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Summary 
Modeling languages in software engineering (e.g., UML) 
evolved from software systems modeling where 
denotational and operational kinds of semantics are the 
traditional subjects of research and practice. According to 
some authors, although a large portion of the static 
semantics (e.g., UML) seems to have reached a consensus, 
the dynamic semantics of activities, interactions, and state 
machines poses a major challenge. Central to semantics is 
the relationship between a sentence and the (actual) world. 
Carefully examining semantics-related issues in the 
modeling languages field to avoid problems that may 
affect practical applicability is important. One effort in this 
direction is OMG’s release of a 2020 draft specification 
for Foundational UML (fUML), with the base semantics 
specifying executions that are executable in the same sense 
as a program in a traditional programming language. 
Additionally, efforts within academia have sought to 
develop an alternative approach to modeling languages 
using formal semantics (e.g., using Russell’s theory of 
types and Tarski’s declarative semantics). This paper aims 
at a similar exploratory venture of developing semantics, 
only for a much more modest diagrammatic modeling 
language, called the thinging machine model. The model 
promotes a deep understanding of the scrutinized modeling 
language and leads to considerably fruitful questions. 
Constructing the thinging machine model seems to 
facilitate progress in this direction, and the initial results in 
this paper indicate the viability of the approach.  
Key words: 
Conceptual modeling, modeling language, diagrammatic 
representation, formal semantics, UML semantics, T-schema 

1. Introduction 

Diagrammatic modeling languages (e.g., UML) have 
become the key artifacts of software development, and 
“the solidness of modeling languages metamodels” has 
generated important outcomes in the field of software 
engineering [1]. They are proving extremely helpful in 
software and systems development. However, when 
formal semantics (meaning in contrast to syntax) are called 
for, properly defining diagrams seems to be a much harder 

problem [2]. In the case of UML, the language evolved 
from software systems modeling where denotational 
(using mathematical objects) and operational (using 
execution) kinds of semantics are the traditional subjects 
of research and practice [3-4]. According to Ekenberg and 
Johannesson [5], work on formalizing UML has attempted 
to use different versions of temporal logic (see, e.g. [6-7]). 
Dynamic logic has also been used as a basis for UML 
semantics (e.g., in [8-9]). In 2020, OMG [10-11] released 
a draft specification of Foundational UML (fUML) 
wherein basic semantics specify when particular 
executions conforming to a model defined in fUML 
generate executions. As a specification, fUML has 
standard, precise execution semantics. It is a subset that 
includes constructs of UML and the ability to model 
behavior using a composed set of primitive actions. A 
model constructed in fUML is “executable in exactly the 
same sense as a program in a traditional programming 
language, but it is written with the level of abstraction and 
richness of expression of a modeling language” [12].  
According to Broy et al. [13], although a large portion of 
the static semantics of UML seem to have reached a 
consensus, the dynamic semantics of the UML 
sublanguages, such as activities, interactions, and state 
machines, pose a major challenge. These foundational 
difficulties involving dynamic semantics of such tools as 
state machines lead to definitions that contradict common 
sense [13]. They “show how important it is to carefully 
design a modeling language to avoid problems regarding 
its expressivity as well as its interpretation—problems that 
strongly impact practical applicability [13]. Efforts within 
academia have sought to develop an alternative approach 
to UML’s formal semantics (e.g., using Russell’s theory of 
types and Tarski’s declarative semantics [1-4]). 

1.1 Aim  
This paper aims at a first step toward developing semantics, 
only for a much more modest diagrammatic modeling 
language called the thinging machine (TM). According to 
Broy et al. [13], formalization is a scientific approach that 
promotes deep understanding of different aspects of the 
scrutinized modeling language. Trying to conduct the 
formalization uncovers many properties of the modeling 
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language and leads to considerably fruitful questions. In 
this paper, we explore a new territory in logic as much as 
in modeling though investigation of the notion of truth and 
hence the semantics for relations among the concepts and 
the subject that is being modeled in the TM context. 

1.2 Justification 
The paper suggests applying logical semantics to the 
diagrammatic method used in conceptual modeling. The 
justification for this direction of research is that the 
reliance on graphical constructs poses problems when it 
comes to precise and unambiguous semantics [5]. The 
first-order logic, when used in conjunction with conceptual 
modeling, “provides a sound basis on which specifications 
written in a process-based language can be transformed, 
merged, and verified for the purpose of detecting 
interference” [5]. Additionally, logic-based formalization 
provides support for tasks by means of logic-based 
inference (a topic not discussed in this paper) so that tools 
can provide effective support for automated reasoning [14]. 
 
Diagramming has been used in logic for various reasons. 
Besides the use of diagrams as illustrations or thought aids, 
diagrammatic systems have also formalized logic. These 
include Frege’s [15] Begriffsschrift (“conceptual notation”) 
and Charles Sanders Peirce’s [16] existential graphs.  

1.3 Outline 
TM modeling is a three-level process that involves the 
following: 
 A static model of the state of affairs to produce an 

atemporal diagrammatic description denoted as S. 

 A decomposition of S into subdiagrams that form the 
base of temporal events. 

 The behavior of the model, denoted as B, is 
formulated as a chronology of events. The behavior 
refers to executing composite actions. 

We try to clarify the intuitive conception of the TM 
diagrammatic representation by incorporating the 
semantics notion of logical consequence. The fundamental 
idea is that the semantics are built upon B (chronology of 
permitted events).  
Thus, consider a given statement p, in terms of Tarski’s 
famous T(ruth) schema [17]:  

“p” is true if and only if P. (i.e., iff the corresponding 
state of affairs holds)  

The T schema can be formalized in many-sorted predicate 
logic or modal logic. Tarski conceived the T schema as an 
expression of the classical correspondence theory. This 
conception was done in linguistic terms that are supposed 

to refer to objects in the world. Our basic idea is to “inject” 
the diagrammatic form as follows: 

 “p” is true if, and only if, B (i.e., iff the corresponding 
chronology of events holds) 

where B is the chronology of events expressed as a 
diagrammatic construct. This form is generalized for S, 
and hence, if S is true, then so is B. Although such a form 
of representation does not bring a new idea to Tarski’s T 
schema, it weakens its reliance on textual language 
because B is specified as a diagrammatic expression. 
To achieve a self-contained paper, the next section reviews 
the TM model. A more elaborate discussion of the TM 
model’s foundations can be found in [18-29]. 

2. The TM Model 

The main TM thesis is that each entity has a double nature 
as (i) a thing and (ii) a process (abstract machine); thus, we 
call these thing/machine entities thimacs. In TM modeling, 
intertwining with the world is accomplished by integrating 
these two modes of being of entities. Thimacs inhibit the 
traditional categorization, properties, and behavior, 
replacing them with creating, processing, releasing, 
transferring, and receiving. Such a thesis has profound 
influence on the semantics of TM modeling of the world. 
It implies that all actions are reduced to five actions or 
generic (elementary) machines. Because machines are 
things, all things can be reduced to five elementary things: 
the create thing, the process thing, the release thing, the 
transfer thing, and the receive thing. These ideas were 
inspired by and can be traced back to Aristotle in ancient 
history and Heidegger in modern times (see [29]). As 
stated in Al-Fedaghi [29], Aristotle proclaimed entities are 
the sorts of “basic beings that fall below the level of truth-
makers, or facts, just as … nouns and verbs, things said 
‘without combination,’ contribute to the truth-evaluability 
of simple assertions” [30]. Moreover, Aristotle introduced 
the notion of process in thinking about things. He 
conjectured that a thing in nature persists via an internal 
process that must be realized within a matter that harbors 
tendencies resulting from its elemental components (e.g., 
fire, water, earth, or air). This causes tendencies to actively 
strive toward their “natural place.” In this view, Aristotle 
can be counted as a process philosopher [31]. Aristotle’s 
idea is that things are compounds consisting of matter and 
form. According to Heidegger [32], a thing is self-
sustained, self-supporting, or independent—something that 
stands on its own. The condition of being self-supporting 
transpires by means of producing the thing. Heidegger [32] 
encourages further research on “generic processes” applied 
to a thing. 
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Accordingly, in this paper, we claim that mapping to the 
“object world” can be accomplished by mapping the five 
generic thimacs. In TM modeling, a thing’s machine 
operates on other things by creating, processing, releasing, 
transferring, and/or receiving them. The term “machine” 
refers to a special abstract machine (see Fig. 1). The TM 
description of a system is built under the postulation that it 
only performs five generic operations: creating, processing 
(changing), releasing, transferring, and receiving. A thing 
is created, processed, released, transferred, and/or received. 
A machine creates, processes, releases, transfers, and/or 
receives things. Among the five stages, flow (a solid arrow 
in Fig. 1) signifies conceptual movement from one 
machine to another or among a machine’s stages.  
The TM’s actions (called also stages) can be described as 
follows: 
 Arrival: A thing reaches a new machine.  
 Acceptance: A thing is permitted to enter the machine. 

If arriving things are always accepted, then arrival and 
acceptance can be combined into the “receive” stage. 
For simplicity, this paper’s examples assume a receive 
stage exists. 

 Processing (change): A thing undergoes a 
transformation that changes it without creating a new 
thing.  

 Release: A thing is marked as ready to be transferred 
outside of the machine. 

 Transference: A thing is transported somewhere 
outside of the machine. 

 Creation: A new thing is born (is created/emerges) 
within a machine. A machine creates in the sense that 
it finds or originates a thing; it brings a thing into the 
system and then becomes aware of it. Creation can 
designate “bringing into existence” in the system 
because what exists is what is found. Additionally, 
creation does not necessarily mean existence in the 
sense of being alive. Creation in a TM also means 
appearance in the system. Appearance here is not 
limited to form or solidity but also extends to any 
sense of the system’s awareness of the new thing. 

In addition, the TM model includes 
 Memory  
 Triggering (represented as dashed arrows), or 

relations among the processes’ stages (machines); for 
example, the process in Fig. 1 triggers the creation of 
a new thing. 

To approach TM modeling smoothly, we focus on the 
machine side of thimacs. The duality of a thimac will be 
examined later in the paper.  

3. TM Modeling 

Klimek [33] dealt with the problem of the lack of tools for 
automatic extraction of logical specifications from 
software models and proposed a method for automatic 
generation of these specifications, considered as sets of  
 
 
 
 
 
 
 
 
 
 
temporal logic formulas. Klimek [33] illustrated the 
approach by considering a “business use case scenario” to 
illustrate behavior, where the scenario allows for 
identification and extraction of atomic activities. This is 
followed by developing a UML activity diagram to enable 
the modeling of atomic activities. A sample scenario given 
by Klimek [33] is as follows:  
1. Passenger’s “Check-in” or “selfCheck-in” 
2. If necessary, then “HoldBaggage” 
3. If non-Schengen, then “BoarderControl” and 

“CustomControl” 
4. Passenger’s “securityControl” 
5. Passenger’s “Board”  

Klimek [33] also used “use case diagrams” to model this 
scenario. Propositions (atomic activities) were declared, 
such as  

Seq(Seq(Branch(a, b, c),Branch(d, e, n1))) and 
Seq(Branch(f, Seq(g, h), n2), Seq(i, j)),  

where a is Counter, b is CheckIn, c is SelfCheckIn, d is 
Baggage, e is HoldBaggage, and so on. Accordingly, a 
logical specification is developed. For example, e ⇒ ⃟  j 
means that if the HoldBaggage for a passenger is 
registered, then sometime in the future the passenger will 
board—or, more formally, HoldBaggage ⇒⃟ Boarding. 

3.1 Static TM Model 
Fig. 2 shows the static TM model, S, developed according 
to our understanding of the scenario. The figure describes 
two types of passengers (circle 1): with luggage (2) and 
without luggage (3). The passenger with luggage moves (4) 
to the counter, where his or her luggage is received (5) and 
processed (6). At the counter, the passenger is processed to 
be given a travel ticket (7) and moves to the queue area (8). 
The passenger without luggage goes to the self-service 
check-in (9), is processed (10), and moves to the queue 
area (11). 
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In the queue area, if the passenger is of type Schengen (12), 
he or she proceeds to the security control area (13); if not 
of that type (14), then the passenger goes to the boarder 
control area (15), where his or her passport is processed 
(16). Assuming that everything is acceptable, the 
passenger is permitted to move to the security control area 
(17 and 18) and waits there (19) until boarding (20). 

3.2 Decomposition of the Static Model 
In Fig. 2, S is a static description that represents all states 
of affairs. A state of affairs is a combination or complex of 
thimacs. We need a “structure” for this complex to reduce 
it to a multiplicity of “meaningfulness.” Fig. 2 is 
reminiscent of Deleuze and Guattari’s philosophical notion 
of a “body without organs” [34]. S is a “body” that has the 
potentialities of phenomena, as an airport mechanism that 
can be populated by organs (e.g., handling luggage, 
boarder control, or self-service ticketing) or subsystems, 
each with its own purpose. S is also a source of the system 
behavior to be, if we can figure out how to make it into an 
assemblage of organs that form a goal-directed 
organization as a thimac: a thing and a machine. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
This discussion points to S as a machine schema that is 
amenable to compositional exploration to generate a new 
structural level (multiplicity). The structure of a particular 
composite of unity is the manner in which it is made by 
actual static components in a particular space as well as a 
particular composite unity. The point of this discussion is 
to view S as an organization that needs structuring so that 
its behavior can be specified. While the wholeness of S is 
the same, S may have different structures depending on 
how it is divided into parts. 
 
The idea of decomposing a system for semantics analysis 
is taken from the study of semantics in languages. In so-
called compositional semantics, the truth value of a 
sentence is calculated by composing, or putting together, 
the meanings of smaller units [35]. The meaning of a 
statement is composed of the meanings of its parts and 
how they are combined structurally [35]. 

3.3 Subdiagrams (Changes) in S 
Fig. 3 shows the decomposition of the diagram S into 14 
subdiagrams: S1, S2, … S14. These subdiagrams replace S 
with potential locations of changes. A change in the S 
model refers to becoming different or becoming altered or 
modified. Each subdiagram is assigned a name as follows:  
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Note that these names are written in a certain style to 
emphasize that they are subdiagrams and not language 
strings.  
S1: PASSENGER-WITH-LUGGAGE-IS-PRESENT 
S2: PASSENGER-WITHOUT-LUGGAGE-IS-PRESENT 
S3:PASSENGER-WITH-LUGGAGE-MOVES-TO-THE-
COUNTER 
S4:LUGGAGE-IS-RECEIVED-AND-PROCESSED-AT-THE 
COUNTER 
S5:PASSENGER-WITH-LUGGAGE-IS-PROCESSED-TO-BE-
A-PASSENGER-WITH-TICKET-AND-LEAVES-THE-
COUNTER 
S6:PASSENGER-WITHOUT-LUGGAGE-MOVES-TO-THE-
SELF-SERVICE-AREA 
S7:PASSENGER-WITHOUT-LUGGAGE-IS-PROCESSED-TO-
BE-A-PASSENGER-WITH-TICKET-AND-LEAVES-THE-
SELF-SERVICE-AREA 
S8:PASSENGER-WITH-A-TICKET-ARRIVES-AT-THE-
QUEUE-AREA 
S9:PASSENGER-WITH-A-TICKET-IS-PROCESSED-AT-THE-
QUEUE-AREA-AND-IDENTIFIED-AS-A-SCHENGEN-
TYPE-AND-MOVES-TO-THE-SECURITY-CONTROL-AREA 
S10:PASSENGER-WITH-A-TICKET-IS-PROCESSED-AT-
THE-QUEUE-AREA-IS-IDENTIFIED-AS-A-NON-
SCHENGEN-TYPE-AND-MOVES-TO-THE-BOARDER-
CONTROL-AREA 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
S11:AT-THE-BOARDER-CONTROL-AREA-THE- 
PASSENGER-HAS-HIS/HER-PASSPORT-PROCESSED 
S12:AT-THE-BOARDER-CONTROL-AREA-THE- 
PASSENGER-MOVES-TO-THE-SECURITY-CONTROL-
AREA 
S13:PASSENGER-WAITS-FOR-BOARDING-AT-THE- 
BOARDER-CONTROL-AREA 
S14:PASSENGER-LEAVES-THE-BOARDER-CONTROL- 
AREA-TO-BOARD-THE-PLANE 

4. Behavioral Model, B 

Eventually, this decomposition aims to reconceive S in 
terms of events: actual existent things (thimacs) that form 
the semantics of S. In parallel with Tarski’s T schema 
condition [36], “It rains” is true iff IT RAINS; we will 
declare that Si is true iff it is eventized, 1 ≤ i ≤ 14. 

 
An event in the TM model is defined as a thimac with a 
time subthimac, which is a subdiagram of S with a time 
machine. For example, Fig. 4 shows the event A passenger 
with a ticket is processed at the queue area, is identified as 
a non-Schengen type, and moves to the boarder control 
area. Note that the subdiagram in this event is S10. 
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The event may have another submachine—say, intensity—
but such is not relevant to this discussion. In an analogy to 
Tarski’s condition mentioned above, associating time with 
a subdiagram amounts to associating the time NOW with 
IT IS RAINING. 

An event is a period of time in which a thimac materializes. 
We have projected the thimac materialization in terms of 
its subthimacs (subdiagrams). Accordingly, we can 
convert S1, S2, … S14 to events E1, E2, … E14 (see Fig. 5, 
where each event is represented by its subdiagram). 
Event 1 (E1): A passenger with luggage is present. 
Event 2 (E2): A passenger without luggage is present. 
Event 3 (E3): A passenger with luggage moves to the 
counter. 
Event 4 (E4): The luggage is received and processed at the 
counter. 
Event 5 (E5): A passenger with luggage is processed to be 
a passenger with a ticket and leaves the counter. 
Event 6 (E6): A passenger without luggage moves to the 
self-service area. 
Event 7 (E7): A passenger without luggage is processed to 
be a passenger with a ticket and leaves the self-service 
area. 
Event 8 (E8): A passenger with a ticket arrives at the queue 
area. 
Event 9 (E9): A passenger with a ticket is processed at the 
queue area, is found to be a Schengen type, and moves to 
the security control area. 
 
 
 
 
 
 
 
 
 
 
 
 

Event 10 (E10): A passenger with a ticket is processed at 
the queue area, is found to be a non-Schengen type, and 
moves to the boarder control area. 
Event 11 (E11): At the boarder control area, the passenger 
has his/her passport processed. 
Event 12 (E12): From the boarder control area, the 
passenger moves to the security control area. 
Event 13 (E13): The passenger waits for boarding at the 
boarder control area. 
Event 14 (E14): The passenger leaves the boarder control 
area to board the plane. 
It is not difficult to write these events in terms of 
propositional functions. For example, A passenger with 
luggage is present can be written as is-Present (x), where 
the domain of x is passengers with luggage, and A 
passenger with luggage moves to the counter can be 
written as moves (x, y), where y is the counter.  
We can claim the following: 

Si is true iff Ei, 1≤ i ≥ 14. 
{E1, E2, … E14} has a chronology of events, as shown in 
Fig. 5, that expresses the behavior B of the system. In 
general, we can conclude that 

S is true iff B. 
Here, the word true expresses a property of diagrams. The 
diagrammatic language contains the capacity to refer to its 
own subdiagrams (expressions), and thus the events 
language can be considered the meta-language of the 
object diagrammatic language that expresses S.  

5. Behavioral Definitions of Action 

TM modeling is based on thimacs (things/machines), 
which is denoted by ∆. ∆ has a dual mode of being: the 
machine side, denoted as M, and the thing side, denoted by 
T. Thus, ∆ = (M, T). 
Fig. 6 shows the generic action in the T machine. In the 
context of semantics, these actions are words of sentences 
in the study of language semantics. The semantics are 
analogous to so-called lexical semantics (word meaning). 
In this section, we present a preliminary attempt to bound 
semantics to five events of the T’s five generic actions. 
Since ∆ = (M. T) under the duality assumption, the five 
generic events apply to things. 
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We can now give a behavioral definition of the actions in 
the machine of Fig. 1. 
Arrival ≡ (is defined as) EventArrival; that is, the meaning 
of arrival (i.e., a machine with only the state of arrive) is 
the event of a thing entering the boundary of any machine. 
Thus, Arrive is true iff EventArrival.  For example, “John 
arrives to London” is true iff the event John is moving 
from the outside to, say, inside the perimeter of London 
occurs. Such an action is not (to our knowledge) 
recognized in different bodies of literature. In set theory, x 
ϵ A means that x is/has become a member of A. On the 
other hand, Arrive “means” “depositing” x in the set, yet it 
does not become a member until it reaches Receive. This 
event is represented in Fig. 6, where, for simplicity’s sake, 
the stages of the time are deleted.  
 
The semantics of each action can be defined in a similar 
way, as shown in Fig. 6. Each of the generic actions in Fig. 
6 represents a generic event. The event is specified by a 
single TM action and time. Accordingly, the semantics of 
events with larger TM subdiagrams can be mapped to 
these generic events. Because a machine is a thing, the 
machines in Fig. 6 are also “events of things” as much as 
they are events of actions. Each machine is an event 
thimac. When time is removed, each subdiagram 
represents a thimac.  
Consider the single-stage thimac Create, which only 
creates and does nothing else. Let us denote this thimac 
with ∆cr. In this ∆cr monistic world, ∆cr events generate 
only ∆crs. ∆cr does not process, release, transfer, or 
receive and is similar to Leibniz’s monads because it is 
“simple,” having no parts and therefore being indivisible. 
It may have memory. 
Similar accounts can be presented for other generic 
thimacs in TM modeling that we will not elaborate on in 
this paper. The point here is that these primitive 
things/machines are the nuclei of primitive (do not embed 

subthimacs) behaviors. The informal meanings associated 
with them are as follows: 
 Existing/appearing (create). 
 Crossing a boundary (transfer) 
 Becoming an element (receive) 
 Changing in form (process) 
 Dismissing membership (release) 
Such an initial treatment of basic semantics needs more 
formal treatment, but the method to accomplish that is 
clear. 

6. Semantic Events in Linguistics 

A related topic to this paper is semantic events introduced 
by Davidson [37], where events are viewed as 
spatiotemporal things (i.e., concrete particulars with a 
location in space and time). Consider the sentence from 
[38] Jones buttered the toast and its logical form: Butter 
(jones, the toast).  According to Maienborn [38], 
“Davidson  (1967)  points  out  such  a  representation  
does  not  allow  us  to  refer  explicitly to the action 
described by the sentence and specify it further by adding, 
e.g., that  Jones  did  it  slowly,  deliberately,  with  a  knife,  
in  the  bathroom,  at  midnight.” According to Davidson, 
action verbs introduce an additional hidden event 
argument that stands for the action proper. Davidson 
proposed expressing the above statement with ∃e [Butter 
(jones, the toast, e)]. 
 
Clearly, the topic of semantic events in linguistics is 
related to the events in the conceptual model. This issue 
needs further exploration in future research. For the time 
being, we will not try to mix the issue of events in these 
two approaches. However, in anticipation of such a 
development, we explore next some samples of modeling 
sentences in TM. 

7. Applying the Method 

The sphere of interest in this section of the paper is limited 
to linguistic expression (including logic language). We 
examine a number of linguistic expressions as carriers of 
meaning. In this method, “understanding” a statement 
begins with translation of it into a TM diagram. This 
translation may resolve ambiguities and incorporate 
implicit information. The static diagram is decomposed, 
and events are identified to construct the corresponding 
TM diagram that represents the behavioral TM model B. 
Accordingly, the statement is true iff B. 
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In this process, the linguistic expression is translated in a 
more suitable language for semantics. The TM language 
has five generic actions, and thus the nuclei of meanings 
are limited. Second, the totality of the description is 
decomposed into “meaningful” pieces. The limits of the 
pieces are the actions/things: create, process, release, 
transfer, and receive. Generic meanings are then connected 
with time in terms of events, thus causing further 
confinements of meaning. Additionally, the chronology of 
events restricts the involved interpretations.  
 
Note that we will use a simplified version of TM modeling 
whereby the actions release, transfer, and receive are 
eliminated under the assumption that the direction of the 
arrow in the diagram is sufficient to indicate the flow of 
things. 

7.1 Example: The moon is made of green cheese 
A proposition is a declarative sentence that is either true or 
false. In TM, a proposition is a machine that has a 
submachine called a truth value. Consider the proposition 
The moon is made of green cheese (or “The Moon is made 
of green cheese.”) as a thimac. Its machine representation 
is shown in Fig. 7. In the figure, the proposition (1) has 
three components: the English text (2), the TM diagram 
(3), and the truth value (4).  
 
The figure illustrates the propositional truth assignment 
according to the correspondence theory of truth. We apply 
decomposition to the diagram of the proposition, as we did 
in the previous section, to produce the following events 
(see Fig. 8): 
 E1: Processing cheese 
 E2: Creating moon 
These events have an order, and E1 is “before” E2. 
Accordingly, Fig. 9 shows the behavioral model B of the 
proposition according to the chronology of events. Hence, 
the moon is made of green cheese is true iff B. That is, the 
proposition is true iff the events E1 and E2 occur. 

7.2 Example: Bread is made of flour and water 
Consider the proposition expressed in the form “Bread is 
made of flour and water,” as represented in Fig. 10 
(simplified diagrammatic version) and with the events 
shown in Fig. 11. According to Tarski’s T schema [36], 
“Bread is made of flour and water” is true iff BREAD IS 
MADE OF FLOUR AND WATER. 
 
Similar to the previous example, the diagram in Fig. 10 is 
true iff it is B. The new thing in this formulation is 
expressing the original problem in a diagramming 
language. The TM modeling extends the semantics of S 
(Fig. 10) to produce the behavioral model B. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
“Bread is made of flour and water” is true if and only if B. 
B is a chronology of events (not shown since it is similar 
to Fig. 9). Thus, B refers to an event where flour and water 
are mixed, followed by the event of bread being generated.  

7.3 Example: 0+0=1 
Consider the proposition 0+0=1. Figs. 12-14 (simplified 
version) show the corresponding three diagrams of S, 
events, and behavioral diagrams. Hence, 0+0=1 is true iff 
the chronology of events in the behavioral model occurs; 
i.e., zero is generated twice, the two zeroes are summed, 
and the summation produces 1. 
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7.4 Example: John gave Mary an apple 
According to Nouwen [39], two sentences that entail one 
another have the same semantic meaning. For instance, 
John gave Mary an apple both entails and is entailed by 
John gave an apple to Mary. This suggests that the dative 
alternation in English has no semantic import. Figs. 15 and 
16 shows the TM static and behavioral models. The truth 
value of the diagram is assigned according to the 
behavioral model; that is, it happens that John releases and 
transfers an apple that is received by Mary. Fig. 17 shows 
the event John is giving Mary an apple, which is true if the 
event is happening now. 

7.5 Example: The boy saw the man with the telescope 
Consider the statement (from [35]) The boy saw the man 
with the telescope. Fig. 18 shows two possible TM 
representations of the statement. In the figure, “create” 
indicates “there is.” In the upper diagram, the man exhibits 
his image that the boy is using a telescope to see. In the 
bottom diagram, the image of a man with the telescope is 
seen by the boy. Clearly, the diagrams when converted to 
events—say, B1 and B2—are different; thus, ambiguity is 
eliminated, and the truth depends on which behavior is 
adopted. We can say that Bi, I = 1 or 2 is the referent of 
the given statement. 

8. The Liar Paradox  

Self-reference denotes a statement that refers to itself. The 
most famous example of a self-referential sentence is 
the liar sentence: This sentence is false. The involved 
paradox that is reflected in such a statement seems to show 

that truth and falsity actually lead to a contradiction if we 
apply the following:  
This sentence is false is true iff THIS SENTENCE IS 
TRUE. 
If the statement is true, then This statement is false is true. 
Therefore, it must be false. If the statement is false, then 
This statement is false is false and therefore must be true.  
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It has been proposed that the statement is neither true nor 
false and that it is both true and false. In both cases, we 
end up with infinite regress because the involved statement 
is self-referential. Alfred Tarski suggested that the paradox 
arises only in languages and that solving it requires 
utilizing levels of languages. 
In TM modeling, we utilize the notion of chronology of 
events to eliminate infinite regress resulting from self-
reference. Without loss of generality, we use the version of 
the liar paradox I am lying. 
 
As a result of the TM representation, if I am lying is true, 
then it stays true without infinite regress. If I am lying is 
false, then it stays false without infinite regress. I am lying 
can be true or false. It is false if it is used in a sarcastic 
way where the speaker is saying the opposite of what they 
really mean, as in saying “early” to mean “late” or 
“knowledgeable” to mean “ignorant.” Alternatively, I am 
lying may be true if it is used in the usual way. 
 
Fig. 19 shows the TM model of the proposition I am lying, 
which involves the following: 
1. There is I (create).  
2. I process myself (e.g., dwell/practice/activate). 
3. I create and process lies. 
Hence, we translate “I am lying” into a diagrammatic 
representation that expresses the existence of the I who 
creates lies. Fig. 20 shows the events in S. The time sense 
of NOW in “lying” is a complex event that includes sub-
events, just as saying I am writing implies I am in the 
middle of a time period where I am producing consecutive 
letters, words, and sentences. Similarly, I am lying 
indicates (see the behavioral model B in Fig. 21) 
 Event 1 (E1): There is I (create), 
 Event 2 (E2): I process myself (e.g., dwell/ practice/ 

activate), and 
 Event 3 (E3): I create and process lies, 
in that order. Accordingly, I am lying is true iff E1→ E2→ 
E3, or I am lying is true iff B. 
 
We observe that these semantics preserve whatever truth 
value we assign to the proposition and eliminate infinite 
regress. Simply, I am lying is true iff there is I (create-I 
event) and this I triggers (dash arrow from create to process) 
creating lies. 

9. Conclusion 

This paper has introduced a first-step venture into 
developing semantics for the diagrammatic modeling 
language TM. We explored a new territory in logic as 
much as in modeling though investigation of the notion of 
truth and hence of the semantics for relations between the 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
concepts and the subject being modeled in TM. This seems 
to facilitate an unconventional direction that is still in need 
of scrutiny, but the initial results of this paper indicate the 
viability of the approach. 
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