
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

223

Manuscript received October 5, 2020
Manuscript revised October 20, 2020

https://doi.org/10.22937/IJCSNS.2020.20.10.28

Towards Conceptual Modeling Semantics: Eventizing Tarski’s Truth
Schema

Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Summary
Modeling languages in software engineering (e.g., UML)
evolved from software systems modeling where
denotational and operational kinds of semantics are the
traditional subjects of research and practice. According to
some authors, although a large portion of the static
semantics (e.g., UML) seems to have reached a consensus,
the dynamic semantics of activities, interactions, and state
machines poses a major challenge. Central to semantics is
the relationship between a sentence and the (actual) world.
Carefully examining semantics-related issues in the
modeling languages field to avoid problems that may
affect practical applicability is important. One effort in this
direction is OMG’s release of a 2020 draft specification
for Foundational UML (fUML), with the base semantics
specifying executions that are executable in the same sense
as a program in a traditional programming language.
Additionally, efforts within academia have sought to
develop an alternative approach to modeling languages
using formal semantics (e.g., using Russell’s theory of
types and Tarski’s declarative semantics). This paper aims
at a similar exploratory venture of developing semantics,
only for a much more modest diagrammatic modeling
language, called the thinging machine model. The model
promotes a deep understanding of the scrutinized modeling
language and leads to considerably fruitful questions.
Constructing the thinging machine model seems to
facilitate progress in this direction, and the initial results in
this paper indicate the viability of the approach.
Key words:
Conceptual modeling, modeling language, diagrammatic
representation, formal semantics, UML semantics, T-schema

1. Introduction

Diagrammatic modeling languages (e.g., UML) have
become the key artifacts of software development, and
“the solidness of modeling languages metamodels” has
generated important outcomes in the field of software
engineering [1]. They are proving extremely helpful in
software and systems development. However, when
formal semantics (meaning in contrast to syntax) are called
for, properly defining diagrams seems to be a much harder

problem [2]. In the case of UML, the language evolved
from software systems modeling where denotational
(using mathematical objects) and operational (using
execution) kinds of semantics are the traditional subjects
of research and practice [3-4]. According to Ekenberg and
Johannesson [5], work on formalizing UML has attempted
to use different versions of temporal logic (see, e.g. [6-7]).
Dynamic logic has also been used as a basis for UML
semantics (e.g., in [8-9]). In 2020, OMG [10-11] released
a draft specification of Foundational UML (fUML)
wherein basic semantics specify when particular
executions conforming to a model defined in fUML
generate executions. As a specification, fUML has
standard, precise execution semantics. It is a subset that
includes constructs of UML and the ability to model
behavior using a composed set of primitive actions. A
model constructed in fUML is “executable in exactly the
same sense as a program in a traditional programming
language, but it is written with the level of abstraction and
richness of expression of a modeling language” [12].
According to Broy et al. [13], although a large portion of
the static semantics of UML seem to have reached a
consensus, the dynamic semantics of the UML
sublanguages, such as activities, interactions, and state
machines, pose a major challenge. These foundational
difficulties involving dynamic semantics of such tools as
state machines lead to definitions that contradict common
sense [13]. They “show how important it is to carefully
design a modeling language to avoid problems regarding
its expressivity as well as its interpretation—problems that
strongly impact practical applicability [13]. Efforts within
academia have sought to develop an alternative approach
to UML’s formal semantics (e.g., using Russell’s theory of
types and Tarski’s declarative semantics [1-4]).

1.1 Aim
This paper aims at a first step toward developing semantics,
only for a much more modest diagrammatic modeling
language called the thinging machine (TM). According to
Broy et al. [13], formalization is a scientific approach that
promotes deep understanding of different aspects of the
scrutinized modeling language. Trying to conduct the
formalization uncovers many properties of the modeling

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

224

language and leads to considerably fruitful questions. In
this paper, we explore a new territory in logic as much as
in modeling though investigation of the notion of truth and
hence the semantics for relations among the concepts and
the subject that is being modeled in the TM context.

1.2 Justification
The paper suggests applying logical semantics to the
diagrammatic method used in conceptual modeling. The
justification for this direction of research is that the
reliance on graphical constructs poses problems when it
comes to precise and unambiguous semantics [5]. The
first-order logic, when used in conjunction with conceptual
modeling, “provides a sound basis on which specifications
written in a process-based language can be transformed,
merged, and verified for the purpose of detecting
interference” [5]. Additionally, logic-based formalization
provides support for tasks by means of logic-based
inference (a topic not discussed in this paper) so that tools
can provide effective support for automated reasoning [14].

Diagramming has been used in logic for various reasons.
Besides the use of diagrams as illustrations or thought aids,
diagrammatic systems have also formalized logic. These
include Frege’s [15] Begriffsschrift (“conceptual notation”)
and Charles Sanders Peirce’s [16] existential graphs.

1.3 Outline
TM modeling is a three-level process that involves the
following:
 A static model of the state of affairs to produce an

atemporal diagrammatic description denoted as S.

 A decomposition of S into subdiagrams that form the
base of temporal events.

 The behavior of the model, denoted as B, is
formulated as a chronology of events. The behavior
refers to executing composite actions.

We try to clarify the intuitive conception of the TM
diagrammatic representation by incorporating the
semantics notion of logical consequence. The fundamental
idea is that the semantics are built upon B (chronology of
permitted events).
Thus, consider a given statement p, in terms of Tarski’s
famous T(ruth) schema [17]:

“p” is true if and only if P. (i.e., iff the corresponding
state of affairs holds)

The T schema can be formalized in many-sorted predicate
logic or modal logic. Tarski conceived the T schema as an
expression of the classical correspondence theory. This
conception was done in linguistic terms that are supposed

to refer to objects in the world. Our basic idea is to “inject”
the diagrammatic form as follows:

 “p” is true if, and only if, B (i.e., iff the corresponding
chronology of events holds)

where B is the chronology of events expressed as a
diagrammatic construct. This form is generalized for S,
and hence, if S is true, then so is B. Although such a form
of representation does not bring a new idea to Tarski’s T
schema, it weakens its reliance on textual language
because B is specified as a diagrammatic expression.
To achieve a self-contained paper, the next section reviews
the TM model. A more elaborate discussion of the TM
model’s foundations can be found in [18-29].

2. The TM Model

The main TM thesis is that each entity has a double nature
as (i) a thing and (ii) a process (abstract machine); thus, we
call these thing/machine entities thimacs. In TM modeling,
intertwining with the world is accomplished by integrating
these two modes of being of entities. Thimacs inhibit the
traditional categorization, properties, and behavior,
replacing them with creating, processing, releasing,
transferring, and receiving. Such a thesis has profound
influence on the semantics of TM modeling of the world.
It implies that all actions are reduced to five actions or
generic (elementary) machines. Because machines are
things, all things can be reduced to five elementary things:
the create thing, the process thing, the release thing, the
transfer thing, and the receive thing. These ideas were
inspired by and can be traced back to Aristotle in ancient
history and Heidegger in modern times (see [29]). As
stated in Al-Fedaghi [29], Aristotle proclaimed entities are
the sorts of “basic beings that fall below the level of truth-
makers, or facts, just as … nouns and verbs, things said
‘without combination,’ contribute to the truth-evaluability
of simple assertions” [30]. Moreover, Aristotle introduced
the notion of process in thinking about things. He
conjectured that a thing in nature persists via an internal
process that must be realized within a matter that harbors
tendencies resulting from its elemental components (e.g.,
fire, water, earth, or air). This causes tendencies to actively
strive toward their “natural place.” In this view, Aristotle
can be counted as a process philosopher [31]. Aristotle’s
idea is that things are compounds consisting of matter and
form. According to Heidegger [32], a thing is self-
sustained, self-supporting, or independent—something that
stands on its own. The condition of being self-supporting
transpires by means of producing the thing. Heidegger [32]
encourages further research on “generic processes” applied
to a thing.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

225

Accordingly, in this paper, we claim that mapping to the
“object world” can be accomplished by mapping the five
generic thimacs. In TM modeling, a thing’s machine
operates on other things by creating, processing, releasing,
transferring, and/or receiving them. The term “machine”
refers to a special abstract machine (see Fig. 1). The TM
description of a system is built under the postulation that it
only performs five generic operations: creating, processing
(changing), releasing, transferring, and receiving. A thing
is created, processed, released, transferred, and/or received.
A machine creates, processes, releases, transfers, and/or
receives things. Among the five stages, flow (a solid arrow
in Fig. 1) signifies conceptual movement from one
machine to another or among a machine’s stages.
The TM’s actions (called also stages) can be described as
follows:
 Arrival: A thing reaches a new machine.
 Acceptance: A thing is permitted to enter the machine.

If arriving things are always accepted, then arrival and
acceptance can be combined into the “receive” stage.
For simplicity, this paper’s examples assume a receive
stage exists.

 Processing (change): A thing undergoes a
transformation that changes it without creating a new
thing.

 Release: A thing is marked as ready to be transferred
outside of the machine.

 Transference: A thing is transported somewhere
outside of the machine.

 Creation: A new thing is born (is created/emerges)
within a machine. A machine creates in the sense that
it finds or originates a thing; it brings a thing into the
system and then becomes aware of it. Creation can
designate “bringing into existence” in the system
because what exists is what is found. Additionally,
creation does not necessarily mean existence in the
sense of being alive. Creation in a TM also means
appearance in the system. Appearance here is not
limited to form or solidity but also extends to any
sense of the system’s awareness of the new thing.

In addition, the TM model includes
 Memory
 Triggering (represented as dashed arrows), or

relations among the processes’ stages (machines); for
example, the process in Fig. 1 triggers the creation of
a new thing.

To approach TM modeling smoothly, we focus on the
machine side of thimacs. The duality of a thimac will be
examined later in the paper.

3. TM Modeling

Klimek [33] dealt with the problem of the lack of tools for
automatic extraction of logical specifications from
software models and proposed a method for automatic
generation of these specifications, considered as sets of

temporal logic formulas. Klimek [33] illustrated the
approach by considering a “business use case scenario” to
illustrate behavior, where the scenario allows for
identification and extraction of atomic activities. This is
followed by developing a UML activity diagram to enable
the modeling of atomic activities. A sample scenario given
by Klimek [33] is as follows:
1. Passenger’s “Check-in” or “selfCheck-in”
2. If necessary, then “HoldBaggage”
3. If non-Schengen, then “BoarderControl” and

“CustomControl”
4. Passenger’s “securityControl”
5. Passenger’s “Board”

Klimek [33] also used “use case diagrams” to model this
scenario. Propositions (atomic activities) were declared,
such as

Seq(Seq(Branch(a, b, c),Branch(d, e, n1))) and
Seq(Branch(f, Seq(g, h), n2), Seq(i, j)),

where a is Counter, b is CheckIn, c is SelfCheckIn, d is
Baggage, e is HoldBaggage, and so on. Accordingly, a
logical specification is developed. For example, e ⇒ ⃟ j
means that if the HoldBaggage for a passenger is
registered, then sometime in the future the passenger will
board—or, more formally, HoldBaggage ⇒⃟ Boarding.

3.1 Static TM Model
Fig. 2 shows the static TM model, S, developed according
to our understanding of the scenario. The figure describes
two types of passengers (circle 1): with luggage (2) and
without luggage (3). The passenger with luggage moves (4)
to the counter, where his or her luggage is received (5) and
processed (6). At the counter, the passenger is processed to
be given a travel ticket (7) and moves to the queue area (8).
The passenger without luggage goes to the self-service
check-in (9), is processed (10), and moves to the queue
area (11).

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

226

In the queue area, if the passenger is of type Schengen (12),
he or she proceeds to the security control area (13); if not
of that type (14), then the passenger goes to the boarder
control area (15), where his or her passport is processed
(16). Assuming that everything is acceptable, the
passenger is permitted to move to the security control area
(17 and 18) and waits there (19) until boarding (20).

3.2 Decomposition of the Static Model
In Fig. 2, S is a static description that represents all states
of affairs. A state of affairs is a combination or complex of
thimacs. We need a “structure” for this complex to reduce
it to a multiplicity of “meaningfulness.” Fig. 2 is
reminiscent of Deleuze and Guattari’s philosophical notion
of a “body without organs” [34]. S is a “body” that has the
potentialities of phenomena, as an airport mechanism that
can be populated by organs (e.g., handling luggage,
boarder control, or self-service ticketing) or subsystems,
each with its own purpose. S is also a source of the system
behavior to be, if we can figure out how to make it into an
assemblage of organs that form a goal-directed
organization as a thimac: a thing and a machine.

This discussion points to S as a machine schema that is
amenable to compositional exploration to generate a new
structural level (multiplicity). The structure of a particular
composite of unity is the manner in which it is made by
actual static components in a particular space as well as a
particular composite unity. The point of this discussion is
to view S as an organization that needs structuring so that
its behavior can be specified. While the wholeness of S is
the same, S may have different structures depending on
how it is divided into parts.

The idea of decomposing a system for semantics analysis
is taken from the study of semantics in languages. In so-
called compositional semantics, the truth value of a
sentence is calculated by composing, or putting together,
the meanings of smaller units [35]. The meaning of a
statement is composed of the meanings of its parts and
how they are combined structurally [35].

3.3 Subdiagrams (Changes) in S
Fig. 3 shows the decomposition of the diagram S into 14
subdiagrams: S1, S2, … S14. These subdiagrams replace S
with potential locations of changes. A change in the S
model refers to becoming different or becoming altered or
modified. Each subdiagram is assigned a name as follows:

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

227

Note that these names are written in a certain style to
emphasize that they are subdiagrams and not language
strings.
S1: PASSENGER-WITH-LUGGAGE-IS-PRESENT
S2: PASSENGER-WITHOUT-LUGGAGE-IS-PRESENT
S3:PASSENGER-WITH-LUGGAGE-MOVES-TO-THE-
COUNTER
S4:LUGGAGE-IS-RECEIVED-AND-PROCESSED-AT-THE
COUNTER
S5:PASSENGER-WITH-LUGGAGE-IS-PROCESSED-TO-BE-
A-PASSENGER-WITH-TICKET-AND-LEAVES-THE-
COUNTER
S6:PASSENGER-WITHOUT-LUGGAGE-MOVES-TO-THE-
SELF-SERVICE-AREA
S7:PASSENGER-WITHOUT-LUGGAGE-IS-PROCESSED-TO-
BE-A-PASSENGER-WITH-TICKET-AND-LEAVES-THE-
SELF-SERVICE-AREA
S8:PASSENGER-WITH-A-TICKET-ARRIVES-AT-THE-
QUEUE-AREA
S9:PASSENGER-WITH-A-TICKET-IS-PROCESSED-AT-THE-
QUEUE-AREA-AND-IDENTIFIED-AS-A-SCHENGEN-
TYPE-AND-MOVES-TO-THE-SECURITY-CONTROL-AREA
S10:PASSENGER-WITH-A-TICKET-IS-PROCESSED-AT-
THE-QUEUE-AREA-IS-IDENTIFIED-AS-A-NON-
SCHENGEN-TYPE-AND-MOVES-TO-THE-BOARDER-
CONTROL-AREA

S11:AT-THE-BOARDER-CONTROL-AREA-THE-
PASSENGER-HAS-HIS/HER-PASSPORT-PROCESSED
S12:AT-THE-BOARDER-CONTROL-AREA-THE-
PASSENGER-MOVES-TO-THE-SECURITY-CONTROL-
AREA
S13:PASSENGER-WAITS-FOR-BOARDING-AT-THE-
BOARDER-CONTROL-AREA
S14:PASSENGER-LEAVES-THE-BOARDER-CONTROL-
AREA-TO-BOARD-THE-PLANE

4. Behavioral Model, B

Eventually, this decomposition aims to reconceive S in
terms of events: actual existent things (thimacs) that form
the semantics of S. In parallel with Tarski’s T schema
condition [36], “It rains” is true iff IT RAINS; we will
declare that Si is true iff it is eventized, 1 ≤ i ≤ 14.

An event in the TM model is defined as a thimac with a
time subthimac, which is a subdiagram of S with a time
machine. For example, Fig. 4 shows the event A passenger
with a ticket is processed at the queue area, is identified as
a non-Schengen type, and moves to the boarder control
area. Note that the subdiagram in this event is S10.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

228

The event may have another submachine—say, intensity—
but such is not relevant to this discussion. In an analogy to
Tarski’s condition mentioned above, associating time with
a subdiagram amounts to associating the time NOW with
IT IS RAINING.

An event is a period of time in which a thimac materializes.
We have projected the thimac materialization in terms of
its subthimacs (subdiagrams). Accordingly, we can
convert S1, S2, … S14 to events E1, E2, … E14 (see Fig. 5,
where each event is represented by its subdiagram).
Event 1 (E1): A passenger with luggage is present.
Event 2 (E2): A passenger without luggage is present.
Event 3 (E3): A passenger with luggage moves to the
counter.
Event 4 (E4): The luggage is received and processed at the
counter.
Event 5 (E5): A passenger with luggage is processed to be
a passenger with a ticket and leaves the counter.
Event 6 (E6): A passenger without luggage moves to the
self-service area.
Event 7 (E7): A passenger without luggage is processed to
be a passenger with a ticket and leaves the self-service
area.
Event 8 (E8): A passenger with a ticket arrives at the queue
area.
Event 9 (E9): A passenger with a ticket is processed at the
queue area, is found to be a Schengen type, and moves to
the security control area.

Event 10 (E10): A passenger with a ticket is processed at
the queue area, is found to be a non-Schengen type, and
moves to the boarder control area.
Event 11 (E11): At the boarder control area, the passenger
has his/her passport processed.
Event 12 (E12): From the boarder control area, the
passenger moves to the security control area.
Event 13 (E13): The passenger waits for boarding at the
boarder control area.
Event 14 (E14): The passenger leaves the boarder control
area to board the plane.
It is not difficult to write these events in terms of
propositional functions. For example, A passenger with
luggage is present can be written as is-Present (x), where
the domain of x is passengers with luggage, and A
passenger with luggage moves to the counter can be
written as moves (x, y), where y is the counter.
We can claim the following:

Si is true iff Ei, 1≤ i ≥ 14.
{E1, E2, … E14} has a chronology of events, as shown in
Fig. 5, that expresses the behavior B of the system. In
general, we can conclude that

S is true iff B.
Here, the word true expresses a property of diagrams. The
diagrammatic language contains the capacity to refer to its
own subdiagrams (expressions), and thus the events
language can be considered the meta-language of the
object diagrammatic language that expresses S.

5. Behavioral Definitions of Action

TM modeling is based on thimacs (things/machines),
which is denoted by ∆. ∆ has a dual mode of being: the
machine side, denoted as M, and the thing side, denoted by
T. Thus, ∆ = (M, T).
Fig. 6 shows the generic action in the T machine. In the
context of semantics, these actions are words of sentences
in the study of language semantics. The semantics are
analogous to so-called lexical semantics (word meaning).
In this section, we present a preliminary attempt to bound
semantics to five events of the T’s five generic actions.
Since ∆ = (M. T) under the duality assumption, the five
generic events apply to things.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

229

We can now give a behavioral definition of the actions in
the machine of Fig. 1.
Arrival ≡ (is defined as) EventArrival; that is, the meaning
of arrival (i.e., a machine with only the state of arrive) is
the event of a thing entering the boundary of any machine.
Thus, Arrive is true iff EventArrival. For example, “John
arrives to London” is true iff the event John is moving
from the outside to, say, inside the perimeter of London
occurs. Such an action is not (to our knowledge)
recognized in different bodies of literature. In set theory, x
ϵ A means that x is/has become a member of A. On the
other hand, Arrive “means” “depositing” x in the set, yet it
does not become a member until it reaches Receive. This
event is represented in Fig. 6, where, for simplicity’s sake,
the stages of the time are deleted.

The semantics of each action can be defined in a similar
way, as shown in Fig. 6. Each of the generic actions in Fig.
6 represents a generic event. The event is specified by a
single TM action and time. Accordingly, the semantics of
events with larger TM subdiagrams can be mapped to
these generic events. Because a machine is a thing, the
machines in Fig. 6 are also “events of things” as much as
they are events of actions. Each machine is an event
thimac. When time is removed, each subdiagram
represents a thimac.
Consider the single-stage thimac Create, which only
creates and does nothing else. Let us denote this thimac
with ∆cr. In this ∆cr monistic world, ∆cr events generate
only ∆crs. ∆cr does not process, release, transfer, or
receive and is similar to Leibniz’s monads because it is
“simple,” having no parts and therefore being indivisible.
It may have memory.
Similar accounts can be presented for other generic
thimacs in TM modeling that we will not elaborate on in
this paper. The point here is that these primitive
things/machines are the nuclei of primitive (do not embed

subthimacs) behaviors. The informal meanings associated
with them are as follows:
 Existing/appearing (create).
 Crossing a boundary (transfer)
 Becoming an element (receive)
 Changing in form (process)
 Dismissing membership (release)
Such an initial treatment of basic semantics needs more
formal treatment, but the method to accomplish that is
clear.

6. Semantic Events in Linguistics

A related topic to this paper is semantic events introduced
by Davidson [37], where events are viewed as
spatiotemporal things (i.e., concrete particulars with a
location in space and time). Consider the sentence from
[38] Jones buttered the toast and its logical form: Butter
(jones, the toast). According to Maienborn [38],
“Davidson (1967) points out such a representation
does not allow us to refer explicitly to the action
described by the sentence and specify it further by adding,
e.g., that Jones did it slowly, deliberately, with a knife,
in the bathroom, at midnight.” According to Davidson,
action verbs introduce an additional hidden event
argument that stands for the action proper. Davidson
proposed expressing the above statement with ∃e [Butter
(jones, the toast, e)].

Clearly, the topic of semantic events in linguistics is
related to the events in the conceptual model. This issue
needs further exploration in future research. For the time
being, we will not try to mix the issue of events in these
two approaches. However, in anticipation of such a
development, we explore next some samples of modeling
sentences in TM.

7. Applying the Method

The sphere of interest in this section of the paper is limited
to linguistic expression (including logic language). We
examine a number of linguistic expressions as carriers of
meaning. In this method, “understanding” a statement
begins with translation of it into a TM diagram. This
translation may resolve ambiguities and incorporate
implicit information. The static diagram is decomposed,
and events are identified to construct the corresponding
TM diagram that represents the behavioral TM model B.
Accordingly, the statement is true iff B.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

230

In this process, the linguistic expression is translated in a
more suitable language for semantics. The TM language
has five generic actions, and thus the nuclei of meanings
are limited. Second, the totality of the description is
decomposed into “meaningful” pieces. The limits of the
pieces are the actions/things: create, process, release,
transfer, and receive. Generic meanings are then connected
with time in terms of events, thus causing further
confinements of meaning. Additionally, the chronology of
events restricts the involved interpretations.

Note that we will use a simplified version of TM modeling
whereby the actions release, transfer, and receive are
eliminated under the assumption that the direction of the
arrow in the diagram is sufficient to indicate the flow of
things.

7.1 Example: The moon is made of green cheese
A proposition is a declarative sentence that is either true or
false. In TM, a proposition is a machine that has a
submachine called a truth value. Consider the proposition
The moon is made of green cheese (or “The Moon is made
of green cheese.”) as a thimac. Its machine representation
is shown in Fig. 7. In the figure, the proposition (1) has
three components: the English text (2), the TM diagram
(3), and the truth value (4).

The figure illustrates the propositional truth assignment
according to the correspondence theory of truth. We apply
decomposition to the diagram of the proposition, as we did
in the previous section, to produce the following events
(see Fig. 8):
 E1: Processing cheese
 E2: Creating moon
These events have an order, and E1 is “before” E2.
Accordingly, Fig. 9 shows the behavioral model B of the
proposition according to the chronology of events. Hence,
the moon is made of green cheese is true iff B. That is, the
proposition is true iff the events E1 and E2 occur.

7.2 Example: Bread is made of flour and water
Consider the proposition expressed in the form “Bread is
made of flour and water,” as represented in Fig. 10
(simplified diagrammatic version) and with the events
shown in Fig. 11. According to Tarski’s T schema [36],
“Bread is made of flour and water” is true iff BREAD IS
MADE OF FLOUR AND WATER.

Similar to the previous example, the diagram in Fig. 10 is
true iff it is B. The new thing in this formulation is
expressing the original problem in a diagramming
language. The TM modeling extends the semantics of S
(Fig. 10) to produce the behavioral model B.

“Bread is made of flour and water” is true if and only if B.
B is a chronology of events (not shown since it is similar
to Fig. 9). Thus, B refers to an event where flour and water
are mixed, followed by the event of bread being generated.

7.3 Example: 0+0=1
Consider the proposition 0+0=1. Figs. 12-14 (simplified
version) show the corresponding three diagrams of S,
events, and behavioral diagrams. Hence, 0+0=1 is true iff
the chronology of events in the behavioral model occurs;
i.e., zero is generated twice, the two zeroes are summed,
and the summation produces 1.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

231

7.4 Example: John gave Mary an apple
According to Nouwen [39], two sentences that entail one
another have the same semantic meaning. For instance,
John gave Mary an apple both entails and is entailed by
John gave an apple to Mary. This suggests that the dative
alternation in English has no semantic import. Figs. 15 and
16 shows the TM static and behavioral models. The truth
value of the diagram is assigned according to the
behavioral model; that is, it happens that John releases and
transfers an apple that is received by Mary. Fig. 17 shows
the event John is giving Mary an apple, which is true if the
event is happening now.

7.5 Example: The boy saw the man with the telescope
Consider the statement (from [35]) The boy saw the man
with the telescope. Fig. 18 shows two possible TM
representations of the statement. In the figure, “create”
indicates “there is.” In the upper diagram, the man exhibits
his image that the boy is using a telescope to see. In the
bottom diagram, the image of a man with the telescope is
seen by the boy. Clearly, the diagrams when converted to
events—say, B1 and B2—are different; thus, ambiguity is
eliminated, and the truth depends on which behavior is
adopted. We can say that Bi, I = 1 or 2 is the referent of
the given statement.

8. The Liar Paradox

Self-reference denotes a statement that refers to itself. The
most famous example of a self-referential sentence is
the liar sentence: This sentence is false. The involved
paradox that is reflected in such a statement seems to show

that truth and falsity actually lead to a contradiction if we
apply the following:
This sentence is false is true iff THIS SENTENCE IS
TRUE.
If the statement is true, then This statement is false is true.
Therefore, it must be false. If the statement is false, then
This statement is false is false and therefore must be true.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

232

It has been proposed that the statement is neither true nor
false and that it is both true and false. In both cases, we
end up with infinite regress because the involved statement
is self-referential. Alfred Tarski suggested that the paradox
arises only in languages and that solving it requires
utilizing levels of languages.
In TM modeling, we utilize the notion of chronology of
events to eliminate infinite regress resulting from self-
reference. Without loss of generality, we use the version of
the liar paradox I am lying.

As a result of the TM representation, if I am lying is true,
then it stays true without infinite regress. If I am lying is
false, then it stays false without infinite regress. I am lying
can be true or false. It is false if it is used in a sarcastic
way where the speaker is saying the opposite of what they
really mean, as in saying “early” to mean “late” or
“knowledgeable” to mean “ignorant.” Alternatively, I am
lying may be true if it is used in the usual way.

Fig. 19 shows the TM model of the proposition I am lying,
which involves the following:
1. There is I (create).
2. I process myself (e.g., dwell/practice/activate).
3. I create and process lies.
Hence, we translate “I am lying” into a diagrammatic
representation that expresses the existence of the I who
creates lies. Fig. 20 shows the events in S. The time sense
of NOW in “lying” is a complex event that includes sub-
events, just as saying I am writing implies I am in the
middle of a time period where I am producing consecutive
letters, words, and sentences. Similarly, I am lying
indicates (see the behavioral model B in Fig. 21)
 Event 1 (E1): There is I (create),
 Event 2 (E2): I process myself (e.g., dwell/ practice/

activate), and
 Event 3 (E3): I create and process lies,
in that order. Accordingly, I am lying is true iff E1→ E2→
E3, or I am lying is true iff B.

We observe that these semantics preserve whatever truth
value we assign to the proposition and eliminate infinite
regress. Simply, I am lying is true iff there is I (create-I
event) and this I triggers (dash arrow from create to process)
creating lies.

9. Conclusion

This paper has introduced a first-step venture into
developing semantics for the diagrammatic modeling
language TM. We explored a new territory in logic as
much as in modeling though investigation of the notion of
truth and hence of the semantics for relations between the

concepts and the subject being modeled in TM. This seems
to facilitate an unconventional direction that is still in need
of scrutiny, but the initial results of this paper indicate the
viability of the approach.

References
[1] A. Naumenko, “Triune Continuum Paradigm: a paradigm

for general system modeling and its applications for UML
and RM-ODP,” PhD thesis 2581, Swiss Federal Institute of
Technology of Lausanne, June 2002.

[2] D. Harel and B. Rumpe, “Meaningful modeling: what’s the
semantics of ‘semantics’?”, Computer, vol.37, pp.64-72,
2004.

[3] A. Naumenko, A. Wegmann and C. Atkinson. “The role of
Tarski’s declarative semantics in the design of modeling
languages,” Technical report No. IC/2003/43, Swiss Federal
Institute of Technology of Lausanne, April 2003.

[4] A. Naumenko and A. Wegmann, “Triune continuum
paradigm and problems of UML semantics,” Technical
Report IC/2003/44, Swiss Federal Institute of Technology
of Lausanne, 2003,
http://www.triunecontinuum.com/documents/tr03_044.pdf

[5] L. Ekenberg and P. Johannesson, “UML as a first order
transition logic,” The European-Japanese Conference on
Information Modelling and Knowledge Bases, Krippen,
Swiss Saxony, Germany, 2002.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.10, October 2020

233

[6] A. Knapp, “A formal semantics for UML interactions,” in
Proceedings of UML’99, eds. R. France and B. Rumpe,
LNCS 1723, Springer, 1999.

[7] S. Kim and D. Carrington, “Formalising the UML class
diagram using object-Z,” in Proceedings of UML’99, eds. R.
France and B. Rumpe, LNCS 1723, Springer, pp.Page-Page,
Location, 1999.

[8] C. Pons, G. Baum and M. Felder, “Foundations of object-
oriented modeling notations in a dynamic logic framework,”
in Foundations of Models and Languages for Data and
Objects, Kluwer, pp.Page-Page, Location, 1999.

[9] G. Övergaard, “Formal specification of object-oriented
modelling concepts,” PhD thesis, Department of
Teleinformatics, Royal Institute of Technology, Stockholm,
2000.

[10] OMG, “Unified modeling language specification” (Version
1.5), March 2003, http://www.omg.org/uml.

[11] OMG, “Semantics of a foundational subset for executable
UML models” (Version 1.5 beta), September 2020.

[12] GitHub, “Foundational UML (fUML) reference
implementation: an open-source implementation of the
OMG foundational semantics for executable UML models
(foundational UML) specification” (v1.4.4), n.d.,
http://modeldriven.github.io/fUML-Reference-
Implementation/.

[13] M. Broy and M. Victoria Cengarle, “UML formal semantics:
lessons learned,” Softw Syst Model, vol.10, pp.441-446,
2011, https://doi.org/10.1007/s10270-011-0207-y.

[14] D. Calvanese, “Knowledge representation and ontologies,
part 1: modeling information through ontologies,” Faculty
of Computer Science, European Master in Computational
Logic, A.Y. 2017/2018, accessed 26-7-2020,
http://www.inf.unibz.it/~calvanese/teaching/17-18-
odbs/lecture-notes/KRO-3-queries.pdf.

[15] R. Vilkko, “The reception of Frege's Begriffsschrift,” Hist.
Math., vol.25, pp.412-422, 1998.

[16] D. D. Roberts, The Existential Graphs of Charles S. Peirce,
Moulton & Co. N.V., The Hague, 1973.

[17] J. Corcoran and I. Samawi Hamid, “Schema,” in The
Stanford Encyclopedia of Philosophy (Fall 2016 edition), E.
N. Zalta (ed.),
https://plato.stanford.edu/archives/fall2016/entries/schema/.

[18] S. Al-Fedaghi, “Modeling the realization and execution of
functions and functional requirements,” Int. J. Comput. Sci.
Inf. Secur., vol.18, no.3, pp.Page-Page, 2020.

[19] S. Al-Fedaghi and D. Al-Qemlas, “Modeling network
architecture: a cloud case study,” Int. J. Comput. Sci. Net.
Sec., vol.20, no.3, pp.Page-Page, 2020.

[20] S. Al-Fedaghi and H. Alnasser, “Modeling network security:
case study of email system,” Int. J. Adv. Comput. Sci. Appl.,
vol.11, no.3, pp.Page-Page, 2020.

[21] S. Al-Fedaghi and M. Al-Saraf, “Thinging the robotic
architectural structure,” 2020 3rd International Conference
on Mechatronics, Control and Robotics, Tokyo, February
22-24, 2020.

[22] S. Al-Fedaghi, “Modeling physical/digital systems: formal
event-B vs. diagrammatic thinging machine,” Int. J. Comput.
Sci Net. Sec., vol.20, no.4, pp.208-220, 2020.

[23] S. Al-Fedaghi and E. Haidar, “Thinging-based conceptual
modeling: case study of a tendering system,” J. Comput.
Sci., vol.16, no.4, pp.452-466, 2020,
https://doi.org/10.3844/jcssp.2020.452.466.

[24] S. Al-Fedaghi and B. Behbehani, “How to document
computer networks,” J. Comput. Sci., vol.16, no.6, pp.423-
434, 2020, https://doi.org/10.3844/jcssp.2020.723.434.

[25] S. Al-Fedaghi and J. Al-Fadhli, “Thinging-oriented
modeling of unmanned aerial vehicles,” Int. J. Adv. Comput.
Sci. Applic., vol.11, no.5, pp.610-619, 2020,
https://doi.org/10.14569/IJACSA.2020.0110575.

[26] S. Al-Fedaghi and B. Behbehani, “How to document
computer networks,” J. of Comput. Sci., vol.16, no.6,
pp.423-434, 2020,
https://doi.org/10.3844/jcssp.2020.723.434.

[27] S. Al-Fedaghi and J. Al-Fadhli, “Thinging-oriented
modeling of unmanned aerial vehicles,” Int. J. Adv. Comput.
Sci. Applic., vol.11, no.5, pp.610-619, 2020,
https://doi.org/10.14569/IJACSA.2020.0110575.

[28] S. Al-Fedaghi, “Changes, states, and events: the thread from
staticity to dynamism in the conceptual modeling of
systems,” Int. J. Comput. Sci. Net. Sec., vol.20, no.7,
pp.138-151, 2020.

[29] S. Al-Fedaghi, “Thing/machines (thimacs) applied to
structural description in software engineering,” Int. J.
Comput. Sci. Inf. Sec., vol.17, no.8, pp.Page-Page, 2019.

[30] C. Shields, “Aristotle,” The Stanford Encyclopedia of
Philosophy (Fall 2020 edition), Edward N. Zalta (ed.),
https://plato.stanford.edu/archives/fall2020/entries/aristotle/.

[31] J. Seibt, “Process philosophy,” The Stanford Encyclopedia
of Philosophy (Summer 2020 edition), Edward N.
Zalta (ed.),
https://plato.stanford.edu/archives/sum2020/entries/process-
philosophy/.

[32] M. Heidegger, “The thing,” in Poetry, Language, Thought,”
A. Hofstadter (transl.), Harper & Row, New York, pp.161-
184, 1975.

[33] R. Klimek, “Towards deductive-based support for software
development processes,” in Proceedings of the 2013
Federated Conference on Computer Science and
Information Systems, Kraków, pp.1377-1380, September 8-
11, 2013.

[34] G. Deleuze and F. Guattari, A Thousand Plateaus:
Capitalism and Schizophrenia (vol.2), B. Massumi (transl.),
Athlone, London, 1988.

[35] S. M. Zamora, “Semantics,” October 15, 2017,
https://www.slideshare.net/SarahMaeFaithZamora/semantic
s-80827722.

[36] W. Hodges, “Tarski’s truth definitions,” in The Stanford
Encyclopedia of Philosophy (Fall 2018 edition), E. N.
Zalta (ed.),
https://plato.stanford.edu/archives/fall2018/entries/tarski-
truth/.

[37] D. Davidson, The logical form of action sentences, in N.
Resher (ed.), the Logic of Decision and Action. University
of Pittsburgh Press, Pittsburgh, pp.81-95, 1967. Reprinted
in D. Davidson (ed.), Essays on Actions and Events,
Clarendon Press, Oxford, 1980, pp.105-122.

[38] C. Maienborn, Event semantics, in C. Maienborn, K. von
Heusinger and P. Portner (eds.), Semantics: An International
Handbook of Natural Language Meaning (vol.1), Mouton de
Gruyter, Location, pp.Page-Page.
https://doi.org/10.1515/9783110589245-008.

[39] R. Nouwen, “Foundations of semantics I: truth-conditions,
entailment and logic,” 2011, accessed on October 25, 2020,
http://www.gist.ugent.be/file/216.

