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Summary 
In this paper, we propose a pitch extraction method 
effective in narrow-band noise. We first use the fourth-root 
spectrum instead of the logarithm spectrum by reducing the 
effect of noise. The noise-free fourth-root spectrum is then 
flattened inspired by the lifter approach for reducing the 
effect of vocal tract characteristics. In our proposed method, 
we use the half-wave rectification approach instead of 
clipping operation on liftered spectrum to suppress the noise 
effect and maintain the periodicity in between the 
harmonics. Therefore, we can extract the more accurate 
pitch. Through experiments, the excellent pitch extraction 
performance of the proposed method is validated. It is also 
shown that the computation of the proposed method is 
simple and fast. 
Key words: 
Pitch, fourth-root, log spectrum, lifter, narrow-band, vocal tract, 
half-wave rectification. 

1. Introduction 

For voiced speech, pitch period is defined as the inverse of 
fundamental frequency of the excitation signal. Pitch period 
extraction is a key technique to understand most acoustical 
phenomena in speech communication and plays an 
important role in speech processing applications such as 
speech coding, speech recognition, speech enhancement, 
speech synthesis and so on. In the above systems, the 
system performance is significantly influenced by the 
accuracy of pitch extraction. Most of the pitch extraction 
methods in the literature are classified into three categories, 
as methods that use time domain properties, frequency 
domain properties, and both time and frequency domain 
properties of the speech signals [1][2]. 
 
Pitch extraction has proven to be a difficult task, even for 
speech in a noise-free environment. The clean speech 
waveform is not really periodic; it is quasi-periodic and 
highly non-stationary. On the other hand, when the speech 
signal is corrupted by noise, the reliability, and accuracy of 
pitch extraction algorithms face real challenges. Under 
noisy conditions, the periodic structure of the speech signal 

is destroyed so that the pitch extraction becomes an 
extremely complicated task. Among the conventional pitch 
extraction methods, the autocorrelation function (ACF) [3] 
is a straightforward computation one in the time domain and 
shows effectiveness against wide-band random noise such 
as white noise. The ACF corresponds to a correlation 
calculation between the input speech signal and its delayed 
version in the time domain, but it is also obtained by the 
inverse Fourier transform of the power spectrum of the 
speech signal. The ACF is, however, affected by the 
characteristics of the vocal tract. For reducing the vocal 
tract affect, many algorithms have been developed based on 
the ACF [4]-[12]. For example, YIN [4] focused on the 
conventional ACF, normalization, and interpolation to 
reduce the error rates in pitch extraction. 
The average magnitude difference function (AMDF) [5] is 
a simplified version of the ACF, but provides a similar 
performance with the ACF. The AMDF treats a difference 
between the speech signal and its delayed version. It shows 
similar properties with the ACF. In [6], the AMDF was 
combined with the linear predictive analysis to eliminate the 
affect of vocal tract. Correntropy [7] also provides the 
similar properties to the ACF, which has a kernel function 
to transform the original signal into a high dimensional 
reproducing kernel Hilbert space (RKHS) in a nonlinear 
way. This transformation preserves the characteristics of the 
periodic signal. Higher order statistics [8] are also used to 
enhance the resolution of pitch extraction. However, the 
performance of correntropy in noisy environment is not so 
good. In [9], the harmonic sinusoidal autocorrelation 
(HSAC) was proposed. The pitch harmonic was utilized 
from the discrete cosine transform (DCT), and applied to 
the symmetric average magnitude sum function (SAMSF) 
for generating the periodic impulse-train to extract the pitch. 
In [9], many ideas and algorithms were embedded and the 
resulting pitch extractor is so complicated to implement. In 
[10], another pitch extraction method was proposed based 
on the time-frequency sparsity of speech signal by using an 
auditory filterbank. The auditory filterbank decomposes the 
speech signal into subbands. Then, the normalized 
autocorrelation function (NACF) [11] is applied to the 
subband signals, which are encoded for extracting the pitch. 
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The NACF reduces more the variations in the signal 
amplitude than the ACF does. The filter bank approach in 
[10] is very effective, but inherently relies on a 
sophisticated post-processing technique to compensate for 
the pitch extraction errors. 

 
In highly noisy environments, the two correlation-based 
methods; ACF and AMDF, are not good enough compared 
with the weighted autocorrelation function (WAF) [12].  
The WAF also focuses on the ACF, but it is weighted by the 
inverse of the AMDF, resulting in an excellent pitch 
extractor in noisy environments. Most of the ACF based 
pitch extraction methods are effective in white noise. In 
general, the pitch extraction performance of the ACF based 
methods is degraded when the clean speech is corrupted by 
color noise.   

 
In the frequency domain, one of the most widely accepted 
technique is based on the use of the cepstrum (CEP), which 
is proposed in [13][14]. In the CEP method, the pitch is 
extracted by applying the inverse Fourier transform of the 
log-amplitude spectrum, which is also effective. The 
logarithmic function involved in the CEP has the effect of 
shifting the vocal tract characteristics to low-quefrency 
parts. Utilizing high quefrency parts, we can extract the 
pitch without being affected by the characteristics of vocal 
tract. 
Modified CEP (MCEP) in [15] further involves the liftering 
and clipping operations on the log spectrum, which is used 
to remove the characteristics of vocal tract as well as to 
eliminate the unnecessary notches of spectral valleys which 
correspond the noise phenomenon on the log spectrum. The 
MCEP also removes the high-frequency components for 
increasing the pitch extraction accuracy.  
The ACF of the log spectrum (ACLOS) [16] utilizes the 
liftering and clipping operation on the log spectrum again. 
Then, the ACF is applied to the resulting log spectrum. The 
ACLOS emphasizes the periodicity of harmonics in the 
spectrum.  

 
The CEP based methods are clearly expressed the harmonic 
structure of the speech signal under no noise conditions. 
However, in noisy environments, the CEP based methods 
does not perform well totally because the speech peaks are 
influenced by the noise peaks. 

 
From the above point of view, the fourth-root (FROOT) 
method is introduced in [17]. The FROOT method is 
utilized in the amplitude spectrum instead of the logarithm 
spectrum for reducing the effect of noise. Therefore, the 
FROOT method is expected to get the clear harmonics 
structure by removing the unnecessary components by 
using the lifter and clipping operations. However, in noisy 
environments, the FROOT method is affected due to the 
noise characteristics in between the harmonics. Resulting in 

that, the pitch extraction accuracy of the FROOT method is 
severely degraded at the narrow-band noise.  

 
Fig. 1. Block diagram of proposed method. 

 
A spectral harmonic technique has addressed in [18]. In this 
method, the bank of bandpass lifter is used to flatten the 
spectrum. Then, the autocorrelation function is applied to 
the spectrum domain for extracting the pitch periodicity by 
reducing the effect of vocal tract characteristics. This 
approach may be effective but the overall procedure is 
complicated to implement.  

 
Recently, two sophisticated approaches have been 
addressed [19][20]. The pitch estimation filter with 
amplitude compression (PEFAC) [19] is a frequency 
domain pitch extraction method, which utilizes its sub-
harmonic summation [21] in the log frequency domain. The 
PEFAC also attempts an amplitude compression technique 
for enhancing its noise robustness.  
On the other hand, BaNa [20] considers the noisy speech 
peaks and results in a hybrid pitch extraction method that 
selects first five spectral peaks in the amplitude spectrum of 
the speech signal. BaNa calculates the ratios of the 
frequencies of the spectral peaks with tolerance ranges and 
accurately extracts the pitch of the speech signal. 

 
In this paper, we propose a method for the narrow-band 
noise that utilizes the half-wave rectification (HWR) on the 
lifter spectrum for pitch extraction. In the narrow-band 
noise, the noise energy is distributed over a shorter range of 
frequencies. In this noise case, after lifter and clipping 
operations, the FROOT method fails to preserve the 
periodicity by the effect of the noise characteristics which 
is effective to extract the more accurate pitch. Therefore, the 
proposed method utilizing the HWR on the lifter output to 
present the clear harmonics and maintain the periodicity 
among the harmonics for increasing the extraction accuracy. 
Resulting in that, the proposed method emphasizes strongly 
the pitch peak in its waveform and simultaneously 
suppresses the noise components included in the noisy 
speech.  

 
The remainder of this paper is organized as follows. Section 
2 describes the principle of the proposed method. In Section 
3, we first compare the performance of the proposed method 
with that of the conventional methods and then discuss the 
processing time. Finally, we conclude this paper in Section 
4. 
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2. Proposed Method 

Let us assume that the clean speech signal, 𝑥ሺ𝑛ሻ , is 
corrupted by noise, 𝑤ሺ𝑛ሻ. The noisy speech signal, 𝑦ሺ𝑛ሻ, is 
expressed as 

𝑦ሺ𝑛ሻ ൌ 𝑥ሺ𝑛ሻ ൅ 𝑤ሺ𝑛ሻ   (1) 
 

 
Fig. 2. Different spectral shapes of speech signal at 

SNR=0 [dB] (car interior noise). 
 
Figure 1 shows a block diagram of the proposed method. In 
the proposed method, firstly we apply a low pass filter 
(LPF) to the noisy speech signal framed by a window 
function because the LPF can eliminate the noise 
characteristics for increasing the accuracy of pitch 
extraction. The LPF is often applied before the analysis of 
speech signals and filters out the high-frequency 
components of the noisy speech signals. We use an LPF 
with the telephone line cutoff frequency. 
 
After windowing, we have considered the different spectral 
shapes of a speech signal as shown in Fig. 2. From figure 2, 
we have observed that the periodicity of the log spectrum is 
destroyed by the effect of the noise in the valley region. On 
the other hand, the fourth-root spectrum is emphasized to 
present the pitch harmonics in the low-frequency domain as 
well as to reduce the noise effect at the valley region in the 
high-frequency domain. Therefore, in this paper, we have 
selected the fourth-root spectrum for reducing the noise 
effect than that of the log spectrum. 
 
However, the fourth-root spectrum sometimes faces the 
effect of vocal tract characteristics. To overcome this 
problem, the flattening procedure is more effective.  

Fig. 3. waveform at different liftering output (a) using 10th 
lifter order  (b) using 25th lifter order (c) using 40th lifter 

order at SNR=0 [dB] (car interior noise). 
 
Therefore, we apply a lifter in the fourth-root spectrum. The 
lifter is implemented by multiplying by a lifter order in the 
quefrency domain and then converting back to the 
frequency domain resulting in a smoother signal. Basically, 
the vocal tract information is present at the lower part in the 
quefrency domain. At the higher part in the quefrency 
domain, the pitch information is present. Resulting in that, 
lifter order should be shorter to reduce the influence of the  
vocal tract characteristics. From figure 3, we have 
investigated that the lifter of 25th order preserve the high 
periodicity than that of the higher lifter order (ex. 40th 
order) at the lifter output. Therefore, the proposed method 
is used the short lifter of 25th order to eliminate the vocal 
tract information in the quefrency domain and to reduce the 
influence of noise. Resulting in that, the lifter is used to get 
the clear harmonics which maintain the periodicity for pitch 
extraction. 
After lifter operations, we have observed that the noise 
components are present in between the harmonics and it can 
not maintain their periodicity in the noisy environments. In 
these cases, we have considered the harmonics from the 
lower frequency domain of the lifter output which is 
effective to extract the more accurate pitch by using the 
proposed method. Therefore, the HWR is applied to the 
lifter output which emphasizes the accurate pitch period by 
reducing the effect of noise and maintain the periodicity 
than that of the clipping operation in the noisy environments 
as shown in Fig. 4. 
 
Figure 4 illustrates how to extract the pitch period by using 
the proposed method in the clean speech signal and the  
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Fig. 4. Processing in step-by-step for FROOT method and 
the proposed method, (a) at clean speech (b) at SNR=0 

[dB] (car interior noise). 
 
noisy speech signal, respectively. We have observed that 
the energy level of the first three harmonics provides almost 
same amplitude in the lower frequency domain of the 
fourth-root spectrum. The pitch information also presents 
within these harmonics. After that, the clipping operation is 
applied to the lifter output where the pitch harmonics are 
maintained the periodicity. On the other hand, the HWR on  
lifter output fails to overcome the periodicity in between the 
harmonics in the clean speech signal. Therefore, the  
FROOT method extracts the more accurate pitch period in 
the clean speech signal as shown in Fig. 4 (a). In contrast, 
in the noisy speech case (such as car interior noise), we have 
investigated that the harmonics are not maintained their 
periodicity at the clipping output. Resulting in that, 
sometimes undesired peaks arise in the FROOT method by 
the affect of formant characteristics of the vocal tract.  
Therefore, the HWR is applied to the lifter output to 
maintain the periodicity in between the harmonics. For this 
reason, the proposed method extracts the accurate pitch  
period by reducing the effect of the vocal tract 
characteristics as well as suppressing the noise effect in the 
noisy environments as shown in Fig. 4 (b). 

3. Experiments 

To investigate the performance of the proposed 
method, we conducted experiments on speech signals. 

3.1. Experimental Condition 

Speech signals are taken from three databases; NTT [22] 
and KEELE [23]. In the NTT database, which was 

developed by NTT Advanced Technology Corporation, the 
speech materials are 11 [s] long and spoken by four 
Japanese male and female speakers, which were sampled at 
a rate of 10 [kHz]. From the KEELE database, we utilize 
five male and five female speech signals spoken in English. 
The total length for the ten speakers' speeches are about 5.5 
[m]. These speech signals were sampled at a rate of 16 
[kHz]. To generate noisy speech signals, we added car 
interior noise, and military vehicle noise to the speech 
signals. The car interior noise, and military vehicle noise 
were taken from the NOISEX-92 database [24] with the 
sampling frequency of 19.98 [kHz]. These noises were 
resampled with the sampling frequency of 10 [kHz] and 16 
[kHz], respectively, for using the speech data in [22]-[23]. 
The SNR was set to -5, 0, 5, 10, 20, ∞ [dB] and the other 
experimental conditions for pitch extraction were 
 

 frame length: 51.2 [ms], except for BaNa; 
 frame shift: 10.0 [ms]; 
 window function: Hanning; 
 band limitation of LPF: 3.4 [kHz]; 
 DFT (IDFT) length : 1024 points for the NTT 

database and 2048 points for the KEELE database 
except for BaNa. 

 
The following pitch extraction error 𝑒ሺ𝑙ሻ was used for the 
evaluation of pitch extraction accuracy based on Rabiner's 
rule [2]; 
 

𝑒ሺ𝑙ሻ ൌ 𝐹௘௦௧ሺ𝑙ሻ െ 𝐹௧௥௨௘ሺ𝑙ሻ   (2) 
 
where 𝑙  corresponds to the frame number, 𝐹𝑒𝑠𝑡ሺ𝑙ሻ  and 
𝐹𝑡𝑟𝑢𝑒ሺ𝑙ሻ are the fundamental frequency extraction from the 
noisy speech signal, and the true fundamental frequency at 
the 𝑙 െ 𝑡ℎ frame, respectively. If |𝑒ሺ𝑙ሻ| ൐ 10 ሾ%] from the 
ground truth fundamental frequency, we recognized the 
error as gross pitch error (GPE) and calculated the GPE rate 
(in percentage) over the total frames included in the speech 
data. Otherwise, we recognized the error as fine pitch error 
(FPE) and calculated the mean value of the absolute errors. 
We detected and accessed only voiced parts in sentences for 
pitch detection. For extracting the pitch, we used the search 
range of 𝑓𝑚𝑎𝑥 ൌ 50 ሾ𝐻𝑧ሿ  and 𝑓𝑚𝑖𝑛 ൌ 400 ሾ𝐻𝑧ሿ,  which 
corresponds to the fundamental frequency range most of 
people have. 
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The ground truth information for the fundamental 

frequency at each frame is included in the KEELE database , 
while the true fundamental frequencies at each frame in the 
NTT database were measured in [16] by observing the 
waveforms carefully, which are used here. Therefore, the 
𝐹𝑡𝑟𝑢𝑒ሺ𝑙ሻ  values in (2) are known a priori to evaluate. 
 
Fig. 5. GPE under different SNR levels in NTT database. 
 
3.2. Performance Comparison 
 
The pitch extraction performance of the conventional (such 
as CEP [13], FROOT [17], and BaNa [20]) and proposed 
methods was investigated in noisy environments. Here, we 
consider the car interior noise and the military vehicle noise,  
which are the narrow-band noise. These are addressed in 
Fig. 9. 
 
All parameters of the conventional methods are the same as 
those in the proposed method, except for the frame length 
and the DFT(IDFT) points for BaNa. Specifically, for BaNa 
the frame length was set as 60 [ms] and the DFT (IDFT) 
points were 2ଵ଺  according to the suggestion in [20]. The 
source code to implement BaNa was collected from [26]. 
 

Figure 5 shows the average GPE rate in the NTT database 
with narrow-band noise. When the SNR is changed from -5 
[dB] to ∞ [dB] (clean speech case), each plot has been 
obtained under each SNR condition. From Fig. 5, it is 
observed that the average GPE rate of the proposed method 
is better than that of the conventional methods for car 
interior noise at low SNRs. At high SNRs (>10 [dB]), the 
proposed method and the FROOT method is competitive 
with each other.  
 
Fig. 6. FPE under different SNR levels in NTT database. 

 
On the other hand, in the case of military vehicle noise, the 
proposed method provides better GPE rate at almost all 
SNRs levels than that of the other conventional methods 
except CEP at low SNR (-5 [dB]). At the low SNR (-5 [dB]) 
in the military vehicle noise case, the CEP provides slightly  
better GPE rate than that of the other methods. This could 
be due to a strong periodical nature of the two noises. See  
Fig. 9, we can observe that the car interior noise produces a 
sharp narrow band peak and the military vehicle noise also 
shows narrow band peaks, respectively. These give a strong 
periodical nature of the noise at low SNRs. The CEP is 
known to behave robustly against periodical noises. 
In the clean speech case, BaNa shows the worse average 
GPE rate than that of the other methods due to the selection 
of spectral peaks.  
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However, it should noted here that the computational 
complexity of BaNa is extremely high.  
 
Figure 6 shows the average FPE in the NTT database. The 
FPE represents the variations in detecting the pitch. 
Average FPE range for all methods is approximately from 
1.5 [Hz] to 5.2 [Hz]. From Fig. 6, we see that the FPE of the 
proposed method is comparatively better than the other 
methods. 
 
 

Fig. 7. GPE under different SNR levels in KEELE 
database. 

 
To validate the proposed method, we have employed 
additionally the KEELE database. Fig. 7 shows the average 
GPE rate in the KEELE database with the narrow-band 
noise. The KEELE database provides the ground truth 
values of the pitch which are obtained from laryngograph 
signals. We analyzed the ground truth values of the pitch 
and found that some discontinuities are present. Therefore, 
the ground truth of the pitch is not so accurate. This appears 
in the resulting GPE rates. From Fig. 7, it is obvious that the 
GPE rates of the clean speech are higher than those of the 
clean speech in Fig. 5. This is reflected from the accuracy 
of the ground truth of the fundamental frequency in the 
KEELE database. 
 

Fig. 7 indicates that the proposed method provides the 
smallest GPE rate at narrow-band noise except at high 
SNRs such as 20 [dB] and ∞ [dB]. At high SNRs, the 
proposed method is competitive to the FROOT method 
because FROOT method maintain their periodicity by using 
the clipping operation. 
 
The average FPE performance in the KEELE database as 
shown in Fig. 8. From Fig. 8, it is obvious that the proposed  

Fig. 8. FPE under different SNR levels in KEELE 
database. 

Fig. 9. Long term average spectra of noises. 
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method and the FROOT method are competitive with each 
other which provides the lower error rates than the other 
methods in the narrow-band noise. 
 
3.4. Processing Time 
 
In Table 1, we have compared the processing time per one-
second data for each method in the NTT database. We have 
tested all methods on the PC with Intel (R) Core(TM) i5- 
6400K, 4 [GHz] clock speed of CPU and 8 [Gigabytes] of 
memory. For the evaluation, we have used five trials for 
each method, then calculated the average processing time to 
obtain reliable measurements. From Table 1, we notice that 
the processing time of the proposed method and the FROOT 
method are almost similar, which are commonly short than 
that of the other methods because the HWR and clipping 
operations are directly applied to the lifter spectrum. The 
computational time of the CEP method is shorter because it 
can consider the logarithm spectrum to identify the pitch 
candidates. On the other hand, BaNa faces the longest 
processing time because of the large FFT size, which is used 
for keeping high frequency resolution. 

Table 1: Processing time per second of speech 

CEP BaNa FROOT PROP 

0.232 
 

29.427 0.146 0.176 

 

4. Conclusion  

In this paper, a new noise robust method has been presented 
to deal with the problem of pitch extraction from noise 
corrupted speech signals. In noisy environments, the 
proposed method has been derived by using HWR on the 
lifter spectrum. The proposed method behaves so as to 
reduce the effect of vocal tract characteristics as well as 
suppressing the non-pitch peaks, resulting in enhancing the 
pitch peak in the narrow-band noise. Through experiments, 
we have confirmed that the proposed method is an efficient 
and effective method to extract the pitch in the narrow-band 
noise.  
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