
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

163

Manuscript received October 5, 2020 
Manuscript revised October 20, 2020 

https://doi.org/10.22937/IJCSNS.2020.20.10.22 
 

Exploring the Agile Family: A Survey 

Muhammad Ibrahim1, Shabib Aftab1,2, Birra Bakhtawar1, Munir Ahmad2, Ahmed Iqbal1, Nauman 
Aziz3, Muhammad Sheraz Javeid2, Dr. Baha Najim Salman Ihnaini4 

 
 

1Department of Computer Science, Virtual University of Pakistan, Lahore, Pakistan 
2School of Computer Science, National College of Business Administration & Economics, Lahore, Pakistan 

3Department of Computer Science, Superior University, Lahore, Pakistan 
4Department of Computer Science, College of Science and Technology, Wenzhou Kean University, China 

Summary 
Selection of an appropriate software development process 
model is the key aspect, which leads to the development of 
high-quality product within scheduled time. The selection 
of development model depends upon various aspects, 
related to the project, such as: size, complexity, and 
scheduled time. Agile family has been satisfying the 
software industry since last two decades by providing 
various flavors of development models. Each model of the 
agile family consists of different practices and 
characteristics appropriate for specific projects. This paper 
provides a detail view about the work flow, structure, 
practices, principles, advantages and disadvantages of 
various famous and widely used agile models including: 
Test-driven Development, Extreme Programming, Scrum, 
Crystal Models, Feature-driven Development and Dynamic 
System Development Methodology.  
 
Key words: 
Agile Software Development, Agile Family, Test-driven 
Development, Extreme Programming, Scrum, Crystal 
Methodology, Feature-driven Development, Dynamic System 
Development. 

1. Introduction 

Agile models came into existence in 2001. These models 
provided the opportunity to develop the software 
application faster with iterative & incremental manner. 
Agile family got the customer satisfaction due to a unique 
feature which is: “to welcome changing requirements at any 
stage of development” [2],[4]. All the models under agile 
umbrella follow the practices mentioned in “Agile 
Manifesto”, a parent document, contains the rules and 
guidelines for effective and efficient development. This 
document has twelve fundamental principles, which are 
primarily focus on following: frequent team-
communication, customer satisfaction, welcome changing 
requirements at any stage of development lifecycle, and 
early delivery of working software (module) [3],[4]. The 
Agile Manifesto was originated in Feb 2001, by many 

researchers [5],[6],[10]. Various lightweight methodologies 
of software development were presented on behalf of agile 
manifesto to overcome the drawbacks of conventional 
models [5],[6]. According to the researchers in [6],[20],[83], 
four principles are the backbone of effective software 
development, which were neglected in conventional 
methodologies. These principles are about to value 
“Individuals and interactions over processes and tools”, 
“Working software over comprehensive documentation”, 
“Customer collaboration over contract negotiation”, and 
“Responding to change over following a plan”. The agile 
team is self-devoted, self-organized and works in close 
collaboration. They yield a working software in a certain 
frame of cycles [7]. The development team provides a bug 
free product as per customer requirements within scheduled 
time in defined iterations. Every iteration satisfies the client 
with completion of some requirements in the form of 
working software (module). Continuous and consistent 
feedback from the customer side is an important feature of 
agile models which helps the development team to get 
timely and prompt response from customer on the 
developing software. This practice reduces the chance of 
project failure and helps the development team to deliver 
the product with required functionality within scheduled 
time [8]. Many agile models are in use by the software 
industry. A particular model is selected by software industry 
due to its features and practices which satisfies the industry 
need. For example, if any industry deals in the development 
of large scale projects then their interest would be to choose 
that agile model which can handle such type of project and 
provide a qualitative product at the end. On the other hand 
an agile model with light development structure would be 
selected for small scale projects [9]. However, besides the 
advantages, the agile models also reflect some drawbacks 
as well. Agile methods usually focus on short team goals of 
an organization, and do not satisfy long-term business needs. 
Some of the models are more challenging and problematic 
in the development of large scale project [8],[11],[12]. As 
agile family consists of various development models so 
each model has its own set of values & techniques, benefits 
& limitations, and roles & responsibilities 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

164

 

[13],[14],[25],[99]. This paper will thoroughly discuss six 
widely used agile process models including: Test-driven 
Development, Extreme Programming, Scrum, Crystal 
Models, Feature-driven Development and Dynamic System 
Development Methodology. During discussion various 
aspects will be focused including: development structure, 
phases, features, principles, practices, advantages and 
drawbacks.    

2. Test-Driven Development (TDD) 

Test-driven development is an art of ‘first deciding what 
you want your code to do, create a failing test, then write 
the code to make that test pass’. This strategy is often 
associated with automated testing and unit testing. In 
addition, the principles of TDD could be used in manual 
testing as well [16]. It was first published in 2003 in the 
book “Test-Driven Development by Example” by Kent 
Beck. However, an early reference to its use is the mercury 
project developed by NASA in the early 1960s [4]. TTD 
methodology is an agile practice in which automated tests 
and passing code satisfy clients’ requirements over multiple 
iterations. Unlike traditional methodologies, test driven 
development comprises of short and rapid iterations of 
“Create a Test, write the code to pass the test, and refactor”. 
These short iterations generate fast feedback, and 
refactoring the test and code ensures simplicity and 
readability of evolving software [17]. 

 

Fig. 1 Test-Driven Development Methodology [16] 

2.1 Principles of TTD 

Test-driven development lies on two simple and rapid 
development principles. These principles are about to 
formulating the failing test, and then write the productive 
code to pass the test and eliminate duplication [18]. 

2.2 Process Cycle of TDD 

Lifecycle of TDD is comprised of six sequential steps as 
described below. A diagram of Test-driven development 
methodology is shown in Figure 1.  

 Write small number of automated unit test cases 
 Running new unit test cases to ensure that there is no 

code to pass them 
 Write code which can pass implemented test cases 
 Re-running new test cases to ensure the correctness of 

new code 
 Re-Running all test cases to ensure that new code does 

not break any previously-test cases 
 Refactor the code and Repeat the above five steps to 

forward next functionality of the software 

Test-driven development uses a highly-iterative cycle to 
produce a piece of new system functionality that generally 
does not take more than a day. To push the next 
functionality in the system, all previously implemented test 
cases must be passed that provide some level of confidence 
of bug-free code up to the present time [15],[18]. 

2.3 Advantages of TDD 

1. Unlike traditional methodologies, TTD technique is 
more appropriate to detect errors in the early-stage 
without forwarding the next functionality in the system. 
It is a Fault-avoidance, Fault- elimination and Fault-
tolerance technique that catches error as soon as they 
occur in system [15]. 

2. Like regression testing, TTD ensures that the recent 
code implementation does not adversely affect existing 
base code [16]. 

3. Each iteration puts forward small functionality of the 
software that generally takes less than a day [15]. 

4. The Principles of TTD could be used in manual testing 
as well [19]. 

5. TTD is helpful to improve internal & external quality 
of the software [19]. 

6. In this development strategy, programmers break down 
the big system into smaller chunks that help to 
concentrate on each unit function, rather than the whole 
system at the same time and refactoring technique 
simplifies the logical and architectural design of the 
system periodically [18]. 

2.4 Disadvantages of TDD 

1. Testing the software is the duty of tester but in TTD, it 
is performed by a programmer that needs extra skill to 
write unit test cases. In addition, it slows down the 
development processes [4]. 

2. TTD is not suitable for those projects in which software 
parts need synchronization [4]. 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

165

 

3. This methodology works over less documentation, test 
cases are the overall system documents that are less-
sufficient in the maintenance phase [4]. 

4. The TTD technique becomes more time consuming if 
more test cases are often failed [4]. 

5. TTD is an engineering practice and it lacks the project 
management aspects [4]. 

3. Extreme Programming (XP) 

Extreme programming (XP) is one of the revolutionary & 
famous agile models invented by Kent Beck in 1999 [24]. 
It was designed to address the specific needs of software 
industry such as development of small project efficiently 
and effectively within defined time, and accepting the new 
or changing requirements in any stage of development, all 
of these features dramatically increased the software quality 
[54]. Extreme programming is the most widely used agile 
model as compared to others [89],[97],[98]. It is a 
lightweight and iterative methodology that delivers high-
quality software with less documentation on a realistic 
schedule. It is a combination of best values, principles, and 
practices, which are collectively applied in a disciplined 
way to achieve a bug free, high quality software product. 
XP process model empowers the development team to 
confidently accept the new requirements and change 
requests even late in development cycle. This practice gains 
the immediate customer satisfaction [10],[22],[55]. 

3.1 Principles of XP 

There are five fundamental principle values of XP 
suggested by “Kent Beck” which are extremely helpful to 
deliver high-quality software within defined time. The five 
principles are; communication, simplicity, feedback, 
respect, and courage. These principles guide the 
development team to focus on ; constant communication 
with the customer and fellow programmers, keeping the 
design simple and clean, get regular feedback from 
customer by testing software from the start of the project, 
deliver working software (module) as early as possible, and 
implement change-requests timely as they arise [21],[26]. 

3.2 Practices of XP 

Extreme Programming was devised with twelve core 
engineering practices that can be expressed in three cycles 
of activities as shown in Figure 2 [6],[26],[93]. The outer 
cycle describes the project planning strategy which is 
carried out between the customers and the development 
team. This cycle includes the following practices; sit-
together, planning games, acceptance tests and small 
releases practices. This cycle describes; programmers and 
the customer should sit-together and plan the iteration in 

which customer broadcast their business priorities and 
programmer technically estimates them which is known as 
“Planning games”, the on-site customer provides feedback 
on evolving software and also helps to create acceptance 
test cases, XP prefer small release periodically which is the 
key factor in getting feedback on the actual evolvement 
[6],[23],[26]. The middle cycle describes teamwork and 
includes; coding standard, collective ownership, metaphor, 
continuous integration, and sustainable pace. These 
practices are all about team communication and 
coordination and about how they produce high-quality 
software using an effective teamwork. The cycle of these 
practices describe; use of the same coding standard which 
increases code readability and understandability, the 
collective ownership empowers all programmers to read, 
update and maintain the code, metaphor is a common 
system naming technique that provides the overall coherent 
theme to which both programmers and the customer relate 
to the system easily, XP team performs multiple 
integrations per day to keep the system fully integrated at 
all-time, this technique provides a constant progress report 
and take all programmers on the same page, XP suggests 
40-hours per week work to keeps the team fresh and 
effective [6],[23],[26]. 

The innermost cycle represents core development activities 
including; simple design, test-first, pair programming and 
refactoring.  These coding practices explain; use simplicity 
in design that increase readability & maintainability, create 
automated and unit test cases before writing productive 
code, always write code with a partner, and periodically 
improve internal design without affecting external behavior 
of the system [6],[23],[26]. 

 

 

Fig. 2 XP Practices in cyclic form [6] 

 

3.3 Team Roles 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

166

 

XP model does not tag the detail of each associated role. 
Here, some significant roles expressed by Kent Beck are as 
follow [39]. 

 Programmers: who design & code the software 
 Onsite Customer: who are the clients and provide 

business priorities & constant feedback 
 Tester: who test the software & assist the customer and 

programmer in writing test cases 
 Tracker: Who monitors project progress, tracks goal 

estimates, & helps to improve process.  
 Coach: who guides the team, and directs processes 
 Consultant: The external guider, specifically accessed 

for technical and domain knowledge need 
 Manager: A Big boss, who takes important decisions, 

tracks team progress, & resolve disputes in between 
team, and customers 

3.4 Phases of XP 

XP is a fine combination of ideal values and best 
engineering practices, these values and practices are applied 
in six stages which are also called phases named; 
exploration, planning, iteration-to-release, production, 
maintenance, and death as shown in Figure 3 [38]. These 
phases define the complete life cycle of a project in which 
the XP team performs four core activities including; coding, 
testing, listening, and designing [41].  
1. In exploration phase: customer provides shortlist of 

business requirements and priorities. These are written 
down on particular story cards. 

2. In Planning phase: user priorities are estimated to 
create a realistic plan. 

3. In Iteration-to-release phase: development tasks are 
done in peer include; designing, coding, testing (unit 
testing) and integrations. 

4. In production phase: customer provides feedback on 
rewarded work. And team restructure itself to move the 
project onward succeeding development (next 
iteration), and in maintenance phase. 

5. In maintenance phase: suggested changes are made in 
software to surpass client expectations  

6. In death phase: project transition is performed, 
containing final-software as per client desires 
[24],[36],[37],[38]. 

3.5 Advantages of XP 

Major XP benefits include; incremental planning, respond 
to changing business requirements, constant feedback 
through small releases, good test coverage, and direct 
communication [55]. Core benefits of XP process model are 
discussed below:    

 Set of twelve core practices and five values are helpful 
to emerge problem solutions quickly [34],[42]. 

 XP model promotes cost-effective development in 
multiple cycles through a small team [32],[24]. 

 XP model can accept changes at any stage of 
development [28]. 

 XP stresses on frequent delivery over unproductive 
documents creating [32]. 

 Automated tests provide frequent feedback on 
implemented codes that save time & cost [10],[95].    

 Active user involvement keeps the project toward 
actual client business need [32],[35]. 

 

Fig. 3 Extreme Programming Project Cycle [36] 

3.6 Disadvantages of XP 

The Significant factors that resist the performance of XP 
include; week system design, less focus on paperwork, 
major part of the project cycle lies on oral communication, 
small team & close collaboration etc. [36].  
In [27] researcher highlights five XP practices that are not 
appropriate in large scale projects with large team size. 
These practices are; pair-programming, planning game, 
collective ownership, metaphor, and oral coordination. 
Core limitations are discussed below: 

 XP stresses on productive code writing over system 
designing [28],[30]. 

 XP methodology is iterative and non-incremental 
methodology [30]. 

 XP does not give good importance to Non-functional 
requirements, it only focuses on functional and 
productive work [40] 

 Coding in pair is one of problematic situation in which 
both programmers need same skills, mutual 
understating and good coordination [27],[24]. And 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

167

 

double person-month are required to produce same 
features. 

 XP process is hard to implement in a big organization 
having a large team size, it is only beneficial to low-
risk projects with small team [29],[24]. 

 XP manifesto does not support geographically 
distributed projects and team [31],[32]. 

 XP lacks in project management practice and depends 
upon customer support that may become a risk of 
project failure [91],[92]. 

 XP is not suitable for medium and large scale projects 
development [96]. 

4. Scrum  

From all agile models, Scrum is a well-planned 
methodology that was first explained by Ken Schwaber in 
1996. Scrum process model relies on a set of meetings, tools, 
and roles and its ultimate goal is to ship the quality software 
faster. It is an iterative and incremental methodology that 
produces software in small sprint cycles. Often it is 
considered as a project management framework that helps 
to manage processes & structures the team [46]. 

 

Fig. 4 Scrum workflow [45] 

4.1 Artifacts of Scrum 

Scrum defines three artifacts that are significantly designed 
to maximize the transparency in work, enhance inspection, 
and adaptation to keep improvement in processes. These 
artifacts are;  

 Product Backlog: this contains an ordered list of overall 
product requirements  

 Sprint Backlog: it is the set of product backlog items 
selected for the sprint  

 Increment: it is a sum of all product backlog items done 
in a sprint [7],[47],[90]. 

4.2 Ceremonies of Sprint 

The four major events that occur inside the sprint are known 
as scrum ceremonies. These are described in the following. 

1. Sprint Planning: it is the first scrum meeting (held 
between product owner, development team, and scrum 
master) in which the scrum team selects prioritized 
requirements for a sprint. The scrum master is one who 
organizes a sprint planning meeting. The product 
owner is responsible to declare important items & their 
priorities. And the development team is responsible to 
select enough & affordable work with respect to the 
limit of a sprint [39]. 

2. Daily scrum: it is a short and regular meeting between 
the scrum team that generally takes fifteen minutes. 
The goal of the daily scrum is to update the status of 
the project, in which the team shares the progress of the 
sprint, what they did yesterday, and what they are going 
today. And they also share impediments of the sprint 
[39]. 

3. Sprint Review: the product owner and development 
teams conduct the sprint review at the end of a sprint in 
which they validate the increment and share the 
progress with the customer. This meeting generally 
takes two to four hours [39]. 

4. Sprint Retrospective: the retrospective meeting is a 
short get-together conducted by the scrum team in 
which they focus on the improvement strategy of 
development process. In this meeting they disclose all 
effective and negative factors of the last sprint and 
create an effective plan to improve weaknesses in the 
successive sprint [39]. 

4.3 Team Roles 

Scrum is comprised of three steady roles: product owner, 
scrum master, and development team. The team members 
of scrum are self-managed, self-organized, and cross-
functional which performs constant communication, and 
interaction among the team [48],[50]. 

1. Product owner: he/she is responsible to describe 
product vision, return on investment, creates product 
backlog, set priorities with the customer, supports the 
scrum team to create sprint backlog, update product 
backlog after sprint review, and attends daily scrum & 
retrospective meetings [44]. 

2. Development team: the team of programmers and 
designers perform development tasks in the sprint like 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

168

 

coding, testing, and integrations. They are also 
responsible to take path in all meetings including sprint 
planning, daily scrum, sprint review, & sprint 
retrospective [44].    

3. Scrum master: he/she works with the team for scrum 
success, shields the team from external interference to 
complete the sprint smoothly, resolve impediments, 
create daily scrum, and take parts in all other meetings 
[44]. 

4.4 Scrum workflow 

Scum is an iterative and incremental methodology in which 
projects make progress in a series of sprints [6]. Each sprint 
delivers some amount of system features that are prioritized 
by the customer. The product owner gathers requirements 
from the customer using product backlog and defines the 
product vision to the team. After that, the team selects top 
user-requirements from a product backlog for a sprint and 
creates a sprint backlog. The sprint is a repeatable fix time-
boxed cycle, it includes; development goals (coding, testing, 
and integrations), daily scrum, and product backlog 
refinement which are performed by developers and scrum 
master. At the end of each sprint, the team takes a sprint 
review meeting in which the team demonstrates evolving 
software or new system functionalities to the product owner 
and the interested customers provide feedback on sprint 
increment. After that, the team takes the sprint retrospective 
meeting before moving towards the next sprint 
[43][49][52][94]. The complete cycle is shown in Figure 4. 

4.5 Advantages of Scrum 

The key reasons that encourage industries to prefer Scrum 
on other agile models include; iterative & increment 
development with management facilitation, client 
involvement with proper channel, the shield provided by 
scrum master to the team from external interruptions, fix 
and work-friendly development cycles (sprints) to deliver 
work on time and process focuses on one goal at a particular 
time rather than whole project [33]. Below are some more 
significant points which also reflect the effectiveness of 
scrum.  

 Scrum can deliver a large and complex system in small 
chunks of sprint easily [47],[54]. 

 Constant collaboration with the customer in each sprint 
keeps project on track [46]. 

 The mix and systematic strategy of ceremonies, 
artifacts and roles create self-management in an 
organization [55]. 

 Daily scrum meeting keeps track of task assignments 
of the scrum team constantly [39]. 

 Scrum process can also be used as a software 
maintenance tool [56]. 

 Scrum team does their full effort to reach the sprint goal 
within the time limit [39]. 

 Scrum allows the team to select affordable work that 
they can deliver under a time-limit calmly [57]. 

 Sprint retrospective activity eliminates weakness and 
promotes recommendations [52]. 

4.6 Disadvantages of Scrum 

Scrum process is beneficial to the project done by a small 
& collocated team rather than a large or distributed team 
[45]. Key problems that arise in a distributed and large 
teams are; poor communication & coordination, lack of 
system architecture, integration constraints and repetition of 
work [58]. Few more ineffective points of scrum model 
based on research and experimental observation are listed 
below.   

 Scrum gives priority to schedule the work, sprint and 
meeting over product quality [53] 

 Scrum does not guide, how the team completes the 
development goals in a sprint or in a fixed interval of 
time [32] 

 Scrum success depends on professionals and experts of 
scrum process [28] 

 In sprint, team lacks the time to manage documents. 
The documentation is performed by different team 
which may increase bug rate in documents [59]. 

 The product owner and customer must have enough 
knowledge & experience of scrum processes, to keep 
scrum success.  

 Once a sprint is defined then no changes can entail in it 
and defined work must be completed in the assigned 
time limit [51],[46]. 

 Scrum totally focuses on management rather than 
engineering and development activities [51]. Moreover, 
it does not describe the role of tester and programmers 
[10]. 

 Scrum does not offer globally distributed software 
development [58],[50]. 

 Daily scrum meeting (of fifteen minutes) is only a way 
to manage daily tasks [60]. 

 Scrum lacks the system test coverage [28]. 
 Late requirements may cause the integration issues in 

increments, which derail & distract the workflow of 
scrum [56]. 

5. Crystal Methodology 

The crystal family is a set of agile and lightweight 
methodologies. It has different flavors that focus primarily 
on people’s interaction and communication while working 
on a project over the tool or processes [10][66]. Moreover, 
organizations can tailor crystal methodologies to fit the 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

169

 

varying situations of distinct projects [61]. Crystal 
methodology was founded by Alistair Cockburn in the early 
1990s while working in IBM on different projects. He stated 
that personnel skills, interaction, and constant 
communication give a positive impression on the 
development. People are important, so processes should be 
mold to meet the requirements of them [62]. 

5.1 Crystal Flavors 

Crystal methodology is characterized in different color 
fashion, according to the number of team members being 
coordinated: 

Clear method is designed for small projects and small team 
up to eight members 

 Yellow is for team size 10-20 peoples 
 orange is for 20-50 peoples 
 Red is for 50 to 100 peoples 
 And Maroon, Blue, & violet are for larger teams’ size 

[62]. 

Selection of appropriate crystal method and size of the team 
relies on four important factors shown in Figure 5. The 
horizontal axis identifies the number of people being 
coordinated with respect to defining methodologies. The 
2nd axis represents potential losses caused by an undetected 
defect [63],[65]. 

1. Loss of comfort (C) 
2. Loss of discretionary money (D) 
3. Loss of essential money (E) 
4. Loss of Life (L) 

These four factors formulate a suitable methodology for an 
individual project. The programmers estimate the project 
life (L) by seeing the team size, available money for the 
project (E), required money (D) & comfort of the resources 
to work (C) [63]. 

 

Fig. 5 Crystal’s coverage of different project types 

According to Alistair Cockburn, the small team can only 
handle small projects, if the project's size and complexity 
increases, it is necessary to add more people to complete the 
project within the time limit [64]. The initial three crystal 
methods were constructed by Cockburn; Clear, orange, and 
orange web. However, only the first two have been 
practically evaluated [39]. Clear methodology is for a small 
group of peoples, who want to build their own, personal, 
strong, and effective method to deliver software product 
faster. It is designed for small projects with collocated-team 
where less documentations is used. It generally has six 
developers in a team and one team works on one project 
[61].   

 

Fig. 6 How problem size and methodology affect staff numbers [64]. 

Crystal orange is for medium scale projects having a team 
size of 10-40 members. In this method, several groups of 
team work on the same project, while each group of people 
is collocated, and cross-functional just like a Holistic 
Diversity strategy. Orange keeps constant communication 
among the groups while having a heavy project team 
structure. Still, it does not support distributed development. 
It emphasizes short deliveries to reduce maintenance costs, 
incremental development, and accept changes in business 
requirements [39]. 

5.2 Policy Standards 

In [39], the author defines some crystal policy standards that 
need to be applied during the development process, these 
policies and practices are described below. 

 Deliver product incrementally on regular basis 
 Deliveries are the basic milestone to track project 

progress  
 Active user involvement  
 Use automated test coverage strategies 
 Take two user review on each release 
 Maintain product as well as methodology in beginning 

and in the middle of increments 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

170

 

5.3 Seven Properties of Crystals 

Cockburn defines seven effective properties of the crystal, 
which were set up by the best team interviews. The first 
three properties help to create a better team and the last four 
keep the teams & projects in a safe zone. These properties 
are applied to all sizes of projects except osmotic 
communication. Osmotic is always lying inside the small 
group of collocated peoples [62]. The seven properties are 
discussed below;   

1. Rapid delivery 
2. Reflective improvement & make necessary changes 
3. Osmotic communication 
4. Personal safety, means speak when something 

bothering you 
5. Focus on work with peace of mind & time 
6. Easy access to the expert user 
7. Technical Environment with Automated Tests, 

Configuration Management & Constant Integration 
[62]. 

5.4 Strategies & Techniques of Crystals 

Crystals are a human-oriented methodology that does not 
need any specific strategy and technique. However, 
Cockburn suggested a few strategies and techniques that are 
used by modern agile development teams [62]. Strategies 
include: Exploratory 360°, Early Victory, Walking Skeleton, 
Incremental Re-architecture, and Information Radiators. 
Techniques include: Methodology Shaping, Reflection 
Workshop, Blitz Planning, Delphi-Estimation, Daily Stand-
up, Essential Interaction design, Process Miniature, Side-
by-Side Programming and Burn Chart.  

5.5 Team Roles 

Crystal methodology has eight specific roles in which: 
executive sponsor, ambassador user, lead designer, 
designer-programmer are important. Other four roles are 
additional including; coordinator, Business expert, 
Technical Writer, and Business tester.  The important roles 
are described below [39]. 

1. Executive Sponsor  
 Assign money for the project 
 Creates project visibility 
 Takes business-level decision 
 It decides when and whether to continue or stop 

the project and how to trim the remaining function 
of the system to recover business value 

2. Ambassador User 
 He/she is a person who is well aware of the 

operation procedures & system use 
 It clears system requirements 

3. Lead Designer 
 It is a level 3 designer 
 Creates system design  
 Having experienced of software development 
 Checks that the project is on track or not, and tells 

how to get back on track 
 Methodology shaping workshop 
 It works as coordinator as well as architecture, 

adviser, & programmer  
 It handles difficult programming tasks 

4. Designer-programmer 
 The combine words of designer and programmer 

reflect both roles performed by a same person, it 
designs and programs the system 

5.6 Crystal Cyclic Processes 

The workflow of crystal methodology is formulated in 
cyclic processes of various lengths shown in Figure 6 & 7. 
The length of each cycle is different for each individual 
project, it depends upon the size of the team and criticality 
of the project [62].  

1. Project Cycle: The project cycle contains a charting 
activity, two or more delivery cycles, and project wrap-
up [62]. 

2. Delivery Cycle: The delivery cycle has four parts: 
recalibration of the release plan, one or more iterations, 
deliveries, and a completion ritual [62]. 

3. Iteration Cycle: The Iteration cycle has three parts: 
iteration planning, base code integration cycles, 
reflection workshop & calibration. The length of 
iteration is depending upon the size of the team, it may 
be varying from one-week to two-month [62]. 

4. Integration cycle: The integration cycle can run from 
half an hour to several days, it totally depends on the 
team’s practices. In this cycle, the team integrates few 
design episodes in once a day or three times a week. 
However, some developments use continuous 
integration mechanisms. Some significant properties 
applied to this cycle include; technical environment, 
automated test, configuration management, and 
continuous integration [62]. 

5. The week & the day: The week and the day have their 
own rhythms; group activities occur on a weekly basis 
including Monday morning department meetings, 
regular progress reporting, a weekly seminar, or a 
Friday afternoon refreshment party [62].   

6. Development Episode: The development episode is a 
unit part of actual development. A programmer picks a 
small design assignment in each episode and completes 
one or more episodes in a day. Each development 
should be checked under a configuration management 
system that may take a few minutes to a longer time, 
depending on the developer. It is suggested to use a 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

171

 

short period for each episode, ideally less than one day 
in length [62]. 

5.7 Advantages of Crystal methodology 

Crystal methodology was distilled by different 
successful project's team interviews. It is a collection 
of a simple set of rules that mainly focuses on people's 
communication and interaction [4]. Some positive 
points of crystal methodology are listed in the 
following. 
   

 

Fig. 6 Cyclic Processes of Crystal methodology. 

 

Fig. 7  Expanded Diagram of Crystal processes to show specific activities 
in each cycle [62]. 

 The crystal method is the most flexible and 
adjustable approach, according to the project type, 
team size, and project criticality [4],[10]. 

 Crystal methodology provides effective 
communication among the team [68]. 

 Crystal has various team communication styles for 
distinct projects [62]. 

 Osmotic communication is a good technique to 
help & learn with other experts [62]. 

 Crystal methods include; configuration 
management tool and technical practices for 
successive project development [39]. 

 The crystal method promotes short deliveries [62]. 
 Add more peoples, as project criticality increases 

[64]. 

 Every project can be developed with minimum 
team members [62]. 

 Crystal clear typically has a fixed price contract, it 
helps to estimate team size and expected time for 
a project [62]. 

 By using crystal methodology, Projects can be 
classified clearly [68] 

5.8 Disadvantages of Crystal methodology 

Crystal clear, crystal orange and orange-web are only the 
versions that are defined by Cockburn. However, other 
darker versions are not defined completely. Moreover, few 
significant limitations of crystal methodology are found in 
several papers that are discussed below. 

 Crystal methodology lacks design and code 
verification system [68]. 

 The crystal team’s do less effort on documentation, 
same as extreme programming [69]. 

 Crystal methods have no business enterprise guidance 
[4]. 

 Crystal was only implemented with a small team and 
small projects which were not life-critical projects [10]. 

 Principles of each color vary as the team size and 
project size changes [63]. 

 Crystal methodology is not suited for globally 
distributed projects because it needs continuous 
communication among the team, it is not possible when 
organizations have distributed departments or globally 
distributed team [32]. 

 The crystal clear and crystal orange methodologies lack 
the description of practices and techniques to be used 
by the crystal team [39]. 

 The project plan and the project development rely on 
the size of the team, rather than requirements [62]. 

6. Feature Driven Development (FDD) 

Feature-driven development (FDD) was invented by the 
contribution of three experts, their names are Peter Coad, 
Jeff De Luca, and Stephen Palmer [1]. It was developed for 
a bank project that needed a proper progress reporting 
framework that could deliver the project iteratively & 
incrementally and could handle a large team [66]. FDD was 
first published in 1999 by Peter Coad & Stephen Palmer 
[70]. It uses core industry-recognized best practices that are 
driven from a client-valued feature perspective [6].  The list 
of priority features is implemented in short-iterations where 
a feature is a unit functionality of the system. Moreover, 
FDD model is mainly focusing on system architecture and 
building phase instead of covering the entire process [67]. 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

172

 

6.1 Practices of FDD 

FDD process model has several best practices that are 
derived from software engineering. These include; Domain-
object modeling, Development by feature, Individual class 
ownership, Feature teams, Inspection, Configuration 
management, Regular builds, and Progress reporting [78]. 

1. Domain-object Modeling helps to explore and explain 
the overall system architecture & design, a large 
problem is presented in class diagrams with classes, 
relationships, methods, and attributes where the 
implementation of each class or object solves a small 
problem [6],[72],[74].  

2. Developing by feature teaches to decompose large and 
complex functions of the system into sub-problems in 
which one or more can be implemented within two 
weeks. Each unit of sub-problem is called a feature of 
the system, this technique helps to solve big-problems 
with agility [6],[72],[74]. 

3. Individual code ownership means, assign a distinct 
piece of code to individual programmers, each class of 
code can only be implemented by their class owner. 
Each programmer is responsible for their assigned 
classes as well as consistency, performance, and 
conceptual integrity of the class [6],[72],[74]. 

4. A feature team is a small group of programmers, who 
works on a small part of the software, having distinct 
class ownership of the same functionality.  Thus, the 
feature owner is supposed to be a team leader, who 
coordinates with all class owners [6],[72],[74]. 

5. Inspection is a process to ensure the quality of code and 
design, primarily to detect errors and bugs [6],[72],[74]. 

6. Configuration management is used to identify the latest 
implemented source code files and to provide historical 
tracking of classes as the feature team updated them 
[6],[72],[74].   

7. Regular builds ensure the up to date and fully 
integrated system that can be demonstrated to the 
stakeholders and customers. This practice helps to 
uncover integration errors in base code to the feature 
team in the early stages of development [6],[72],[74].   

8. Progress reporting is used to demonstrate the feature-
team progress and project results based on complete 
work, it helps to make all development and process 
transparent inside and outside of the project 
[6],[72],[74]. 

 

Fig. 8 Five Process of FDD Model with their outputs [72]. 

6.2 FDD Team Roles 

Software projects consist of people, processes, and 
technologies where people and their roles are important. 
FDD defines six essential roles and eight supporting roles, 
these are described below [72],[78]. 

1. Key Roles in FDD Process 
 The project manager is the admin of the project, he 

is responsible for progress reporting, managing 
budget, handling project overheads, and managing 
space, equipment, & resources [72]. 

 Chief Architect is the one who is responsible for 
the overall architecture of the system, it runs the 
workshop design sessions in which the team 
collaborates in system designing. Chief 
architecture should have good facilitation, 
technical, and modeling skills [72]. 

 The development manager has the responsibility 
of leading daily wages development activities, 
resolving conflicts for resources, perform 
coordination in the absence of chief programmer. 
This role required good facilitating and technical 
skills [72]. 

 Chief programmers are core developers, who are 
responsible for high-level requirement analysis 
and design, and leads the small team in low-level 
analysis, design, and development of new features 
[72].   

 Class Owner is a programmer, it is a member of 
the feature team. The responsibility of class 
owners includes: design, code, test, and document 
the features which are assigned to them [72]. 

 The Domain experts may be users, sponsors, 
business analysts, etc.  They should have good 
verbal, written, presentation skills. Their 
knowledge and participation in development are 
important for the vital success of the project [72]. 

 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

173

 

2. Supporting Roles in FDD Process 
 The Release Manager tracks the progress of the 

project, collects weekly progress report from the 
chief programmer and then report directly to the 
project manager [72].   

 A Language Guru is one who helps in knowing a 
programming language or a specific technology if 
the firm is going to use the first time [72]. 

 The Build Engineer is responsible for maintaining, 
adjusting, and running the regular build process 
[72]. 

 The TOOlsmith is a unique role in FDD that helps 
the development-team, test-team, and data-
conversion-team by creating small development 
tools [72]. 

 The system administrator configures, manage, and 
troubleshoot the problems of servers, network, and 
workstations for the specific project team [72]. 

 
 

3. Additional Roles in FDD Process 
 The tester verifies the system independently that 

developed system’s function meets the user 
requirements [72]. 

 Deployer transforms the system data to the 
required format, it works on the physical 
deployment of new releases [72]. 

 The Technical Writer is responsible to create user 
manual and user guide documents [72]. 

6.3 Phases of FDD  

FDD process is consists of five sequential phases as shown 
in Figure 8. The first three phases are static in which team 
creates overall UML model of the desired system, create a 
list of system features where each feature could be 
implemented within two weeks, and in the third phase team 
creates a prioritized list of feature & an implementation plan. 
The successive last two phases are iterative in which actual 
system development occurs. Each release produces a 
deliverable product that can be ship to the customer. As 
system features are implemented, the feature list is 
reprioritized to highly satisfy business needs 
[66][71][73][75][76].  The detailed activities in each phase 
are described in the following. 

1. In the 1st phase, the domain experts and development 
team create an overall system model with the help of 
Chief architecture. Domain experts provide a high-
level walkthrough and detailed walkthrough of each 
area of the problem domain. After each walkthrough 
developers work in a small group to create an object 
model. Ones all problems and sub-problems are 
modeled then these all are merged to form the overall 

model which is further updated incrementally with 
content by design-by-feature phase [72].   

2. In the 2nd phase, the chief programmers decompose the 
domain problems and sub-problems into major-
function sets which are further breaks into small 
features sets to form feature list [72]. 

3. The third phase is project planning. In this planning 
phase, the project manager, development manager, and 
chief programmers create an implementation plan 
based on feature priorities and feature dependencies 
[72]. 

4. In the 4th phase, the list of selected features is 
scheduled for development by assigning them to chief 
programmers. Then chief programmers select features 
for the development and identify the class owners to 
form a feature team. The class writers refine and 
inspect the design of the object model based on the 
content of the sequence diagrams [72].   

5. In the last phase, the class owners create the classes that 
support the design of the feature. The unit test and code 
inspection are performed after that code is permitted by 
the chief programmer to build [72]. 

6.4 Advantages of FDD  

FDD process is one of the simple agile methods that is being 
used to convey large and complex projects iteratively with 
agility [79],[80]. Some major benefits of FDD include: 

 FDD process can produce a full functional solution in 
the first phase. Moreover, each-increment produces a 
running and tangible set of features that are ready to use 
or deliver to the client [53]. 

 FDD gives more importance to designing and modeling 
aspects of the model and focuses on quality throughout 
the development lifecycle. Moreover, Simple steps of 
process help ramp-up new members easily [4]. 

 Unit testing and refactoring activities are considered as 
important activities [76]. 

 Domain experts provide better system knowledge and 
understanding to develop a correct system [39]. 

 The project cycle of the FDD process is similar to the 
ETVX best-known pattern [77][82]. 

6.5 Disadvantages of FDD Process 

FDD model does not fit in all types and sizes of projects. 
Several limitations are maintained in the following. 

 FDD model does not lead to some important 
development activities include; requirement gathering, 
requirement analysis, and risk management as these are 
essential activities in the development process [4]. 

 FDD model does not support teamwork or collective 
ownership in codes [56]. 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

174

 

 System design and diagrams are only the working 
documents in the FDD process [39],[79]. 

 The overall process of FDD rely on Chief programmer, 
his role includes; coordinator, lead designer, and 
mentor [39]. 

 The workflow of the FDD model has a lack of 
requirement change management system. Moreover, 
the structure of the system is heavy that is explicitly 
dependent on experienced staff [79]. 

 FDD model does not guide to deal with a multi-view if 
there are multiple models [85]. 

 FDD process does not define any security role and 
security elements inside the system [81]. 

7. Dynamic System Development Method 
(DSDM) 

Dynamic System Development Method (DSDM) was 
invented by the DSDM Consortium organization in 1994. 
DSDM is based on rapid application development 
principles that emphases on the people's interactions, 
constant user involvement, develop project iteratively, 
deliver system incrementally within scheduled time and 
budget, and adjust change requirements along with the 
development process. The Process of the DSDM model 
truly relies on people, not tools. DSDM develops high-
quality business solutions that can be delivered faster at 
low-cost [86],[87]. 

7.1 Principle & Practices of DSDM 

DSDM process is fundamentally based on nine principles 
that are common to other agile approaches. These principles 
are actually the techniques that are important to follow 
during project cycle [39],[84].  

1. Active user involvement during the project cycle 
2. Empower the team to make decision  
3. Prefer as short and frequent product delivery as 

possible 
4. Develop software according to business needs for 

acceptance criteria 
5. For correct development, deliver product in iterative 

and incremental way 
6. All changes are reversible, during development 
7. The baseline of system needs is at a high level 
8. High test coverage of the system throughout the project 

life-cycle 
9. Use better collaboration and cooperation technique 

among team & stakeholders [88]. 

7.2 Roles of Users & Programmers in DSDM 

DSDM model defines fifteen different roles for users and 
programmers. In [39], some important roles are defined that 
are listed in the following.  

1. Developers and senior developers 
 Developers perform all development tasks 

including analysis, design, code, etc.  
 A senior developer would lead the team, and must 

have good experience in development and should 
be able to perform all development tasks with 
other developers.  

2. Technical Coordinator 
 He defines the system architecture and is 

responsible for technical quality & technical 
controls in the project such as the use of software 
configuration management. 

3. Ambassador User 
 He is from the user community that eventually 

uses the software or system. 
 He is responsible to define all point-of-views of 

the user community. 
 Disseminate the progress of the project to the other 

users. 
 He ensures that an adequate amount of feedback is 

received. 
4. Advisor User 

 He is any user, who represents an important point 
of view from the project. 

 He can be from IT staff, financial auditor, etc. 
5. Visionary User 

 He has the most accurate perception of the 
objective of the project. 

 He ensures that the important requirements are 
found at the early stage of the project that keeps 
project on the right track. 

6. Executive Sponsor 
 He is a project sponsor form the side of user 

organization. 
 He has financial authority and responsibility for 

making decisions. 

7.3 Phases of DSDM Model 

The DSDM model consists of three sequential phases; the 
pre-project phase, the Project-cycle phase, and the post-
project phase. The first phase is focused to identify the 
project, estimates the fund required for the project and 
project commitment. The post phase is about to ensure the 
system operating effectively and efficiently [6]. The project 
cycle phase comprises of five stages, in which the first two 
are static and are performed once in the entire project cycle 
whereas rest of the stages are performed iteratively and 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

175

 

produce software incrementally. DSDM model uses a time 
boxing technique to deliver a project on time, typically time 
box duration is taken from a few days to a few weeks 
[39],[87]. 

The five stages of the DSDM process are described as 
following.      

1. Feasibility study Stage: in this process stage, the 
project is decided to develop with the DSDM 
framework after knowing all related aspects of the 
project like project feasibility, organizational & people 
issues, required resources, technical possibilities, and 
project risk. This does not take longer than a few weeks. 
After concerning all these, two work products are made 
-a feasibility report, and an outline plan for 
development [39],[87]. 

2. The Business Study: In this stage important 
characteristics of the business and technology are 
analyzed. Customer’s experts are accessed to consider 
and prioritize all needed functions in the system. The 
two outputs of this phase include high-level system 
architecture definition and an outline prototyping plan. 
The high-level system architecture is a sketch of the 
system that is allowed to change during the project 
cycle. The prototyping plan defines the prototyping 
strategy of the next three iterative stages and a plan for 
configuration management [39],[87]. 

3. Functional Model Iteration: it is an iteration phase in 
which the content and approach for the iteration are 
planned. The analysis, code, and tests are done to 
produce a functional model. The four primary outputs 
of this phase include; Prioritized functions (a 
prioritized list of functions), Functional prototype 
review documents (user comments about current 
iteration), Non-functional Requirements (a list of NFR 
to deal with in the next stage), Risk analysis of further 
development (an important document in the functional 
model iteration phase) [39],[87].   

4. The Design and Build iteration stage: in this stage, the 
system is mainly built. The output of this stage is a fully 
tested system that fulfills an adequate amount of 
customer requirements. Further development relies on 
the users’ comments [39],[87].  

5. The Implementation stage: it is the final stage in which 
the system is delivered to the customer along with user 
training, manual, and a project review report [39],[87].   

 

Fig. 9 DSDM Phases and Sub-Phases [39]. 

7.4 Advantage of DSDM Model 

DSDM is a non-commercial and generic framework that 
relies on nine principles and practices. It provides proper 
development, project management, and tracking risk 
control mechanisms in one framework [4]. Some more 
significant benefits of DSDM are listed below.  

 DSDM is based on Rapid Application Development 
Framework principles [69]. 

 DSDM can handle variable requirements and can 
maintain delivery deadline over scheduled time and 
available resources [30]. 

 Time boxing technique is the key feature of DSDM 
model [88]. 

 DSDM uses MOSCOW prioritization technique [39]. 
 Active user involvement is a key practice and a primary 

principle of DSDM model [87]. 
 It teaches how people from different disciplines can 

work together as a team [39]. 

7.5 Disadvantages of DSDM Model 

The DSDM model all possess some drawback that limits its 
usefulness. Some few are listed in the following. 

 It is not suitable for life-critical projects [4]. 
 DSDM does not define the selection of team size [4]. 
 It cannot deal with the average and complex project 

[32]. 
 DSDM does not support the management of sizeable 

teams [32]. 
 DSDM is not effective to use for the development of 

scientific or engineering applications [32]. 
 DSDM is more suitable for the development of small 

scale projects only [32].  



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

176

 

8. Conclusion 

Many software development organizations have adopted 
the agile process models in last two decades. The concept 
of agility from the agile family is quickly and widely 
accepted by the industry. The agile manifesto provides the 
solutions of various real time development challenges 
which helped the organization to build qualitative software 
as per user demand. Common benefits of agile methods 
include; improved collaboration among the team and 
stakeholders, periodically improved development processes 
and increase of lifecycle transparency. Moreover, all agile 
approaches share the same goals to deliver working 
software in small life cycles. This research work aimed to 
provide deep knowledge of agile methods including: Test-
driven Development, Extreme Programming, Scrum, 
Crystal Models, Feature-driven Development and Dynamic 
System Development Methodology. These models are 
discussed in detail by focusing their roles, lifecycles, 
benefits, and drawbacks. This paper provides a solid 
foundation to the researchers and guides them to remove the 
barriers of limitation that resist the performance of agile 
models.  
 
References 
[1] Palmer, S. R., & Felsing, M. (2001). A practical guide to 

feature-driven development. Pearson Education. 
[2] Wang, X. (2011, August). The combination of agile and lean 

in software development: An experience report analysis. In 
2011 Agile Conference (pp. 1-9). IEEE. 

[3] Qureshi, M. R. J. (2012). Agile software development 
methodology for medium and large projects. IET software, 
6(4), 358-363. 

[4] Anwer, F., Aftab, S., Waheed, U., & Muhammad, S. S. 
(2017). Agile software development models tdd, fdd, dsdm, 
and crystal methods: A survey. International journal of 
multidisciplinary sciences and engineering, 8(2), 1-10. 

[5] Williams, L. (2010). Agile software development 
methodologies and practices. In Advances in computers (Vol. 
80, pp. 1-44). Elsevier. 

[6] Kavitha, C. R., & Thomas, S. M. (2011). Requirement 
gathering for small projects using agile methods. IJCA 
Special Issue on Computational Science-New Dimensions & 
Perspectives, NCCSE. 

[7] Ashraf, S., & Aftab, S. (2017). Latest transformations in 
scrum: a state of the art review. International Journal of 
Modern Education and Computer Science, 9(7), 12. 

[8] Qureshi, M. R. J., & Kashif, M. (2009, October). Seamless 
long term learning in agile teams for sustainable leadership. 
In 2009 International Conference on Emerging Technologies 
(pp. 389-394). IEEE. 

[9] Oza, N. (2010). Lean Enterprise Software and Systems. 
Springer Berlin Heidelberg. 

[10] Kumar, G., & Bhatia, P. K. (2012). Impact of agile 
methodology on software development process. International 
Journal of Computer Technology and Electronics 
Engineering (IJCTEE), 2(4), 46-50. 

[11] Qureshi, M., & Abass, Z. (2017). Long Term Learning of 
Agile Teams. International Journal of Software Engineering 
& Applications (IJSEA), 8(6). 

[12] Qureshi, M. R. J., & Kashif, M. (2017). Adaptive framework 
to manage multiple teams using agile methodologies. 
International Journal of Modern Education and Computer 
Science, 9(1), 52. 

[13] Anwer, F., Aftab, S., Shah, S. M., & Waheed, U. (2017). 
Comparative Analysis of Two Popular Agile Process Models: 
Extreme Programming and Scrum. International Journal of 
Computer Science and Telecommunications, 8(2), 1-7. 

[14] Rasool, G., Aftab, S., Hussain, S., & Streitferdt, D. (2013). 
eXRUP: A Hybrid Software Development Model for Small 
to Medium Scale Projects. 

[15] Williams, L., Maximilien, E. M., & Vouk, M. (2003, 
November). Test-driven development as a defect-reduction 
practice. In 14th International Symposium on Software 
Reliability Engineering, 2003. ISSRE 2003. (pp. 34-45). 
IEEE. 

[16] Munir, H., Moayyed, M., & Petersen, K. (2014). Considering 
rigor and relevance when evaluating test driven development: 
A systematic review. Information and Software Technology, 
56(4), 375-394. 

[17] Hayes, J. H., Dekhtyar, A., & Janzen, D. S. (2009, May). 
Towards traceable test-driven development. In 2009 ICSE 
Workshop on Traceability in Emerging Forms of Software 
Engineering (pp. 26-30). IEEE. 

[18] Beck, K. (2003). Test-driven development: by example. 
Addison-Wesley Professional. 

[19] Munir, H., Wnuk, K., Petersen, K., & Moayyed, M. (2014, 
May). An experimental evaluation of test driven development 
vs. test-last development with industry professionals. In 
proceedings of the 18th International Conference on 
Evaluation and Assessment in Software Engineering (pp. 1-
10). 

[20] Maher, P. (2009, April). Weaving agile software 
development techniques into a traditional computer science 
curriculum. In 2009 Sixth International Conference on 
Information Technology: New Generations (pp. 1687-1688). 
IEEE. 

[21] Nagalambika, S., Majunath, R., & Praveen, K. S. (2016). 
Component Based Software Architecture Refinement and 
Refactoring Method in Extreme Programming. International 
Journal of Advanced Research in Computer and 
Communication Engineering, 5(12). 

[22] Paulk, M. C. (2001). Extreme programming from a CMM 
perspective. IEEE software, 18(6), 19-26. 

[23] Newkirk, J. (2002, May). Introduction to agile processes and 
extreme programming. In Proceedings of the 24th 
International Conference on Software Engineering. ICSE 
2002 (pp. 695-696). IEEE. 

[24] Anwer, F., Aftab, S., Bashir, M. S., Nawaz, Z., Anwar, M., 
& Ahmad, M. (2018). Empirical comparison of XP & 
SXP. IJCSNS, 18(3), 161. 

[25] Anwer, F., & Aftab, S. (2017). Latest customizations of XP: 
a systematic literature review. International Journal of 
Modern Education and Computer Science, 9(12), 26. 

[26] Mahajan, E. R., & Kaur, E. P. (2010). Extreme Programming: 
Newly Acclaimed Agile System Development 
Process. International Journal of Information 
Technology, 3(2), 699-705. 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

177

 

[27] Crocker, R. (2001). The 5 reasons XP can’t scale and what to 
do about them. Proceedings of XP. 

[28] Qureshi, M. (2012). Empirical evaluation of the proposed 
exscrum model: Results of a case study. arXiv preprint 
arXiv:1202.2513. 

[29] Qureshi, M. (2014). Estimation of the new agile XP process 
model for medium-scale projects using industrial case 
studies. arXiv preprint arXiv:1408.6228. 

[30] Balasupramanian, N., Lakshminarayanan, R., & Balaji, R. D. 
(2013). Software engineering framework using agile dynamic 
system development method for efficient mobile application 
development. International Journal of Computer Science and 
Information Security, 11(9), 126. 

[31] Qureshi, M. R. J., & Hussain, S. A. (2008). An Improved XP 
Software Development Process Model. SCIENCE 
INTERNATIONAL-LAHORE-, 20(1), 5. 

[32] Qureshi, M. R. J., & Bajaber, F. COMPARISON OF AGILE 
PROCESS MODELS TO CONCLUDE THE 
EFFECTIVENESS FOR INDUSTRIAL SOFTWARE 
PROJECTS. Cell, 966, 536474921. 

[33] Qureshi, R. J., Alassafi, M. O., & Shahzad, H. M. (2019). 
Lean Agile Integration for the Development of Large Size 
Projects. International Journal of Modern Education and 
Computer Science, 11(5), 24. 

[34] Builes, J. A. J., Bedoya, D. L. R., & Bedoya, J. W. B. (2019). 
Metodología de desarrollo de software para plataformas 
educativas robóticas usando ROS-XP. Revista Politécnica, 
15(30), 55-69. 

[35] Nisa, S. U., & Qureshi, M. R. J. (2012). Empirical estimation 
of hybrid model: A controlled case study. IJ Information 
Technology and Computer Science, 4(8), 43-50. 

[36] Saeed, T., Muhammad, S. S., Fahiem, M. A., Ahamd, S., 
Pervez, M. T., & Dogar, A. B. (2014). Mapping Formal 
Methods to Extreme Programming (XP)–A Futuristic 
Approach. International Journal of Natural and Engineering 
Sciences, 8(3), 35-42. 

[37] Ahmad, G., Rahim Soomro, T., & Raza Naqvi, S. M. (2016). 
An overview: merits of agile project management over 
traditional project management in software development. 
Journal of Information & Communication Technology, 10(1), 
105-120. 

[38] Anwer, F., Aftab, S., & Ali, I. (2017). Proposal of Tailored 
Extreme Programming Model for Small Projects. 
International Journal of Computer Applications, 171(7), 23-
27. 

[39] Abrahamsson, P., Salo, O., Ronkainen, J., & Warsta, J. 
(2017). Agile software development methods: Review and 
analysis. arXiv preprint arXiv:1709.08439. 

[40] Anwer, F., & Aftab, S. (2017). SXP: Simplified Extreme 
Programing Process Model. International Journal of Modern 
Education and Computer Science, 9(6), 25. 

[41] Juric, R. (2000, June). Extreme programming and its 
development practices. In ITI 2000. Proceedings of the 22nd 
International Conference on Information Technology 
Interfaces (Cat. No. 00EX411) (pp. 97-104). IEEE. 

[42] Beck, K. (2000). Extreme programming explained: embrace 
change. addison-wesley professional. 

[43] Schwaber, K. (2004). Agile project management with Scrum. 
Microsoft press. 

[44] Sutherland, J., & Schwaber, K. (2007). The Scrum Papers. 
Nuts, Bolts and Origins of an Agile Process. 

[45] Hassanein, E. E., & Hassanien, S. A. (2020). Cost Efficient 
Scrum Process Methodology to Improve Agile Software 
Development. International Journal of Computer Science and 
Information Security (IJCSIS), 18(4). 

[46] Schwaber, K. (1997). Scrum development process. In 
Business object design and implementation (pp. 117-134). 
Springer, London. 

[47] del Nuevo, E., Piattini, M., & Pino, F. J. (2011, August). 
Scrum-based methodology for distributed software 
development. In 2011 IEEE Sixth International Conference 
on Global Software Engineering (pp. 66-74). IEEE. 

[48] Cho, J. (2009). A hybrid software development method for 
large-scale projects: rational unified process with scrum. 
Issues in Information Systems, 10(2), 340-348. 

[49] Almutairi, A., & Qureshi, M. R. J. (2015). The proposal of 
scaling the roles in scrum of scrums for distributed large 
projects. Journal of Information Technology and Computer 
Science (IJITCS), 7(8), 68-74. 

[50] Hossain, E., Babar, M. A., & Paik, H. Y. (2009, July). Using 
scrum in global software development: a systematic literature 
review. In 2009 Fourth IEEE International Conference on 
Global Software Engineering (pp. 175-184). Ieee. 

[51] Kumar, A., & Goel, B. (2012). Factors influencing agile 
practices: A survey. International Journal of Engineering 
Research and Applications, 2(4), 1347-1352. 

[52] Albarqi, A. A., & Qureshi, R. (2018). The proposed L-
Scrumban methodology to improve the efficiency of agile 
software development. International Journal of Information 
Engineering and Electronic Business, 10(3), 23. 

[53] Tirumala, S., Ali, S., & Babu, A. (2016). A Hybrid Agile 
model using SCRUM and Feature Driven Development. 
International Journal of Computer Applications, 156(5), 1-5. 

[54] Ahmed, A., Ahmad, S., Ehsan, N., Mirza, E., & Sarwar, S. Z. 
(2010, June). Agile software development: Impact on 
productivity and quality. In 2010 IEEE International 
Conference on Management of Innovation & Technology (pp. 
287-291). IEEE. 
 

[55] Bashir, M. S., & Qureshi, M. R. J. (2012). Hybrid software 
development approach for small to medium scale projects: 
RUP, XP & Scrum. Cell, 966, 536474921. 

[56] Hayat, M., & Qureshi, M. (2016). Measuring the effect of 
cmmi quality standard on agile scrum model. arXiv preprint 
arXiv:1610.03180. 

[57] Schwaber, K., & Beedle, M. (2002). Agile software 
development with Scrum (Vol. 1). Upper Saddle River: 
Prentice Hall. 

[58] Qureshi, R., Basheri, M., & Alzahrani, A. A. (2018). Novel 
Framework to Improve Communication and Coordination 
among Distributed Agile Teams. International Journal of 
Information Engineering & Electronic Business, 10(4). 

[59] Ashraf, S., & Aftab, S. (2017). IScrum: An improved scrum 
process model. International Journal of Modern Education 
and Computer Science, 9(8), 16. 

[60] Nikitina, N., Kajko-Mattsson, M., & Stråle, M. (2012, June). 
From scrum to scrumban: A case study of a process transition. 
In 2012 International Conference on Software and System 
Process (ICSSP) (pp. 140-149). IEEE. 

[61] Chang, M. (2010). Agile and Crystal Clear with Library IT 
Innovations. In VALA2010 Conference. 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 

 

178

 

[62] Cockburn, A. (2004). Crystal clear: A human-powered 
methodology for small teams: A human-powered 
methodology for small teams. Pearson Education. 

[63] Grey, J. (2011). The development of a hybrid agile project 
management methodology (Doctoral dissertation, North-
West University). 

[64] Cockburn, A. (2000). Selecting a project's methodology. 
IEEE software, 17(4), 64-71. 

[65] Saini, N. (2020). Role Of Agile Methodologies In 
Improvement Of Health Sector. Studies in Indian Place 
Names, 40(40), 1870-1876. 

[66] Livermore, J. A. (2008). Factors that Significantly Impact the 
Implementation of an Agile Software Development 
Methodology. JSW, 3(4), 31-36. 

[67] Paetsch, F., Eberlein, A., & Maurer, F. (2003, June). 
Requirements engineering and agile software development. 
In WET ICE 2003. Proceedings. Twelfth IEEE International 
Workshops on Enabling Technologies: Infrastructure for 
Collaborative Enterprises, 2003. (pp. 308-313). IEEE. 

[68] Mirza, M. S., & Datta, S. (2019). Strengths and Weakness of 
Traditional and Agile Processes-A Systematic Review. JSW, 
14(5), 209-219. 

[69] Strode, D. E. (2006). Agile methods: a comparative analysis. 
In Proceedings of the 19th annual conference of the national 
advisory committee on computing qualifications, NACCQ 
(Vol. 6, pp. 257-264). 

[70] Coad, P., & Palmer, S. (1999). Feature-driven development. 
Java Modeling in Color with UML, 182-203. 

[71] Pang, J., & Blair, L. (2004). Refining Feature Driven 
Development-A methodology for early aspects. Early 
Aspects: Aspect-Oriented Requirements Engineering and 
Architecture Design, 86. 

[72] Goyal, S. (2008). Major seminar on feature driven 
development. Jennifer Schiller Chair of Applied Software 
Engineering. 

[73] Siddiqui, F., & Alam, M. A. (2013). Ontology based feature 
driven development life cycle. arXiv preprint 
arXiv:1307.4174. 

[74] Ozercan, S. (2010). Adapting feature-driven software 
development methodology to design and develop educational 
games in 3-D virtual worlds (Doctoral dissertation, Ohio 
University). 

[75] Nebić, Z. (2016). Agilni razvoj programske opreme v plansko 
vodenih organizacijah (Doctoral dissertation, Univerza v 
Ljubljani). 

[76] Chowdhury, A. F., & Huda, M. N. (2011, December). 
Comparison between adaptive software development and 
feature driven development. In Proceedings of 2011 
International Conference on Computer Science and Network 
Technology (Vol. 1, pp. 363-367). IEEE. 

[77] Nawaz, Z., Aftab, S., & Anwer, F. (2017). Simplified FDD 
Process Model. International Journal of Modern Education & 
Computer Science, 9(9). 

[78] Aftab, S., Nawaz, Z., Anwar, M., Anwer, F., Bashir, M. S., 
& Ahmad, M. (2018). Comparative Analysis of FDD and 
SFDD. International Journal of Computer Science and 
Network Security, 18(1), 63-70. 

[79] Aftab, S., Nawaz, Z., Anwer, F., Bashir, M. S., Ahmad, M., 
& Anwar, M. (2018). Empirical Evaluation of Modified 
Agile Models. INTERNATIONAL JOURNAL OF 

ADVANCED COMPUTER SCIENCE AND 
APPLICATIONS, 9(6), 284-290. 

[80] Aftab, S., Nawaz, Z., Anwer, F., Ahmad, M., Iqbal, A., Jan, 
A. A., & Bashir, M. S. (2019). Using FDD for small project: 
An empirical case study. International Journal of Advanced 
Computer Science and Applications, 10(3), 151-158. 

[81] Firdaus, A., Ghani, I., & Jeong, S. R. (2014). Secure feature 
driven development (SFDD) model for secure software 
development. Procedia-Social and Behavioral Sciences, 129, 
546-553. 

[82] Boehm, B. (2007). A survey of agile development 
methodologies. Laurie Williams, 45, 119. 

[83] Rao, K. N., Naidu, G. K., & Chakka, P. (2011). A study of 
the Agile software development methods, applicability and 
implications in industry. International Journal of Software 
Engineering and its applications, 5(2), 35-45. 

[84] Stoica, M., Mircea, M., & Ghilic-Micu, B. (2013). Software 
Development: Agile vs. Traditional. Informatica Economica, 
17(4). 

[85] Pang, J., & Blair, L. (2004). Refining Feature Driven 
Development-A methodology for early aspects. Early 
Aspects: Aspect-Oriented Requirements Engineering and 
Architecture Design, 86. 

[86] Stapleton, J. (1999, June). DSDM: Dynamic systems 
development method. In Proceedings Technology of Object-
Oriented Languages and Systems. TOOLS 29 (Cat. No. 
PR00275) (pp. 406-406). IEEE. 

[87] Stapleton, J. (1997). DSDM, dynamic systems development 
method: the method in practice. Cambridge University Press. 

[88] Sani, A., Firdaus, A., Jeong, S. R., & Ghani, I. (2013). A 
review on software development security engineering using 
dynamic system method (DSDM). International Journal of 
Computer Applications, 69(25). 

[89] Mnkandla, E., & Dwolatzky, B. (2007). Agile software 
methods: state-of-the-art. In Agile software development 
quality assurance (pp. 1-22). Igi Global. 

[90] Ashraf, S., & Aftab, S. (2018). Pragmatic Evaluation of 
IScrum & Scrum. International Journal of Modern Education 
and Computer Science, 12(1), 24. 

[91] Mushtaq, Z., & Qureshi, M. R. J. (2012). Novel hybrid model: 
Integrating scrum and XP. International Journal of 
Information Technology and Computer Science (IJITCS), 
4(6), 39. 

[92] Qureshi, M. R. J., & Hussain, S. A. (2008). An Improved XP 
Software Development Process Model. SCIENCE 
INTERNATIONAL-LAHORE-, 20(1), 5. 

[93] Kazi, S., Bashir, M. S., Iqbal, M. M., Saleem, Y., Qureshi, M. 
R. J., & Bashir, S. R. (2014). Requirement change 
management in agile offshore development (RCMAOD). 
Science International, 26(1). 

[94] Qureshi, M. (2017). Evaluating the Quality of Proposed Agile 
XScrum Model. International Journal of Modern Education 
& Computer Science, 9(11). 

[95] Khan, A. I., Qureshi, M., & Khan, U. A. (2012). A 
Comprehensive Study of Commonly Practiced Heavy & 
Light Weight Software Methodologies. arXiv preprint 
arXiv:1202.2514. 

[96] Qureshi, M. R. J., & Barnawi, A. (2014). Kinect Based 
Electronic Assisting System to Facilitate People with 
Disabilities Using KXPRUM Agile Model. Life Science 
Journal, 11(10). 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020 
 

 

179

 

[97] Qureshi, M. R. J., & Hussain, S. A. (2008). A reusable 
software component-based development process model. 
Advances in engineering software, 39(2), 88-94. 

[98] Qureshi, M. R. J., & Ikram, J. S. (2015). Proposal of 
Enhanced Extreme Programming Model. International 
Journal of Information Engineering and Electronic Business, 
7(1), 37. 

[99] Ashraf, S., & Aftab, S. (2017). Scrum with the Spices of 
Agile Family: A Systematic Mapping. Modern education and 
computer science (MECS), 9(11). 


