maximize the total profit of the enterprise: 
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the product i  if it is not tardy in regard to its due date, E  
is the risk of the profit loss due to the due dates violation. 
 Criterion 5 [5]. All products have due dates id . We need 
to minimize the total cost (penalty for the enterprise) both 
for earliness and tardiness in regard to the due dates: 
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where P  is the guaranteed minimum income from the sale 
of all n  products if they are not tardy or early; E  is the 
total cost; i  is the cost of (penalty for) the deviation of the 
completion time of product i  from the due date per time 
unit. The value of iii dC   is the reduction of income P  
in the case if product i  has the tardiness ii dC   or the 
earliness ii Cd  . 
 The methodology of constructing the universal method 
UMSOP that solves the formulated problem is as follows 
[5]. A two-level procedure of the technological process 
aggregation was proposed on the basis of the new formal 
representation of discrete network-type technological 
processes. The second level of aggregation represents the 
initial production in the form of the following single-stage 

Fig. 1  A network model example with all types of elements. 
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scheduling problem. A set of jobs is to be processed on a 
single machine taking into account the restrictions on the 
sequence imposed in the form of a directed acyclic graph. 
We need to find an optimal sequence that minimizes the 
total weighted completion time of jobs provided that the 
weights are specified only for the terminal jobs of products. 
This problem is called TWCTZ. 
 It is shown [5] that the first basic criterion leads to the 
TWCTZ problem at the second level of aggregation. An 
approximating TWCTZ problem is constructed for each of 
the basic criteria 2–5. The problem parameters are uniquely 
set by the parameters of the basic criterion. 
 The exact PSC-algorithm is used to solve the TWCTZ 
problem [10] (p. 354). The obtained optimal sequence of 
products (or product series) is used by the developed 
method of coordinated planning at the first level of the 
aggregated model. The result of coordinated planning are 
the completion times for the terminal jobs. Then the times 
are used as the due dates for the terminal jobs in the 
proposed formal model that represents discrete network-
type production processes ( ii Cd  in Fig. 1). 
 The resulting problem is a MSSP. Its goal is to obtain a 
feasible operational plan that minimizes the technological 
cycle time while implementing the given portfolio of order. 
 Thus, obtaining an optimal operational plan according to 
any of the five basic criteria or their arbitrary linear 
combination changes only the values of the due dates for the 
terminal jobs without changing the formulated MSSP in its 
substance. 
 The method for the MSSP solving is the appropriate 
procedure for an operational plan construction that starts 
from the terminal jobs of products and finishes with jobs at 
the beginning of the planning period. PSC-algorithms [11] 
for the following single-stage combinatorial optimization 
problems are used during the MSSP solving: 
 On SMSJ-type elements, we solve the problem of the 
total earliness minimization with arbitrary due dates of jobs 
on a single machine when jobs must not be tardy [7]; 
 On PMCDD-type elements, we solve the total earliness 
minimization problem on identical parallel machines with a 
common due date of jobs that must not be tardy [8]; 
 On PMEP-type elements, we solve the lexicographic or 
scalar criterion maximization problem on identical parallel 
machines of equal productivities with arbitrary due dates of 
jobs that must not be tardy [9]; 
 On PMVP-type elements, we solve the lexicographic or 
scalar criterion maximization problem on identical parallel 
machines of various productivities with arbitrary due dates 
of jobs that must not be tardy [9]. 
 The operative planning problem is to adjust the 
operational plan [5] in the final part of the network model 
(Fig. 1, where ii Cd  ). To solve this problem, in particular, 
PSC-algorithms are used for a number of single-stage 

combinatorial optimization problems [5] including the 
PSC-algorithm for the problem of independent jobs 
scheduling on identical parallel machines to minimize total 
tardiness when the machine start times are arbitrary but less 
than the common due date (TTPL) [12]. 

2.1. Methodology of the Efficiency Study of an 
Operational Plan Construction in UMSOP 

As mentioned above, there are no algorithms to solve the 
formulated problem of scheduling and operational planning 
of objects with a network representation of discrete 
production according to the five specified practical basic 
criteria. Therefore, we propose to compare the efficiency of 
the universal method UMSOP with the “standard” method 
presented below. It is based on the following positions. 
 There is no other efficient way to solve the problem, 
except for the use of the aggregation/disaggregation 
methodology. Therefore, we propose to keep the procedures 
of aggregation and disaggregation, coordinated planning, 
the MSSP solving algorithm developed for the formal 
representation of network-type technological processes. But 
we exclude all PSC-algorithms for single-stage scheduling 
problems solving and replace them with efficient heuristic 
algorithms. 
 Thus, the statistical study of UMSOP’s efficiency 
actually reduces to proving the efficiency of using exact 
PSC-algorithms for solving NP-hard but partial single-stage 
scheduling problems used in UMSOP. 
 The “standard” method has such differences from the 
universal one. Instead of exact PSC-algorithms, we use 
efficient high-speed heuristic algorithms. 
 Firstly, for TWCTZ problem solving on an aggregated 
model of the second level of aggregation, we use the initial 
feasible sequence construction algorithm (see the algorithm 
for TWCTZ problem solving [5] (p. 481)) as the heuristic 
algorithm. It takes into account the priorities of products 
(the ratios of their weights and processing times) and the 
constraints imposed by the directed acyclic graph. 
 Secondly, we replace the algorithms for single-stage 
optimization problems solving on the network elements at 
the third level of UMSOP. 
 On SMSJ-type elements, we use the following heuristic 
algorithm to construct a schedule. 

Algorithm A-SMSJ 
1. Build a feasible (without tardy jobs) schedule in which jobs 

are in non-decreasing order of due dates [13] (Chap. 3). 
2. Find the latest start time of jobs at which the obtained 

schedule remains feasible (see Algorithm A [7] (p. 18)). 
3. Apply all feasible permutations in the obtained schedule 

to process longer jobs earlier. As shown in [7] (Theorem 
2.3 on p. 21, Example 2.3 on p. 22), each permutation of 
such type reduces the total earliness of jobs. 
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 On PMCDD-type elements, we use an algorithm based 
on sequential permutations that improve the functional 
value [8] starting from the schedule obtained by the greedy 
algorithm A02 [8]. 
 On PMEP-type and PMVP-type elements, we use two 
heuristic algorithms for the scalar criterion (the earliest start 
time of machines maximization). Then we use the best of 
obtained solutions as the final result. 
 The first heuristic algorithm: we use Algorithm B2.1 
from [9] (p. 50) on PMEP-type elements and Algorithm 
D2.1 from [9] (p. 78) on PMVP-type elements. 
 The second heuristic algorithm is the human-machine 
algorithm that combines efficient formal procedures with 
the professionalism of experts in the discussed subject: 
1. Experts pre-assign jobs to the machines. 
2. Algorithm A-SMSJ is applied on each machine. 
3. Experts analyze the resulting assignment and reassign 

jobs to the machines if necessary, go to step 2. 
4. Steps 2 and 3 are repeated until a feasible schedule is 

obtained that satisfies the experts. 

Note. The second method is used for small and medium size 
problems. 

2.2. Statistical Study of UMSOP 

The research was done on a PC with an Intel’s 3 GHz 
processor. We considered such dimensions (the number of 
operations in the network n ): 100, 200, 500, 1000, 5,000, 
10,000. 125 examples were generated for each dimension. 
Next, each of 750 examples was solved by both the 
universal and the “standard” method for each of the five 
basic optimization criteria (we did not test synthetic criteria, 
but solving common applied problems shows that mixed 
criteria usage has little effect on the average performance of 
UMSOP). Thus, we did 3750 runs for each method. 
 Table 1 below illustrates the statistical studies of UMSOP 
by showing the values of such indicators: 
 Utmax / Utmin / Utavg  are the largest / the smallest / the average 

(for all 125 examples) time of the problem solving 
(obtaining an operational plan) by the universal method 
in seconds; 

 Stmax / Stmin / Stavg  are the largest / the smallest / the average 

(for all 125 examples) time of the problem solving 
(obtaining an operational plan) by the “standard” 
method in seconds; 

 S
max / S

min / S
avg  are the largest / the smallest / the 

average (for all 125 examples) deviation of the 
functional value for the operational plan obtained by the 
“standard” method from that for the universal one, as a 
percentage of the functional value according to the 
universal method (“+” means a higher value for the 
“standard” method, “–” means a lower value). 

 The results show that, as a rule, the “standard” method 
runs 1.5 to 2 times faster than the universal one, but has 7 
to 16 % worse efficiency in terms of the functional value. 

3. The Modification of UMSOP 

As we show in Section 2, solving the formulated problems 
of a production process planning is only possible through 
the use of the aggregation and disaggregation methodology. 
Thus, the modification of UMSOP consists in: 
 modification of PSC-algorithms used in UMSOP, in 

order to increase their efficiency; 
 creation of efficient algorithms for solving single-stage 

scheduling problems used in UMSOP, however in a 
more general formulation, which increases the 
efficiency of the method’s application. 

The modification of UMSOP presented in this article 
consists in generalization of the TTPL problem [12] (used 
at the fourth level of the model which is the operative 
planning level) and the proposed efficient method to solve 
the generalized problem. 

3.1. TTPL Problem Description 

Given a set of n  tasks J  and m  identical parallel 
machines. We know a processing time jl  for each task 

Jj . All tasks have a common due date d . We assume 
that a machine mii ,1,  , can start to process any task of the 
set J  after the time point is . The start times of the 
machines is  satisfy dsi  , mi ,1 , and may be different.  
The machines idle times are forbidden. We need to build 
such a schedule   of the tasks Jj  processing on m  
machines that minimizes the functional 

    



Jj

j dCf ,0max
 

where  jC  is the completion time of task j  in the 
schedule  [12]. 
 Let us use the following notation and definitions [12]: 
  iP  is the set of non-tardy tasks in the schedule of 

machine i ;  
  iS  is the set of tardy tasks in the schedule of machine 

i  for which dlC jj  , dC j  ,   iSj , where 

jj lC   is the start time of a task j ; 

  iQ  is the set of tardy tasks in the schedule of machine 

i  for which dlC jj  ,   iQj ; 

 
mi

iPP
,1

 ; 
mi

iSS
,1

 ; 
mi

iQQ
,1

 ; 

   



)(iPj
ji ldR  is the time reserve of machine i  in a 

schedule  ;  
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   dl
ii SPj
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 )()( 

 is the tardiness of task   iSj  

in regard to the due date; 
 PS  is a class of schedules that correspond to the 

following conditions: 
1.   SPSP ,,2,1  ( SP is the cardinality of 

the set SP ); 
2. If nSP  , then dl

ii SPj
j 

 
 and iQ  contains those 

and only those elements which differ from iSP   

by an amount that is a multiple of m , mi ,1 . 

 PSP  is a class of schedules satisfying the 

following additional conditions: 
1.  PP ,,2,1  ; 
2.  

 i
mi

j
Sj

Rl
,1)(

maxmin ; 

3. If 
lk jj ll  , then 

llkk jjjj lClC     Sjj lk , . 

 A schedule with the same number of tardy tasks on all 
machines is called an even schedule; 

 maxL  is the maximum number of tardy tasks on all 

machines; 

 Numbers ki ,1  correspond to machines with the 
number of tardy tasks maxL ; 

    
k

i i1
,     

m

ki iRR
1

; 

         ,min R . 

 It was shown in [14] that sufficient signs of optimality of 
a feasible solution derived for the case when the start times 
of machines are the same [6] are also valid for the case when 
the start times of machines are fixed and arbitrary. 

Theorem 1 [12]. Sufficient sign of optimality of a feasible 
solution #1. An even schedule P  is optimal. 

Table 1: Comparison of the universal and the “standard” method for the planning problem solving. 

n  Utmax  Utmin  
Utavg  Stmax  Stmin  

Stavg  S
max  S

min  
S
avg  

The basic criterion 1 
100 0.29 0.10 0.15 0.25 0.08 0.10 +12.5 +8.4 +10.6 
200 0.64 0.22 0.33 0.55 0.17 0.22 +13.0 +8.8 +9.8 
500 2.57 0.88 1.28 2.17 0.66 0.86 +12.1 +9.5 +10.5 

1,000 7.19 2.47 3.48 5.79 1.74 2.26 +13.7 +11.4 +12.2 
5,000 129.43 44.71 61.09 97.45 29.07 37.26 +15.1 +8.9 +12.8 
10,000 482.36 167.44 222.16 333.52 98.71 125.05 +14.9 +11.8 +12.6 

The basic criterion 2 
100 0.84 0.30 0.48 0.74 0.23 0.46 +12.1 +9.2 +10.5 
200 1.84 0.66 1.02 1.60 0.51 0.99 +13.0 +8.6 +11.0 
500 7.67 2.77 4.14 6.38 1.99 3.85 +12.9 +7.5 +10.6 

1,000 21.05 7.65 11.10 16.38 5.09 9.70 +13.5 +6.8 +10.8 
5,000 392.87 143.44 202.15 280.71 86.49 163.00 +16.0 +7.0 +12.4 
10,000 1,401.23 514.06 703.52 982.52 300.37 559.47 +19.7 +7.6 +14.9 

The basic criterion 3 
100 1.45 0.57 0.93 1.28 0.43 0.82 +14.7 +8.7 +10.2 
200 3.19 1.26 2.00 2.82 0.94 1.77 +13.8 +8.4 +9.8 
500 13.07 5.19 7.98 10.80 3.57 6.66 +13.5 +8.4 +9.7 

1,000 37.22 14.84 22.18 28.25 9.27 17.07 +13.8 +8.8 +10.1 
5,000 664.71 266.40 386.49 495.16 161.25 293.35 +14.8 +9.7 +11.0 
10,000 2,408.46 969.93 1366.48 1710.35 552.66 993.65 +15.9 +10.7 +12.0 

The basic criterion 4 
100 0.55 0.21 0.38 0.51 0.17 0.31 +15.1 +9.5 +11.3 
200 1.17 0.45 0.79 1.08 0.36 0.65 +13.5 +8.5 +9.9 
500 4.96 1.91 3.26 4.23 1.39 2.47 +13.8 +8.6 +10.0 

1,000 13.51 5.23 8.67 11.30 3.68 6.48 +14.9 +9.1 +10.5 
5,000 245.16 95.43 153.56 195.49 63.17 109.89 +16.1 +9.8 +11.1 
10,000 913.55 357.34 558.35 681.47 218.50 375.65 +16.0 +9.7 +10.9 

The basic criterion 5 
100 0.78 0.37 0.55 0.77 0.25 0.44 +14.6 +8.3 +10.7 
200 1.68 0.80 1.16 1.66 0.54 0.93 +14.2 +8.0 +10.5 
500 6.85 3.28 4.60 6.64 2.12 3.65 +14.7 +8.2 +10.9 

1,000 18.96 9.13 12.42 17.53 5.56 9.45 +15.5 +8.5 +11.6 
5,000 353.85 171.13 226.20 306.00 96.31 161.71 +16.7 +9.1 +12.6 
10,000 1,295.59 629.61 808.13 1,028.88 321.32 533.18 +16.0 +8.6 +12.1 
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Theorem 2 [12]. Sufficient sign of optimality of a feasible 
solution #2. If        0,min   R  in a schedule 

P , then the schedule   is optimal. 

 The PSC-algorithm for the TTPL problem solving is 
given in [12] (pp. 305–312). It includes the polynomial 
component and the approximation algorithm and is built 
solely on directed permutations. After the problem solving, 
we obtain either a strictly optimal solution by the 
polynomial component of the algorithm (if any sufficient 
sign of optimality was satisfied during the computation) or 
an approximate one with an upper bound for the deviation 
from the optimum for every instance of the problem [12] (p. 
312; Theorem 6.11 at p. 300). 

3.2. Statistical Studies of the PSC-algorithm for TTPL 
Problem Solving 

We generated random problem instances with dimensions 
ranging from 100 to 3,000 tasks and from 5 to 30 machines. 
We chose the processing times of tasks from a uniformly 
distributed interval of integers from 1 to 200, the chosen due 
date d was equal to 70 % of the total processing time of all 
tasks divided by the number of machines and rounded to the 
lower integer. The start times of the machines were chosen 
from a uniformly distributed interval of integers from 1 to 
d . We ran 2,000 runs for each ),( mn  pair on a PC with an 
Intel’s dual-core 3.4 GHz processor. We used the PSC-
algorithm from [12] (p. 308) for the solution. 
 Average solving time (for all 2,000 runs) did not exceed 
1 ms for the maximum size of the TTPL problem. 
 Table 2 shows the average (for all 2,000 runs) frequency 
of a sufficient sign of optimality fulfilment (an optimal 
solution obtaining) in percent depending on the problem size. 
 Statistical studies have shown high efficiency of the PSC-
algorithm for TTPL problem solving. Thus, we achieved an 
optimal solution in 77.7 % of runs on average. The 
frequency of optimal solutions obtaining increases 
significantly with the introduction of additional types of 
permutations, and in that case it also increases with the 
problem size (up to 89–96 %) [6]. 

3.3. Generalization of TTPL Problem 

The generalized problem statement is based on TTPL 
problem statement [12]. Given a set of n  tasks J  and m  
identical parallel machines. We know a processing time jl  
for each task Jj . All tasks have a common due date d . 
We assume that a machine mii ,1,  , can start to process 
any task of the set J  after the time point is . The start times 
of the machines is  satisfy dsi  , mi ,1 , and may be 
different.  The machines idle times are forbidden. Tasks 

Jj  , JJ  , must complete without tardiness: 
JjdCj  , . We need to build such a schedule   of the 

tasks Jj  processing on m  machines that minimizes the 
functional 

    



Jj

j dCf ,0max
 

where  jC  is the completion time of task j  in the 
schedule  . 
 This problem (let us call it TTPLG) is studied for the first 
time. It is NP-hard since the TTPL problem is also NP-hard. 
This is a natural generalization of the TTPL problem, a 
single-stage scheduling problem used at the fourth level of 
UMSOP. We present an efficient approximation algorithm 
for its solution and show that there exists a constructively 
built lower bound of the optimal functional value for this 
algorithm. 

3.4. The Approximation Algorithm for TTPLG 
Problem Solving 

1. First, distribute (assign to mathines) tasks 'Jj  using 
the PSC-algorithm for the TTPL problem [12] (p. 305–
312). The readiness times of the machines for tasks 
processing equal to is , mi ,1 . 

 As a result of the problem solving by the PSC-algorithm, 
the following cases are possible: 

 It yields a feasible schedule (the total tardiness is zero). 
Go to step 2; 

 It yields an optimal solution (one of the sufficient signs 
of optimality is fulfilled during the solving), in which 
the total tardiness is greater than zero. In this case, there 
is no feasible solution for the original TTPLG problem 
(see Statement 1). The end of the algorithm; 

 a feasible solution has not been built, although it may 
exist. The end of the algorithm (the approximation 
algorithm has not solved the problem instance). 

2. After assigning the tasks 'Jj  to machines, determine 
new readiness times of the machines for tasks processing. 
Exclude tasks 'Jj  from the set J . The formulated 
problem is a TTPL problem. Solve it with the PSC-
algorithm from [12].  

Table 2: Average frequency of an optimal solution obtaining, % 
m 

n  5 7 10 15 20 30

100 94.7 100.0 98.4 73.0 65.0 95.3
200 83.6 96.8 97.1 86.0 97.5 74.9
400 83.8 75.7 84.3 85.5 99.9 99.2
600 79.7 82.1 91.2 84.3 90.5 99.4
800 70.3 81.0 81.8 92.8 89.7 90.8

1,000 72.0 69.8 64.6 94.8 91.7 71.1
1,500 65.2 67.9 68.2 65.0 71.3 93.9
2,000 61.0 60.6 65.7 80.2 48.5 96.7
2,500 63.3 63.2 67.7 54.8 50.6 79.0
3,000 65.6 58.0 64.5 65.4 57.0 39.1
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3.5. Theoretical Properties of the Approximation 
Algorithm 

Statement 1. Suppose that the PSC-algorithm for the TTPL 
problem formulated at Step 1 of the approximation 
algorithm has found an optimal solution to the problem (its 
polynomial component has built a solution that satisfies one 
of the sufficient signs of optimality), and the total tardiness 
in this solution is strictly greater than zero. Then, the 
original TTPLG problem has no feasible solution. 

Proof. Let a feasible solution to the original problem exist. 
Then, there is a feasible solution with zero total tardiness to 
the problem formulated at Step 1. But this is impossible, 
since the value of the total tardiness for an arbitrary solution 
of the problem formulated at Step 1 cannot be less than the 
total tardiness of its optimal solution. ■ 

Statement 2. Suppose that the PSC-algorithm for solving the 
TTPL problem formulated at Step 2 of the approximation 
algorithm has solved the obtained problem instance 
optimally (its polynomial component has built a solution 
that satisfies one of the sufficient signs of optimality). Then, 
the resulting schedule obtained after Steps 1 and 2 execution 
is conditionally optimal: we have got the minimal total 
tardiness of tasks from the set '\ JJ  for the readiness times 
of machines found at Step 2 for processing the tasks from 
this set. 

Validity of Statement 2 is obvious. 

Statement 3. Let us remove the restriction of completion the 
tasks 'Jj  without tardiness in the TTPLG problem. 
Solve the obtained TTPL problem with the PSC-algorithm 
[12]. Then, the following is true for the optimal solution of 
the problem (if one of the sufficient sign optimality was 
satisfied during the problem solving): 
 if all tasks of the set 'J  do not violate the due date, then 

an optimal solution to the TTPLG problem is obtained; 
 if at least one task 'Jj  violates the due date, then the 

functional value in the optimal solution of the TTPL 
problem formulated in Statement 3 is the lower bound 
to the functional value in the optimal solution of the 
TTPLG problem. 

Proof follows from the fact that the optimal functional value 
of the TTPL problem after removing the restrictions on the 
tasks of the set 'J  cannot be greater than the optimal 
functional value of the original problem. ■ 

4.  Conclusions 

1. We have substantiated the current interest in operational 
plans building for objects with a network representation 
of discrete production. 

2. We have substantiated and presented the methodology of 
studying the efficiency of UMSOP [5, 6]. 

3. We have presented the results of statistical studies of 
UMSOP. 

4. We have substantiated the necessity of using the theory 
of PSC-algorithms to solve NP-hard single-stage 
scheduling problems used in the general scheme for an 
operational plan construction and its adjustment during 
its execution. 

5. We have proposed a modification of the UMSOP based 
on the use of a new single-stage scheduling problem and 
an efficient method for its solving at the fourth level of 
UMSOP’s implementation (the level of the operational 
plan adjustment). We have presented an approximation 
algorithm for the new problem solving and a constructive 
theoretical study of the solution obtained by the 
approximation algorithm. 

 
References 
[1] A. A. Pavlov and S. F. Telenyk, Informatsionnye tekhnologii 

i algoritmizatsiya v upravlenii (Informational technologies 
and algorithmization in control), Tekhnika, Kyiv, 2002 (in 
Russian). 

[2] D. Ivanov, A. Dolgui, and B. Sokolov, “A dynamic approach 
to multi-stage job shop scheduling in an Industry 4.0-based 
flexible assembly system,” presented at Advances in 
Production Management Systems. The Path to Intelligent, 
Collaborative and Sustainable Manufacturing: APMS 2017. 
Springer, Cham. DOI: 10.1007/978-3-319-66923-6_56 

[3] J. Xu, S. Zhang and Y. Hu, “Research on construction and 
application for the model of multistage job shop scheduling 
problem,”. Mathematical Problems in Engineering, Vol. 
2020, Article ID 6357394, pp. 1-12, 2020. DOI: 
10.1155/2020/6357394 

[4] J. Blazewicz, K.H. Ecker, E. Pesch, G. Schmidt, M. Sterna, 
and J. Weglarz, Handbook on Scheduling: From Theory to 
Practice, 2nd ed., Springer, Cham, 2019. DOI: 10.1007/978-
3-319-99849-7 

[5] M. Z. Zgurovsky and A. A. Pavlov, “Algorithms and 
software of the four-level model of planning and decision 
making,” in Combinatorial Optimization Problems in 
Planning and Decision Making: Theory and Applications, 1st 
edn., Springer, Cham, 2019. DOI: 10.1007/978-3-319-
98977-8_9 

[6] M. Z. Zgurovsky and A. A. Pavlov, Prinyatie resheniy v 
setevykh sistemakh s ogranichennymi resursami (Decision 
making in network systems with limited resources), Naukova 
dumka, Kyiv, 2010 (in Russian) 

[7] M. Z. Zgurovsky and A. A. Pavlov, “Optimal scheduling for 
two criteria for a single machine with arbitrary due dates of 
tasks,” in Combinatorial Optimization Problems in Planning 
and Decision Making: Theory and Applications, 1st edn., 
Springer, Cham, 2019. DOI: 10.1007/978-3-319-98977-8_2 

[8] A. A. Pavlov and M. O. Sperkach, “Vypolnenie zadaniy s 
obshchim direktivnym srokom parallel’nymi priborami po 
kriteriyam optimal’nosti: minimizaciya summarnogo 
operezheniya otnositel’no direktivnogo stroka i 
maksimizaciya momenta zapuska zadaniy na vypolnenie” 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

38

 

(Tasks execution with a common due date on parallel 
machines with optimality criteria: total earliness 
minimization regarding the due date and the tasks' start time 
execution maximization), Visnyk NTUU KPI Inform. Oper. 
Comput. Sci., Vol. 62, pp. 89–92, 2015 (in Russian). 

[9] M. Z. Zgurovsky and A. A. Pavlov, “Optimal scheduling for 
vector or scalar criterion on parallel machines with arbitrary 
due dates of tasks,” in Combinatorial Optimization Problems 
in Planning and Decision Making: Theory and Applications, 
1st edn., Springer, Cham, 2019. DOI: 10.1007/978-3-319-
98977-8_3 

[10] M. Z. Zgurovsky and A. A. Pavlov, “The total weighted 
completion time of tasks minimization with precedence 
relations on a single machine,” in Combinatorial 
Optimization Problems in Planning and Decision Making: 
Theory and Applications, 1st edn., Springer, Cham, 2019. 
DOI: 10.1007/978-3-319-98977-8_7 

[11] M. Z. Zgurovsky and A. A. Pavlov, “Introduction,” in 
Combinatorial Optimization Problems in Planning and 
Decision Making: Theory and Applications, 1st edn., 
Springer, Cham, 2019. DOI: 10.1007/978-3-319-98977-8_1 

[12] M. Z. Zgurovsky and A. A. Pavlov, “The total tardiness of 
tasks minimization on identical parallel nachines with 
arbitrary fixed times of their start and a common due date,” 
in Combinatorial Optimization Problems in Planning and 
Decision Making: Theory and Applications, 1st edn., 
Springer, Cham, 2019. DOI: 10.1007/978-3-319-98977-8_6 

[13] V. S. Tanaev and V. V. Shkurba, Vvedenie v Teoriju 
Raspisaniy (Introduction to Scheduling Theory), Nauka, 
Moscow, 1975 (in Russian). 

[14] A. A. Pavlov, E. B. Misura, and T. N. Lisetsky, “Sostavlenie 
raspisaniya vypolneniya nezavisimyh zadanii identichnymi 
parallelnymi priborami, momenty zapuska kotoryh menshe 
obschego direktivnogo sroka” (Scheduling independent tasks 
on the identical parallel machines which starting times are 
smaller than a common due date). Visnyk NTUU KPI Inform. 
Oper. Comput. Sci., Vol. 58, pp. 24–28, 2013 (in Russian). 

 
 

Sergii Telenyk    graduated in 1975 
from Igor Sikorsky Kyiv Polytechnic 
Institute, Ukraine, which is connected 
with his further scientific and 
educational activity. He has got PhD 
degree in 1982 and Doct. of Science 
degree in 2000. Professor and head of 
the Dept. of Automation and Control 
in Technical Systems since 2001. 
Dean of the Faculty of Informatics and 

Computer Engineering since 2018. Winner of the State Prize of 
Ukraine in Science and Technology (2018). He is currently a 
professor of Dept. of Theoretical Electrical Engineering and 
Computer Science, Cracow University of Technology. His 
research interests include models and methods of IT infrastructure 
management, design and programming automation, mathematical 
logic, computational linguistics, artificial intelligence, control 
theory, information systems design. 

Alexander Pavlov    graduated in 
1967 from Igor Sikorsky Kyiv 
Polytechnic Institute, Ukraine, and 
connected with it his further scientific 
and educational activity. He has got 
PhD degree in 1970 and Doct. of 
Science degree in 1977. Associate 
professor of Technical Cybernetics 
Dept. since 1974. Professor (since 

1979) and head (since 1981) of the Dept. of Computer-Aided 
Management Systems (renamed to Dept. of Computer-Aided 
Management and Data Processing Systems in 1994). Dean of the 
Faculty of Informatics and Computer Engineering in 1995–2018. 
Winner of the State Prize of Ukraine in Science and Technology 
(2009). Academician in Ukrainian Academy of Science of High 
School. His research interests include stability theory of nonlinear 
dynamic deterministic and stochastic control systems, operations 
research, intractable combinatorial and scheduling problems, 
models and methods of planning and control. He is a member of 
the Expert Council of the Accreditation Commission of Ukraine in 
the Ministry of Education and Science of Ukraine. 
 

Elena Misura    graduated from Kyiv 
Institute of Food Technologies, Ukraine, 
in 1964 and from Igor Sikorsky Kyiv 
Polytechnic Institute (KPI) in 1973. Her 
further scientific activity is connected 
with KPI. She has got PhD degree in 
1981. She was an associate professor 
and head substitute of the Dept. of 
Computer-Aided Management and Data 
Processing Systems. Senior researcher 

since 1991. Her research interests include operations research, 
scheduling, and intractable combinatorial problems solution. 
 

Taras Lisetsky    graduated from Igor 
Sikorsky Kyiv Polytechnic Institute, 
Ukraine, in 2010 and its post-graduate 
school in 2013. He is now an 
entrepreneur for software engineering in 
Kyiv and applies for PhD degree in the 
Dept. of Computer-Aided Management 
and Data Processing Systems. His 
research interests include software 
design, scheduling, APS software. 
 
Elena Khalus    graduated from Igor 
Sikorsky Kyiv Polytechnic Institute, 
Ukraine, in 2004 and its post-graduate 
school in 2007. She is now a senior 
lecturer in Igor Sikorsky KPI and applies 
for PhD degree in the Dept. of Computer-
Aided Management and Data Processing 
Systems. Her research interests include 
algorithms theory, operations research, 
scheduling, software design. 
 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

39

 

Oleg Melnikov    graduated in 1995 
from Igor Sikorsky Kyiv Polytechnic 
Institute, Ukraine, Dept. of Computer-
Aided Management and Data Processing 
Systems, and connected with it his 
further scientific activity.  He has got 
PhD degree in 2013 and is now a 
researcher in the department mentioned. 
His research interests include intractable 
scheduling problems, models and 

methods of planning and control, APS software. 
  


