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Abstract 
In recent times, the machine learning field has become very 
progressive and has given impressive results, through the 
development of advanced Convolutional Neural Networks 
(CNN). These models simulate the biological behavior of the 
human-beings, especially, in dealing with the image recognition 
tasks.  To train a deep CNN from scratch, a massive amount of 
labeled training samples are required that make the training 
process difficult. Also, the results have not converged properly 
and become overfitted in nature. Data augmentation is applied to 
overcome this issue of overfitting.  An optimistic substitution is 
to use the pre-trained networks, prepared previously over a large 
dataset such as ImageNet. This kind of CNNs can also be 
deployed using their two alternative approaches, namely, feature 
extraction and fine-tuning of the pre-trained model. In this paper, 
1296 leaf images of bean crops were used to perform the 
experiment that classifies the diseased or healthy leaf. In order to 
show the variation in the performance of the CNNs, the network 
has trained from scratch as well as using pre-trained networks. 
Experimental results showed that training from scratch performs 
worst (70% accuracy) over small training data and pre-trained 
networks (97.06%) gave far better results compared to the 
previous one. It is observed that the use of pre-trained networks 
with the tuning of hyperparameters is an optimal choice for 
training, for small training data set. 
 
Key words: 
Deep learning, crop disease, classification, Convolutional 
Neural Network, VGG16.  

 
1.  Introduction 
 

Convolutional Neural Networks (CNNs) have been 
deployed in the domain of computer vision for a long time 
[1]–[3]. AlexNet [4] has observed as a benchmark in the 
area of CNN, after winning the ImageNet challenge 
(ILSVRC) in 2012. It has efficiently made use of dropout, 
regularization, and rectified linear unit (ReLU). After this, 
various architectures were proposed to overcome the 
research gaps seen previously. Moreover, the outstanding 
performance of  CNNs is observed because of its deep 

learning architectures [5]–[7], which allows us to extract a 
discriminate set of features at a higher level of abstraction. 

 
1.1 Convolutional Neural Networks (CNNs) 

 
CNNs are similar to the traditional artificial neural 

networks (ANNs), comprised of neurons that performed 
self-optimization using the learning process. As the 
traditional ANNs have the limitation in terms of 
computational complexity, especially for image data 
computations, that's why CNNs are primarily designed to 
deal with pattern-recognition within the images. 
Technically, CNNs are used for training and testing of 
each inserted input image and flow it in the sequence of 
convolutional layers with kernels (filters), pooling, flatten, 
dense layers, and finally, use the “softmax function” for 
classification (output) of some objects in the image with 
probabilistic values in a range (0-1) [4]. 

The basic operations in the CNN are as follows [4]: 
        
 Convolutional operation: 

Convolution operation performs in a combination of 
convolutional layer + ReLU. The convolutional layer takes 
input in the form of pixels of an image and regulates the 
output of neurons that are associated with local regions of 
a given input. This layer computes the scalar product of 
the weights of neurons and the region associated with the 
input. An activation function ReLU is applied after each 
convolution in order to carry the element-wise activation 
for the output generated by the convolutional layer. 

 
Pooling operation: 

The process of down sampling of the spatial 
dimensions of the fed input is termed as pooling. It also 
reduces the number of parameters within the activation. 

 
Fully connected operation: 

A fully connected layer performs this operation by 
generating class scores from the feature maps (activations) 
that are required for classification.  

However, training of a deep CNN from scratch needs to 
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meet with the following requirements: 1) A bulk of labeled 
data with expert annotations is required, 2) Extensive 
memory and computational resources in order to make the 
training process fast and efficient, 3) Repetitive 
adjustment in learning parameters to ensure that all layers 
learned at an equivalent speed. 

Furthermore, training a CNN from scratch would be a 
monotonous and time-consuming task.          It also faces 
the overfitting issues. To overcome this issue, the use of 
the pre-trained network is another alternative that can be 
used instead of training from scratch. These pre-trained 
networks have been trained over the large labeled dataset 
like ImageNet and then successfully applied to several 
computer vision works for feature extraction [4], [8], [9]. 
In this paper, a performance comparison has been made 
between the two: training a CNN from scratch and using 
pre-trained models VGG16. This is an important aspect as 
training from scratch is not practical with limited 
annotated image data from the agricultural domain. This 
study conducted a range of experiments for bean leaf 
disease detection in crops.  

The rest of the paper is framed into the following 
sections. Section 2, gives a brief of literature works. 
Section 3, discusses the Materials used for crop disease 
detection. Section 4, shows the training of a CNN from 
scratch using a small data sample. Section 5 shows 
training using a pre-trained network, and section 6 shows 
the comparison of results of both pre-trained and training 
from scratch CNN. Finally, section 7 concludes the study. 

 
2.  Related work 
 

CNNs have been applied to different agricultural 
domains like crops disease detection, weeds detection, 
shelf-life prediction, field monitoring, etc. Ferentinos et al. 
[10] compared five CNN models, namely, GoogLeNet, 
AlexNet, Overfeat, VGG, and AlexNetOWTbn in which 
VGG performed best. This experiment was conducted to 
detect plant diseases for 25 distinct crops in a set of 58 
different classes. Fuentes et al. [11] have implemented 
seven well- known DL models, namely, AlexNet, 
ResNetXt101, ResNet50, GoogLeNet, ZFNet, ResNet101, 
and VGG for crop diseases prediction. To compare this 
study, three detectors were used, namely, SSD, Faster- 
RCNN, and RFCN. The experimental results showed that 
ResNet50 with a combination of RFCN performed best 
with the highest prediction percentage. As technology 
develops, CNNs have revived with the GPU 
computational resources and the agricultural domain has 
seen a new generation of computer vision through its 
superior performance.  
Sa et al. [12] implemented SegNet for weed classification 
using multispectral imaging captured with the help of 
micro aerial vehicle (MAV). Six models were trained with 

a distinct number of input channels and fine-tuning was 
applied to reach nearly 0.78 area under the curve and 0.8 
F1 Score. Jetson TX2 system and Graphics Processing 
Unit (GPU) were deployed for amalgamation of data 
gathered using MAV. To predict the shelf-life of fruit with 
distinct browning levels, Wang et al [13] evaluated the 
performance of PCA, Threshold algorithm, and 
Backpropagation (BP) algorithm. Fruit color and 
reflectance curves were the major extracted features from 
2000 samples of hyperspectral images. 
In Order to enhance the accuracy to diagnose the results, 
several researchers have performed the plant disease 
detection that relies on machine learning and pattern 
recognition. They made use of pattern recognition, Image 
processing algorithms, Deep learning techniques, and 
computer vision. The last decade has observed various 
applications of deep learning, especially CNNs in different 
areas of agriculture. Kawasaki et al. [14] implemented a 
novel architecture relying on CNNs to identify the disease 
or Infection present in the leaves of cucumber crop. It 
obtained 94.9% accuracy that marks distinction among 
zucchini yellow mosaic virus, melon yellow spot virus, 
and non-diseased category (class). 
Liang et al. [15] deployed a multitasking CAD system that 
is capable to diagnose the disease, identifying the crop 
species, and there disease severity estimation. This study 
was performed over the PlantVillage dataset. Stress 
severity estimation was categorized into three classes: 
serious, general, and healthy. Outcomes of this experiment 
gave an overall accuracy of 98% and 91% for plant 
disease classification and severity estimation of leaf 
disease.  

To detect the diseases in plants at the early stage, 
various imaging techniques such as thermal imaging [16], 
multispectral imaging [17], fluorescence, and 
hyperspectral imaging (HSI) [16] were used. Xie et al. 
[18] have used HSI for tomato disease detection by 
identifying the regions of interest. A feature ranking –
KNN has been used to give significant results for the 
classification of healthy and gray mold diseased leave of 
tomato plants. Chen et al. [19], carried out the leaf spot 
disease detection for peanuts using canopy hyperspectral 
reflectance by detecting the sensitive bands. The authors 
have also used the hyperspectral vegetation indices for the 
same purpose. Some more related works in detail are 
shown in Table 1. 

Table 1: Literature review of a few DL approaches used 
along with the crop names, datasets, visualization, and 
performance metrics. 

Deep 
Learning 

Architectures

Datasets Visualization 
Techniques 

Metrics 

AlexNet and 
GoogLeNet[2

Plant-
Village

Visualization of 
neuron activations 

CA 
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0] in the initial 
convolutional layer 

CaffeNet [21] Internet Visualization of 
activation maps 
with filter from 

initial to final layer 

Precision

ZFNet, 
AlexNet, R-

FCN, 
GoogleNet, 
SSD, VGG-
16, Faster 
RCNN, 

ResNet-50, 
ResNetXt-

101[11] 

Image 
captured 

from 
real 

fields 

Bounding boxes 
were used for 

localization and 
classification of 

diseases. 

Precision

DCNN[22] Images 
were 

Capture
d from 

real field 

Feature map to 
detect the diseases 

in rice plants 

Accuracy

GoogLeNet, 
AlexNet[23] 

PlantVill
age 

Symptoms 
visualization 

approach 

Accuracy

CNN, VGG-
A[24] 

Images 
Capture
d from 
actual 
field 

HSV with K-means 
clustering 

Accuracy

AlexNet[25] Images 
were 

Capture
d from 

real field 

Feature map to 
identify the marks 

of diseases 

CA 

Student/Teach
er 

architecture[2
6] 

Plant 
Village 

Images with 
discriminant 

regions, heat map 
formation and 

image 
segmentation using 

binary threshold 
logic 

Validatio
n 

accuracy 
and loss, 
Training 
accuracy 
and loss 

3D- CNN[27] Real 
environ

ment 

Saliency feature 
map visualization 

F1-score, 
CA 

AlexNet, 
VGG-16[28] 

CASC-
IFW 

Saliency feature 
map, mesh 

graphical image, 
2D and 3D contour 

CA 

Modified 
LeNet[29] 

Plant 
Village 

Segmentation and 
edge feature map 

True 
positive 

rate 

 
3.  Materials 

3.1 Dataset description 
 
The dataset has been taken from GitHub 

(https://github.com/AI-Lab-Makerere/ibean/). It includes 

the bean crop leaves images captured from the real field 
using a smartphone. Examples of the leaf images as per 
the categorized classes are shown in figure 1. The image 
annotation was done by the experts (NaCRRI) in order to 
determine the disease manifestation. Table 2 shows a 
description of the used dataset. This dataset contains 1296 
images split into 3 classes; 80:20 splitting is performed. 
We have used 3 classes (labels) for the identification of 
diseases in crops. 
 

Table 2: Bean dataset summarization 
Disease Name Images count 

Bean Rust 436 

Angular Leaf Spot 432 

Healthy 428 

Total 1296 

 

  
4.  Training a CNN from scratch using a small 
data sample 

In computer vision, it is very often that small data 
samples are used to classify the images. Small data means 
data varies in a range of a few hundred to few thousands 
of images [30]. In this study, the focus is to classify the 
images of bean crop leaves (diseased or healthy). This 
dataset contains 1296 images. A small CNN has been 
trained with 1035 images from the training set, without 
using regularization; to carry a baseline for what results 
can be obtained. Experimental results show that validation 
accuracy in the range of 70-75% has been achieved and 
along with it, overfitting comes as the main issue in this 
basic implementation. To overcome this problem, data 

(d)                              (e)                           (f) 

(a)                               (b)                 (c) 

Fig 1. Shows the bean crop images as follows: (a), (b) denotes the 
Angular Leaf Spot, (c), (d) denotes the bean rust disease, and (e), (f) 

denotes the healthy leaf images. 
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augmentation and dropout have been used to mitigate the 
overfitting in computer vision. This technique improves 
accuracy by up to 83.46%. A flow diagram of CNN is 
shown in figure 2 that depicts the stages of data flowing 
from data collection to the classification of the bean crop. 

 
 
4.1 The relevance of DL for small data problems 
 

It is a common saying that DL only performs well 
when lots of input data are available [30]. This can be 
valid to say, as it is a basic characteristic of DL. It has the 
ability to learn the features automatically from the training 
samples, without any manual feature engineering. It can 
learn only when there are a lot of training samples 
available. Furthermore, CNNs does not solve the complex 
problem with only tens of samples. However, hundreds of 
samples can perform well for a small, simple, and well-

regularized model. As CNNs can learn local and 
translation-invariant features, this being the reason that 
training a CNN from beginning on a small image data 
sample still give reasonable outcome despite a relative 
deficiency of data. 

 
4.2 Data Directories 
 

There were a total of 1296 images present in the data 
sample of the bean crop leaves (diseased and healthy). 
This data was divided into three directories: 

 Training: It contains 1035 images. 

 Validation: it contains 133 images. 

 Testing: it contains 128 images. 
 
4.3 Building CNN  
 

The CNN is a stack of convolutional layers (Conv2D) 
and pooling layers (Max-pooling2D), with Conv2D 
followed by a ReLU activation function. In the training 
from the scratch procedure, 4 Conv2D + ReLU, 4 max-
pooling layers, 1 flatten layer, 2 dense layers, and 1 output 
layer was chosen to build the network. Subsequently, a 
flatten layer was placed just after the last max-pooling 
layer for further reduction of the feature map dimensions 
from higher to lower. Here, 500*500 pixels of images with 
bean crop leaves were fed to the CNN. After processing 
through all the layers in the network, a 29*29 feature map 
was achieved just before the flattening layer. Now, this 
flatten layer reduced this vector to a scalar count. As CNN 
is dealing with the multi-classification problem, a dense 
layer with value equals to 3 (three classes) was fed to the 
CNN, and softmax function was deployed at the output 
layer in order to classify the images of the crop leaves. 
Figure 3 shows a detailed process of convolution and 
pooling operations along with their activation maps that 
are deployed over the bean crop dataset to classify the 
diseased and healthy crop leaves. 
 
4.4 Data pre-processing 
 

It is used to pre-process the provided data into 
floating-point vectors, the data readable by CNN. Data 
pre-processing [31] includes reading of images, decoding 
image content into RGB, floating-point conversion, 
rescaling of pixels from 0-255 to a range of 0-1. It results 
in batches of (20, 500, 500, 3), which means 20 samples 
were taken at a time, resized image of 500*500 pixels, and 
3 represents the RGB. 
 
4.5 Classification without data augmentation 

Relevance of DL for small data problems 

Data collection 
Dividing the 
images into 

training, 
validation, 
and testing 
sets, 80:20 

ratio split for 
training and 
validation 

respectively. 

Building the 
CNN 

Instantiating 
a small CNN 

for beans 
disease 

classification 

Model 
configuration for 

training 

Data -preprocessing 

Without using data augmentation 
Using data 

augmentation 

Fitting and saving the model Fitting and saving the 
model 

Displaying curves of loss and 
accuracy during training and 

validation set 

Displaying curves of 
loss and improved 
accuracy during 

training and 
validation set 

To avoid 
overfitting 

Overfitted classification results 

Improved 
classification results

Fig 2.Shows the classification of bean crop using training 
from scratch.
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Whenever, CNN classifies the images directly without 
using any other supporting approaches such as data 
augmentation, dropout, weight-decay, etc., then the 
accuracy and loss plots show stall. This problem is termed 
as overfitting. In this scenario, Training accuracy arose 
linearly and reaches 100%, and validation accuracy stalls 
at 70-75%. Classification accuracy of 35.72% was 
obtained for bean crop disease detection. Loss plots (for 
both training and testing) also stall after a few iterations. 
Training and validation curves for both accuracy and loss 
are shown in figure 4. 
 
4.6 Effects of data-augmentation on the classification 
 

Whenever there are only a few of the training 
instances are available, in such cases, CNN is restricted to 
learning and is incapable of training the network that 
could generalize on new samples. This is the overfitting 
issue in training [30]. To avoid this problem, there is a 
need to introduce the network with every potential facet of 
the data distribution. 

 
Data augmentation generates more training instances from 
the available training set, through augmenting the 
instances using a range of random transformations that 
produce similar-looking images to the available data. So, 
the network will not be able to see the same image twice at  

 

 

 
 
training time. It benefits the network by exposing it to 
many more features of data and performs better 
generalization. Data augmentation [31] may include the 
following parameters: rotation, width-shift, height-shift, 
shear, zoom, horizontal flip, etc. Some of the augmented 
training process; a random set of neurons is selected. Both 

Fig 4. Shows the Overfitted accuracy and loss curves 
for training and validation. 

 

Inputs             Feature            Feature            Feature            Feature             Feature           Feature    Feature          Feature  
3@498*498   Maps            Maps               Maps      Maps             Maps              Maps              Maps             Maps 
      32@ 249*249  32@247*247  64@123*123   64@121*121   128@60*60   128@58*58   256@29*29  256@13*13 

        Conv                MP      Conv          MP                   Conv MP  Conv     MP 
    5*5 kernel         2*2 kernel     5*5 kernel       2*2 kernel     5*5 kernel     2*2 kernel       5*5 kernel         2*2  

                 kernel 

                Classification using                Fully connected          Fully connected         Flatten 
                  Softmax function 

Outputs  Hidden Units Hidden Units          Hidden Units 
  3         4096      4096    107648 

Conv- convolutional layer, MP- max-pooling layer

Fig 3. A detailed CNN with 12 layers, based on Bean Crop disease classification dataset. 

*“This figure is generated by adapting the code from https://github.com/gwding/draw convnet". 
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of the techniques (data augmentation and dropout) 
improve the accuracy of approximately up to 84%. 
 

 
 
A classification accuracy of 56.08% was obtained for bean 
crop disease detection. Accuracy and loss results with the 
data augmentation and dropout are shown in figure 6. 
 
 

 
5. Training using a pre-trained CNN 
 

For small image data samples, the use of the pre-
trained networks is a general and very effective choice 
[30]. A pre-trained network can be defined as a saved 
model which has been previously trained over a bulk of 
available data such as ImageNet. The spatial hierarchy of 
their learned features is very generic; thus, it might be 
useful for a diverse range of computer vision problems 
with totally different classes than those of the actual ones. 
In this study, a pre-trained VGG16 model is used to 

classify the healthy and diseased bean crop leaves. 
However, the original VGG16 model was trained over the 
ImageNet dataset (includes 1000 classes of 1.4 million 
images). Pre-trained networks can be used in two ways: 
feature extraction and fine-tuning. 
 
5.1 VGG16 Model 
 

Simonyan et al. [32] developed a DL architecture with 
16 convolutional layers and 3x3 convolution filters were 
used to increase the depth of the network. It showed 
significant improvement in the accuracy of large- scale 
image recognition. The weight configuration for this 
model is publicly available. VGG comprised of 138 
million parameters that make it very challenging to handle. 
Figure 7 represents VGG16 deep architecture. Some 
technical insights of VGG16 are depicted below [32]: 

 The first convolutional layer accepts 224 * 224 
sized RGB images and then these images are 
passed through the stacked convolutional layers. 
On the next step, activation maps (filters) are 
deployed with a very minor receptive field of 3*3 
pixels. These receptive fields help to capture the 
notion of up, down, left, right, and center in the 
image. Each hidden layer is followed by ReLU 
functionality. 
 

 
 Spatial padding of 1-pixel is preserved for the 

convolution operations, after every 3*3 
convolution. 

 Spatial pooling with a 2*2 pixel window is 
followed with the max pooling operations, with a 
stride of 2. 

 There are three fully connected layers (two with 
4096 channels and one of 1000 channels) present 

Fig 7. VGG16 models architecture  [32]. 

Fig 6. Training and validation accuracy 
using data augmentation and dropout. 

Fig 5. Shows some augmented instances. 
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that is used after the convolution and max 
pooling operations. 

 Finally, a classification layer soft-max is used to 
classify the desired objects in the dataset. 
 

5.2  Feature extraction 
 
The pre-trained network uses the representations that 

are learned previously while training the network on a 
large dataset [30]. It extracts the required features from the 
new data, using the previously trained network. For 
feature extraction, some of the layers of the convolutional 
base are kept in frozen form and other ones need to be 
changed according to the problem requirement. Figure 8 
represents the classification of images with a frozen 
convolutional base taken from the pre-trained network. 
Pre-trained CNNs used for image classification tasks 
consist of two parts:  
 

 Convolutional base: 
It is a series of pooling and convolution layers that are 
used to extract features from a previously trained CNN, 
deploying over new data, and new classifier. In a situation, 
where a new dataset is completely different from the pre-
trained one, then it is better to use only the initial few 
layers from the convolutional base to perform feature 
extraction, instead of the entire convolutional base.   
 

 Densely connected classifier: 
A new classifier is swapped with that one used in the pre-
trained model.  This classifier is placed on the top of the 
output layer to perform prediction or classification. It 
contains the value of the classes that need to be used for 
the purpose. 

 
Furthermore, there are two possible ways to extract 
features from the convolutional base, namely, feature 
extraction without data augmentation and feature 
extraction with data augmentation. 
 
 

5.2.1 Feature extraction without data augmentation 
 
This process of feature extraction allows the user to 

run the convolutional base along with a densely connected 
classifier directly on the dataset. It needs to run the 
convolutional base only once for each input image. This 
technique does not allow for data augmentation. Features 
are extracted by defining the appropriate feature extraction 
function which then extracts the required features from the 
convolutional base. These features are in the form of 
pixels and edges. In this process, training is quite fast. 
This method gave a validation accuracy of 92.43% which 
is better than the training from scratch. Classification 
accuracy of 65.06% was obtained for bean crop disease 
detection. Experimental analysis shows that it gives 
overfitted results without using data augmentation on a 
small data sample. Overfitted plots for accuracy and loss 
are shown in figure 9. 
 
5.2.2 Feature extraction with data augmentation 
 

In the second approach, features are extracted using 
the data augmentation techniques which give far better 
results than the previous one. This technique allows for 
data augmentation during training. The convolutional base 
is extended with some layers and running the model end to 
end on the data inputs. This method is slow and expensive, 
as it requires GPU support during implementation. This 
method gave a validation accuracy of 92.43% which is 
much better than the feature extraction without data 
augmentation. Accuracy and loss plots for training and 
validation are shown in figure 10. Classification accuracy 
of 78.26% was obtained for bean crop disease detection. 

Freeze the 
pre-trained 
convolutio

nal base 
for feature 
extraction 

New 
classifier 

with 
random 
weight 

initializati
on 

Input  Classificat
ion 

Fig 8.Classification with frozen convolutional base. 
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5.3 Fine-tuning 
 

Fine-tuning is another complementary technique to 
reuse the model, besides the feature extraction. This 

approach comprises unfreezing some of the top layers 
from the convolutional base of the model that is utilized to 
extract features [30]. Subsequently, these top layers are 
trained, jointly with the fully connected classifier (newly 
added part). It is termed as fine-tuning, as it marginally 
regulates more abstract representations of the pre-trained 
model to form it more problem relevant. During 
implementation, 4 convolutional blocks were frozen and 
the last block was fine-tuned for the VGG16 model. 
RMSProp optimizer was used as a fine-tuning parameter 
with a learning rate of 1e-5. Experimental results show 
that the validation accuracy of 97.06% was achieved. 
Accuracy and loss plots for training and validation are 
shown in figure 11. Classification accuracy of 96.06% was 
obtained for bean crop disease detection. 

 
6. Comparison of results 

 
In this paper, a comparison is drawn for, training a 

CNN from scratch and using pre-trained models for a 
small labeled dataset on healthy and diseased leaves of the 
bean crop. Moreover, training a CNN from scratch is 
further classified into two parts: using the model with data 
augmentation and without data augmentation. 

 
 
When CNN was trained from scratch using a simple 

stack of four convolutional layers, four max-pooling 
layers, and two fully connected layers, then a classification 

Fig 11. Training and validation curves for accuracy 
and loss metrics are shown for fine-tuning of the pre-

trained network. 

Fig 10. Training and validation curves for 
accuracy and loss metrics are shown for feature 

extraction with data augmentation. 

Fig 9. Training and validation curves for 
accuracy and loss metrics are shown for simple 

feature extraction 
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accuracy of 35.72% was achieved. The outcome of this 
experiment showed that CNN was facing an overfitting 
issue. In order to mitigate this problem, data augmentation 
and drop out techniques were added to enhance the 
classification accuracy. It improved the classification 
results by 56.08%. Similarly, pre-trained models are also 
categorized as training using feature-extraction and fine-
tuning of models. When a pre-trained model VGG16 was 
deployed by extracting the features from its convolutional 
base, then the classification accuracy reached up to 
65.06%. Pre-trained models also face the overfitting 
problem over small datasets. To avoid the overfitting issue,  

data augmentation and drop out techniques were added 
along with the feature extraction process. An improvement 
of 78.26% was achieved in the classification accuracy for 
bean crop diseases. Furthermore, the fine-tuning of the 
pre-trained model was also performed by the selection of 
appropriate hyper-parameters. It gave far better results 
from the previous techniques with a classification 
accuracy of 96.06%. Table 3 presents the comparison of 
all the evaluated results achieved for the classification of 
the bean crop leaf diseases. 

 
 

 
 
Table 3: Comparison of experimental evaluation. 

Performance 
Metrics 

Training of CNN 
from scratch 

Training using  
Pre-trained Models 

Without 
data 

augme-
ntation 

Using 
dropout 
and data 
augment-

tation 
 

Feature  
extraction 

Fine-
tuning

Simple  Using 
data 

augment-
ation 

Training 
Accuracy 

0.989 0.7312 1.000 0.8367 0.98 
67 

Training 
Loss 

0.047 0.634 0.0014 0.3991 0.04 
83 

Validation 
Accuracy 

0.743 0.8246 0.9248 0.9243 0.97 
06 

Validation 
Loss 

0.4767 0.529 0.3398 0.2992 0.09 
26 

Classification 
Accuracy 

0.3572 0.5608 0.6506 0.7826 0.96 
06 

 
 

7. Conclusion  
 

In this paper, the focus is to clear the concept of 
training a CNN from scratch and using pre-trained models 
in the context of the agricultural domain. An experimental 
study is carried on the bean crop leaf images 
(infected/healthy). Experimentations have demonstrated 
the usefulness of fine-tuned models over small samples of 
training data, using training from scratch and pre-trained 
fine-tuned model, with a significant accuracy jump from 
0.70 (approximately) to 0.9706. Using the layer-wise fine-
tuning approach, the effective depth of fine-tuning can be 
determined in order to find the best classification results. 
Our implementations further ensure that how potential are 
the fine-tuned models as compared to the training from 
scratch for a small amount of labeled data.  
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