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Abstract  
Deep learning is revolutionizing smart cities and societies, solving 
many longstanding problems. Transportation is continuing to 
cause unbelievable damages including 1.25 million deaths and 
trillions of dollars annually. This paper presents a study on the use 
of YOLOv4 for vehicle detection and DeepSORT for tracking the 
detected vehicles on roads. None of the earlier works have applied 
these models to road traffic in the Kingdom of Saudi Arabia (KSA). 
We have used three different variations of the deep learning 
models and compared their performance; a pre-trained model with 
the COCO dataset, and two custom-trained models with the 
Berkeley DeepDrive dataset, and our custom-developed dataset 
obtained by a Dash Cam installed onboard vehicle driven on KSA 
roads in five different traffic conditions; city traffic in day and 
night, highway traffic in day and night, and traffic in rain. We have 
used Google Colab platform to harness GPU power, CUDA and 
OpenCV. The results have been evaluated using precision and 
other metrics.  
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1. Introduction 

Artificial intelligence (AI) has taken us by storm, helping 
us to make decisions in everything we do, even in finding 
our “true love” and the “significant other” [1]. Machine 
learning and deep learning are revolutionizing smart cities 
and societies [2]–[4] and solving many longstanding 
problems in sectors such as health [5], education [6], and 
others.  
 
Transportation is the backbone of modern societies and 
economies albeit continuing to cause unbelievable damages 
of the likes of over a million deaths, 20-50 million injuries 
to people, and trillions of dollars, each year, around the 
globe [7]. Traditional approaches of measuring and 
monitoring road traffic rely on inductive loops that give 
some basic information about average speed, vehicle 
occupancy, and traffic flow. The traditional technologies are 
unable to support real-time monitoring and management of 
road traffic. 

 
Deep learning has the potential to revolutionize many fields 
and transportation is not an exception. Among the deep 
learning methods for road transportation, there are methods 
that involve image and video analysis for automated traffic 
monitoring with applications in detecting traffic congestion, 
road safety, and many more.  
 
This paper presents a study on the use of off the shelf, highly 
optimized, deep learning models for vehicle detection and 
vehicle tracking on roads. While the earlier works have 
focused on the same, none of the works have applied these 
models to road traffic in Kingdom of Saudi Arabia (KSA). 
The vehicles, roads, traffic, traffic conditions, etc. in KSA 
are different from other countries in several respects such as 
the mix of traffic involving various vehicles manufacturer 
and models, the driving culture, road infrastructure, 
language, and more.  
 
We use YOLOv4 for object detection and DeepSORT for 
tracking the detected vehicles. We have used three different 
variations of the deep learning models and compared their 
performance; a pre-trained model with the COCO dataset, 
and two custom-trained models with different datasets. We 
have used three different datasets; the COCO dataset [8], 
the Berkeley DeepDrive dataset [9], and our custom-
developed dataset obtained by a Dash Cam installed 
onboard vehicle driven on city streets and highways in the 
Kingdom of Saudi Arabia (KSA). We have collected data in 
five different traffic conditions, city traffic in day and night, 
highway traffic in day and night, and traffic in rain. For 
experiments, we have used Google Colab platform to 
harness GPU power, CUDA and OpenCV. The results have 
been evaluated using precision and other metrics.  
 
The rest of the paper is organized as follows. Section 2 
reviews the relevant works. Section 3 details our 
methodology, model design, and datasets. Section 4 
presents results and analysis. Section 5 concludes the 
discussion.  
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2. Literature Review 
 
We have mentioned earlier that road transportation while 
connecting people and economies causes major damages to 
people, their health and lives, the economies and the planet 
environment. Traffic congestion caused by weather 
conditions, construction work and other unforeseeable 
events along the roads, can hinder the efficiency of other 
services and cause possible damages in urban cities. As 
cities and societies grow larger, it is important to come up 
with more practical solutions supporting their 
infrastructure. Intelligent Transportation System (ITS) is 
where ICT meets traffic management and transport with the 
goal of making smarter, more informed decisions and 
enhance the quality of services provide by city authorities.            
 
Researchers have integrated many technologies in ITSs 
tackling issues like incident prediction, event detection, 
road detection, traffic analysis for diverse purposes from 
urban planning to autonomous driving.  Within these 
innovative solutions, technologies like inductive loops, 
Bluetooth, machine learning, big data and HPC are 
deployed. 
 
2.1 Inductive Loops & Wireless Sensor Networks 
 
Inductive loops are among the earliest methods to measure 
road traffic. Ali et al. [10] used inductive loop sensors to 
detect and count diverse vehicles in lane-less roads. They 
developed a multiple loop system with a new structure for 
inductive loop sensors. Their solution was able to sense 
vehicles and divide them by type. During testing, the system 
provided accurate counting of vehicles despite the 
heterogenous traffic conditions. Jeng and Chu [11] 
combined inductive loop signature data with WIM data in 
their proposed solution. They aimed to track heavy vehicles 
by utilizing IDL locations spread all over the network hence 
not restricting the tracking process between two WIM 
stations. Bhaskar et al. [12] presented an indicative-loop 
based solution to controller traffic lights. The solution 
addresses scenarios like reducing congestion in a particular 
lane, utilizing radio transmitter-receivers to make ways for 
public service vehicles such as firefighting and ambulance.  
While  Khoenkaw and Pramokchon [13] deployed 
inductive-loops and proposed a low-cost controller for 
sensing vehicles.    
 
Other researchers combined several technologies to 
complement infrastructure-based solutions. Caceres et al. 
[14] used cellular systems for detecting phones moving on 
the road which in turns, aid in estimating traffic volumes. 
The efforts are meant to cover limitations of systems that 
required installed hardware such as cameras and inductive 
loops. Whereas Laharotte et al. [15] used Bluetooth data for 
traffic monitoring. They introduced Bluetooth origin-

destination (B-OD) matrix which describes the dynamics of 
vehicles between two Bluetooth detectors. After proper 
processing, they proved that Bluetooth data can be of use in 
traffic managements. Díaz et al. [16] identified the lake of a 
formal methodology for vehicle travel time estimation 
within Bluetooth Traffic Monitoring Systems. After 
analyzing the Bluetooth features effecting TT estimation, 
they proposed a methodology devised to address TT 
estimation based on vehicles information only. Gheorghiu 
et al. [17] addressed the possibility of deploying  the 
infotainment systems within vehicles for providing 
information about traffic conditions. Usually such systems 
are equipped with wireless communication abilities to 
function. Therefore, it is logical to utilized such abilities for 
traffic monitoring purposes.      
 
2.2 Big Data Approaches 
 
Aqib et al. [18] combined big data, in-memory and GPU 
computing along with deep learning in an endeavor to 
develop an algorithm that predicts incidents for traffic 
incident management. Alomari et al. [19] detected traffic 
events in Saudi Arabia by utilizing machine learning 
algorithms and data mining technologies. Their work used 
twitter data in Saudi dialect and resulted in detection of 
traffic events with times and location without any prior 
knowledge.  
 
Iktishaf  [20] is a big data tool developed over Apache 
Spark with the aim of detecting traffic-related events. While 
Suma et al. [21] detected patio-temporal events located in 
London city using twitter data. They used machine learning 
algorithms with apache Spark and Tableau along with HPC 
to increase scalability and computational intelligence. They 
succeeded at detecting three major events around the city 
during the time of study. In another work, real data for 
London Metro and technologies like big data, deep learning, 
in-memory and GPU have been used to model rapid transit 
systems [22]. They aimed to aid in enhancing the 
spatiotemporal planning urban transport systems. As for 
analyzing traffic characteristic, several studies considered 
traffic flow [23], [24] and traffic occupancy [25] to develop 
smarter traffic management systems.  
 
 
2.3 Computer Vision Approaches 
 
Computer vision-based solutions were developed to address 
various aspects of transportation and traffic management. 
Jiang et al. [26] addressed multiple lane-detection in 
structured highways in their work. They proposed an 
estimate and detect scheme for both straight and curve 
lanes. They used huge transformation with a simplified 
perspective transformation for straight lanes, and a 
complete transformation for detecting curve lanes. Their 
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approach was able to detect lanes even when abstracted by 
vehicles. Seenouvong et al. [27] aimed to detect and count 
vehicles in videos. They used background subtraction 
technique to locate foreground objects within a video 
sequence. Combining techniques like thresholding and 
adoptive morphology operations, they were able to detect 
moving vehicles. As for vehicles counting, they deployed 
virtual detection zones. Around the same purpose of 
detecting and counting, Waranusast et al. [28] proposed an 
atomic system for detecting motorcycles and counting their 
riders. The detection is done using the K-Nearest Neighbor 
(KNN) classifier while counting is done using projection 
profiling.  
 
Zaho and Han [29] propose a fuzzy detection method to 
detect the state of fatigue that may affect the performance 
of logistics drivers on the road.  Nizar et al [30] developed 
a system to detect and track vehicles and pedestrians. They 
deployed a Histogram Oriented Gradient (HOG) in their 
feature extraction method combined with a Support Vector 
Machine (SVM) classifier for detection. They used Kanade-
Lucas-Tomasi (KLT) algorithm for tracking. Aziz et al. [31] 
presented  an implementation of a vehicle detection 
algorithm that may serve as a part of an autonomous car 
systems. They deployed feature intuition, color spaces, and 
HOG to process images. Due to static parameters within 
their algorithm, they managed to detect vehicles during the 
day with good accuracy.  
 
TAAWUN [32] is an approach designed to enable 
autonomous vehicles and connected vehicles to share visual 
information. The motivation of this work was to enhance 
environment perception. It is the first work to exploit deep 
learning decision fusion in autonomous environments. 
Alam et al. [33] provided an in depth study that  aims to 
compare the performance of two different methods for 
object classification in driving environments. Gao et al. [34] 
considered road safety as a general goal. They developed a 
Multi-Object Tracking (MOT) method that mimic attention 
of skilled drivers for autonomous driving.  
 
2.4 Deep learning Approaches 
 
Given the breakthroughs in the field of deep learning 
algorithms, it is only logical to apply them on the persistent 
issues of transportations. AlexNet [35] was the first CNN to 
utilize GPU powers during training and winning the 
ImageNet Challenge ILSVRS in 2012. In the years to 
follow, more deep learning networks appeared motivated by 
the design of AlexNet. VGGNet [36] is a convolutional 
network developed by Visual Geometry Group in the 
University of Oxford. Despite been a network with more 
layers than AlexNet, VGGNet achieved better accuracy 
with less parameters. GoogLeNet [37] is the winner of 
ILSVRS 2014. It was developed by Google and introduced 

the notion of Inception Blocks. Hence it is also known as 
the Inception Networks. The Residual Network [38] ResNet 
is develop by He et al. at Microsoft. As researchers 
attempted to add more layers to Neural Network design, 
they observed performance degradation. That is what 
developers of ResNet aimed to resolve.      
 
Such configuration motivated researchers to deploy its 
different variations in various computer vision problems 
including transportation. Lv et al. [39] aimed at detecting 
pedestrians using a Regional Proposal Network (RPN) after 
witnessing  some advancement in pedestrian prediction by 
RPN.  They combined VGGNet with ZFNet to extract 
pedestrians’ features at different levels. Their proposed 
method proved to be superior to stat-of-the-art methods.  
 
Ren et al. [40] implemented a system to analyze vehicles’ 
behaviors by extracting their trajectories. They used several 
deep learning detectors to detect vehicles including SSD-
VGGNet. TrafficNet [41] is a classifier based on combining 
AlexNet and VGGNet and replacing the fully connected 
layers in both by SVM. TrafficNet attends to identify traffic 
congestion in various conditions. Whereas Zhou et al. [42] 
proposed an encoder-decoder architecture to understand 
road scenes. They based their encoder network on VGGNet.     
 
 
2.5 Yolo Approaches for Detection 
 
One of the most common methods for object detection is 
You Only Look Once (YOLO) [43]. The algorithm was 
introduced and outperformed other detection methods in 
speed and accuracy. Since then, it has been under 
continuous improvements to enhance its performance 
[44][45]. According to Bochkovskiy et al.  [46] YOLOv4 
achieved high performance compared with state-of-the-art 
object detection methods. Naturally, such performance 
encouraged researchers to exploit its potentials in 
transportation       
 
Wang et al. [47] proposed an algorithm to detect 
abnormality in vehicles behavior such as stalled cars and 
cars speeding up or slowing down. They used YOLO 
algorithm for detection and Kalman filter for tracking. They 
tested their framework on videos from traffic cameras. The 
combination of YOLO and Kalman filter is applicable, 
despite some scenarios where farther contextual knowledge 
is needed to improve detection results. Zhao et al. [48] 
presented an abnormal event detection framework. They 
assumed that in case of an abnormal event cars would stop 
in the track video. Hence, such cars will be part of the 
background and can be detected by a background model 
using MOG2 algorithm. For detection, they used Faster R-
CNN with some alteration on the ROI layer. While their 
MOT algorithm is based on CNN with emphasis on shape 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.11, November 2020 
 

 

12

 

and position features. To farther enhance detection results, 
they applied a road mask model. Finally, the time of the 
anomaly occurrence is determined by a decision module. 
Their algorithm came in 7th place in the 2019 AI CITY 
CHALLENGE. 
 
Camacho et al. [49] aimed to design a detection method that 
can be part of a low cost traffic systems. They applied a 
cascade classifier combined with HAAR features for 
detecting vehicles. Kalman filter was their choice for 
tracking and counting. They used CNN as a classifier to 
determine the class for each vehicle.  
 
Chen et al. [50] developed a framework for detecting 
vehicles on highways. They used K-mean algorithm to 
prepare the data, feature fusion to address low-level and 
high-level features. They deployed VGG-16 network and 
replaced the last three fully connected layers with 
convolutional layers to improve detection speed while 
reducing parameters. The proposed method proved superior 
over Faster R-CNN and SSD tested on the same vehicle 
dataset (JSHD).   
 
While Song et al. [51] considered small vehicles on 
highways in their proposed detection and counting system. 
They published a new high definition dataset containing 
annotations of small objects. They developed a 
segmentation method to extract and divide roads into 
remote and proximal areas. They used YOLOv3 as their 
detection method and the ORB algorithm as a feature 
extractor. They analyzed the trajectories of detected objects 
for counting purposes. Their proposed method provide good 
performance as can replace the traditional ways of counting 
vehicles without any new hardware equipment. 
 
Chen et al. [52] aimed at detecting objects by generating 3D 
object proposals. Their proposed work utilized stereo 
imagery. They based the method on minimizing an energy 
function which encodes object size prior, object placement 
and some context depth information. Then, they used 
convolutional neural network to use appearance, context 
and depth information for object detection. The method 
predicted 3D bounding box coordinate and object pose. The 
approach proved to be superior to previously published 
object detection work on the KITTI benchmark.   
  
2.6 Tracking Approaches 
 
Tracking vehicles is another aspect of research in 
transportation. DeepSORT is a recent tracking algorithm 
[53], extending SORT (Simple Online and Real-Time) 
tracking algorithm [54]. The original algorithm was 
developed considering MOT task. With the main goal of 
supporting online and real-time applications. This means 
that the tracker associate detected objects from previous and 

current frames only. Gao et al. [34] followed the tracking by 
detection paradigm. For their MOT, they used CNN and an 
attention module to identify salient objects in traffic scenes. 
The method proved to be competitive with state-of-the-art 
methods. Gunduz and Acarman [55] proposed another 
MOT algorithm which used CNN-based method instead of 
confident-based methods to extract bounding boxes. They 
performed data association by solving min-cost flow 
problem assuming that vehicles motion differs from other 
objects.  
 
Song et al. [56] integrated a car-following model in their 
tracking method. The model considers motion dependency 
between vehicles in a single-lane case. Sudha and 
Priyadarshini [57] designed an approach for multiple 
vehicles detection and tracking. Their work utilized an 
enhanced YOLOv3 algorithm with an improved visual 
background extractor for detection. For tracking, Kalman 
filtering with particle filter technique were deployed. 
Authors tested the proposed solution on two private 
datasets, KITTI and DETRAC benchmark datasets. Yang et 
al. [58] developed a vehicle tracking algorithm that uses 
YOLO for detection and a lightweight feature extraction 
network for tracking. Whereas Hou et al. [59] integrated a 
low-confidence track filtering with the DeepSORT 
algorithm to reduce the number of false positive tracks..         
 
 
3. Methodology and Design 
 
Figure1 describes the overall workflow of our work. In this 
section, we describe our methodology and design. First, we 
discuss the process of collecting data in Section 3.1. Section 
3.2 describes the detection module of our model. Section 
3.3 describes the tracking module. Subsection 3.4 gives the 
performance metrics used to evaluate the work. 
     
3.1 Dataset Collection & Preparation  
 
This section discusses our datasets that we are using for 
detection and tracking. We collected video streams from the 
streets of Kingdom of Saudi Arabia (KSA). We used Xiaomi 
70mai Smart Dash Cam to capture videos. Each video is 
one-minute long and 30 fps.  
 
We trained the model two times and produced two custom 
weights files. The first custom training was done using our 
Saudi Arabia data only. We extracted frames from the 
collected videos and manually labeled them using the 
LabelImg tool [60]. We used two types of vehicles’ labels 
‘Car’ and ‘Truck’. Our first training dataset (KSA dataset) 
contained 400 labeled images. During training, we divided 
the dataset into 80% training set and 20% validation set. 
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For the second custom training, we combined our KSA 
dataset with 400 images from the Berkeley DeepDrive 
dataset [9]. We call it the KSA_BDD dataset. We divided 
the dataset in the same proportions, 80% and 20%, for the 
training set and the validation set, respectively. We selected 
this dataset due to the resemblance of vehicles’ shapes and 
models between the KSA dataset and BDD dataset. The 
KSA_BDD training dataset contained 800 labeled images 
and followed the same distribution for training and 
validation.             
 
As for the testing data, we choose five different videos to 
represent the diversity of driving conditions that a driver 
might face on the roads. They are as follow: City Daytime 
(CityD), City Night-time (CityN), Highway Daytime 
(HighD), Highway Night-time (HighN) and Rain during 
daytime (RainD). A snapshot of each of these videos is 
presented in Figure 2 to Figure 6. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1: The Methodology Workflow

Figure 2: City in daytime snapshot 

Figure 3: City in nighttime snapshot 

Figure 4: Highway in daytime snapshot 
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3.2 Detection  
 
  The detection in our model is performed using YOLOv4 
detection algorithm. We choose YOLO because of its speed 
and accuracy especially with relatively larger objects. Due  
to the nature of our data, we believe that YOLO is a suitable 
choice.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 The YOLO family belongs to the one stage detectors 
category, which means that a target image is divided into a 
grid of 𝑤 ൈ ℎ.  Then, for each segment of that grid, a 

defined set of bounding boxes 𝐵 is created. And for each 
bounding box the algorithm predicts four values: center, 
width and height of the box, the probability that a box 
contains an object, and the class of that object. The detection 
process end with outputting gives a bounding box 
surrounding the object and an object class see Fig. 7 for an 
example output. 
 
3.3 Tracking 
 
For the purpose of tracking, we are deploying DeepSORT, 
the enhanced version of the algorithm where the association 
metric is substituted by an informed metric integrating 
motion and appearance information using Convolutional 
Neural Network. The algorithm takes the detection outputs 
from the pervious stage and run tracking for each detected 
object. In tracking by detection scheme, the accuracy of 
tracking is based on the quality of detection results. As 
mentioned earlier, we have used YOLOv4 for the purpose. 
 
 
3.4 Performance Metrics 
 
For the purpose of evaluating the detection results, we have 
used precision that is a well-known metrics to evaluate the 
detection models. Precision is defined as follow.   
 
Precision = 𝑇𝑃 ሺ𝑇𝑃  𝐹𝑃ሻ⁄             
(1)    
 
 
Where the terms TP and FP are defined as:   

 True Positive (TP), which is the number of positive 
observations predicted by the model as positives.  

 False Positive (FP), which is the number of 
negative observations predicted by the model as 
positives.  

 
For evaluating the tracking results, we used Equation (2) 
below that measures the tracking success rate ሺ𝑇𝑆𝑅ሻ . 
𝑡𝑟𝑎𝑐𝑘𝑒𝑑_𝑜𝑏𝑗𝑒𝑐𝑡𝑠௧௧  is the total number of tracked 
objects and 𝐼𝐷_𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠௧௧  is the total number of ID 
Switches. 
 
𝑇𝑆𝑅 ൌ 𝑡𝑟𝑎𝑐𝑘𝑒𝑑_𝑜𝑏𝑗𝑒𝑐𝑡𝑠𝑡𝑜𝑡𝑎𝑙 ି 𝐼𝐷_𝑠𝑤𝑖𝑡𝑐ℎ𝑒𝑠𝑡𝑜𝑡𝑎𝑙 

𝑡𝑟𝑎𝑐𝑘𝑒𝑑_𝑜𝑏𝑗𝑒𝑐𝑡𝑠𝑡𝑜𝑡𝑎𝑙 
                

(2) 
   

   

4. Experiments and Analysis 
 
This section presents our experimental settings and the 
detection and tracking results. We provide details of our 

Figure 5: highway in nighttime snapshot 

Figure 6: Rain scene snapshot 

Figure 7: Results of YOLOv4 detection 
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experimental settings for the training and testing phases in 
Section 4.1. In Section 4.2, we describe the three models -- 
Pre-Trained model, the KSA model and the KSA_BDD 
model – and present the detection results. Section 4.3 
discusses the tracking results.   
 
4.1 Experimental Environment  
 
For training the custom models, we used Google Colab 
platform to harness GPU powers, CUDA and OpenCV. 
Then, we conducted the experiments on Windows 10 OS 
with NVIDIA GeForce GTX1060 using the produced 
weights files for each model. We experimented on our data 
using three variations of the YOLOv4 model. The pre-
trained model available on [61], a custom trained model on 
KSA dataset, and a custom trained model on KSA_BDD 
dataset.  
 
4.2 Detection Results  
 
Pre-Trained Model: The pre-trained YOLOv4 model is 
obtained by training the model on the COCO dataset. After 
testing, we calculated precision for both classes Car and 
Truck under pre-trained model. The results are given in Fig. 
8 and Fig. 9 and will be discussed later in this section   
 
 
KSA Custom-Trained Model: The training of the KSA 
custom-trained model was conducted on capabilities needed 
for training the model. The overall mean average precision 
(mAP) of the model equals 90.34%. The model was able to 
detect cars and trucks according to the results given in Table 
1. We tested the KSA Custom-Trained Model on the dataset 
described in Section 3.1. The results are presented in Fig. 8 

and Fig. 9 and will be discussed later in this section. 
 
KSA_BDD Custom-Trained Model: After training the 
model on the SA_BDD dataset, we chose a suitable. wieghts 
file to custom the model. The overall mAP is 81.02 %. As 
for detecting cars and trucks, the model achieved the 
following numbers:  

 
 

 

 
 
CityD: The CityD video represents a city scene in the 
daytime of a four-lane street including the service lane. We 
considered both the vehicles in front (in the driving 
direction), as well as the vehicles coming from the opposite 
direction on all four lanes on the other side of the road. In 
CityD, while the pre-trained model is the model with most 
detections (TPs) among the three models, it registered most 
of the misclassification cases (FP) for trucks (it classified 
trucks as cars). Note that the higher Precision values for the 
Pre-Trained model in Fig. 8 and Fig. 9 are due to higher 
number of TPs.  
 
We can safely assume that the COCO dataset does not 
represent truck models in KSA hence a higher 
misclassification cases for trucks. Regarding custom 
models, we can conclude that the undetected numbers of 
vehicles, are due to the fact that both KSA dataset and 
KSA_BDD dataset are small (have 400 and 800 images 
compared to a total 120,000 in COCO used for training and 
validation for the Pre-Trained model). To improve the 
detection for custom-trained models, we need to increase 
the size of both the datasets, KSA and KSA_BDD. Fig. 10 

Table 1: Mean Average Precision of KSA Custom-Trained model

Class mAP TP FP 
Car 93.62% 121 8 

Truck 87.07% 22 4 
Overall 90.34% 143 12 

Table 2:Mean Average Precision of KSA_BDD Custom-Trained model

Class mAP TP FP 
Car 87.78% 439 78 

Truck 74.25% 48 21 
Overall 81.02% 487 99 
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Figure 8: Precision of the Car Class for the three models
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Figure 9: Precision of the Truck Class for the three models
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shows a snapshot of some detected cars from the city scene. 
 
CityN: The CityN video is a city traffic video on a two-lane 
street where the parked cars are also considered because it 
is a narrow road and with no service lane. In CityN, the Pre-
trained model detected the least of the trucks in the video 
(see Fig. 9) that points out to the lack of training data 
regarding certain truck models. Yet, the model was able to 
detect vehicles from farther distance unlike both custom 
models that detected the same vehicles from a closer 
distance. Due to the nature of the street, we noticed that 
even when from a side view trucks were detected by both 
custom models. 
 
Fig. 8 shows that the precision of the Car class was similar 
with small differences for all three models. Fig. 11 presents 
a snapshot of the nighttime city scene with some detected 

vehicles.  
 

HighD: Fig. 8 shows that the precision results for the Pre-
Trained model are relatively poorer than the two custom-
trained models. The misclassification in the HighD 

scenarios for the Car class are due to white SUVs being 
identified in the faraway lane as trucks.  

This might be due to the resemblance between them and the 
faraway small freight trucks usually used for logistics 
services like Aramex and FedEx. Note that the pre-trained 
model among the three models had the most TPs but also 
the most FPs. The custom-trained models, on the other hand, 
detected less (a relatively smaller number of TPs) also with 
a fewer misclassification cases (FPs). See Fig. 12 for a 
snapshot of the detection. 

HighN: We noticed in HighN traffic conditions that with 
crowded lanes, cars on the third lane went undetected by the 
custom models as seen in Fig. 13. It could be due to the 
lighting conditions which would be further investigated in 
the future by adding more nighttime highway data to both 
the training datasets, KSA and KSA_BDD datasets. Note 
the results for HighN in Fig. 8 and Fig. 9. 

As before, while both custom models detected less than the 
pre-trained model, they had less misclassifications 
especially for truck class. This is due to the fact that certain 

Figure 10: Detection from City during daytime scene

Figure 8: Detection from City during nighttime scene

Figure 9: Detection from Highway during daytime scene

Figure 13: Detection from Highway during nighttime scene
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pickup trucks have different models in Saudi Arabia. Once 
the model was custom trained to recognize such trucks, it is 
able to detect them. This in turns, supports the need to create 
a dataset for vehicles in Saudi Arabia to address traffic 
analysis properly.  

For both HighD and HighN scenarios, we excluded the 
opposite lanes from the test as well as vehicles that are 
parked on the right side of the road, the pre-trained model 
doesn’t detect most of them while both custom models did 
not detect any. A snapshot of the detection in HighN is given 
in Fig. 13. 

RainD: In Rain, we considered all the lanes on the driving 
side as well as the opposite side of the road. Note the results 
for RainD in Fig. 8 and Fig. 9. We observed 
misclassification of vehicles in the case of the same model 
of pickup trucks. The rain also affected the detection 
process when the wind shield has water drops. The 
detection improves when the viper clears the water drops. 
Fig. 14 presents a snapshot of the detection results during 
the rain.  

 
Detection Results - Summary: As noted in the discussion 
above, the precision results of the custom trained models are 
comparable to the Pre-Trained model. A large number of 
misclassification cases suggest the need of further 
experimentations. A large number of misclassification cases 
suggest that our models are not over-fitted. This leaves us 
with the consideration of adding more data for training and 
testing. Meaning that, in order to further improve the 
performance of our custom models, we should consider 
training on bigger custom datasets.    
 
4.3 Tracking Results 
This section presents the tracking results obtained using 
DeepSORT for the three models – Pre-Trained, KSA 
Model, and KSA_BDD Model and five scenarios, CityD, 

CityN, HighD, HighN, and RainD. The results are 
calculated using Equation (2) defined in Section 3.4. Fig. 
15 plots these results.  
 
The results show a mix of performance from the three 

models across the five traffic scenarios. None of the 
models provides a dominating performance.   
 
Looking closely at Fig. 15, for the CityD scenario, the 
KSA Custom_Trained Model provides the best results 
followed by first the KSA_BDD Custom_Trained Model 
and then the Pre_Trained Model. This we believe is due 
to the Pre_Trained Model being trained on a dataset that 
did not describe the nature of the vehicles in Saudi Arabia. 
For CityN, the Pre-Trained Model provides the best 
tracking success rate. This could be due to the fact that 
both custom datasets contained less night time images of 
the class Car compared to the COCO dataset while most 
of the vehicles in CityN are of the class Car. In Highway 
scenario, the pre-trained model performed better during 
the daytime (HighD) and worst during the nighttime 
(HighN). This might be due to the nature of highway 
traffic when combined with lighting conditions. For 
RainD, we note that both the Custom_Trained models 
performed better benefiting from custom training on the 
data describing the nature of traffic in Saudi Arabia. This 
could also be due to the specific means of collecting the 
data via Dash Cam, which is different from the COCO 
dataset.  
 
5. Conclusion 
 

Deep learning is revolutionizing all spheres of our life, 
smart cities and societies, Industry 4.0, and much more. 
Transportation is continuing to cause unbelievable damages 
including 1.25 million deaths and trillions of dollars 
annually. This paper has presented a study on the use of 
YOLOv4 for vehicle detection and DeepSORT for tracking 

Figure 10: Detection from Rain scene 

Figure 11: tracking success rate 
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the detected vehicles on roads. None of the earlier works 
have applied these models to road traffic in KSA. We used 
three different variations of the deep learning models and 
compared their performance; a pre-trained model with the 
COCO dataset, and two custom-trained models with the 
Berkeley DeepDrive dataset, and our custom-developed 
dataset obtained by a Dash Cam installed onboard vehicle 
driven on KSA roads in five different traffic conditions. The 
five traffic scenarios included city traffic in day and night, 
highway traffic in day and night, and traffic in the rain. We 
used the Google Colab platform to harness GPU power, 
CUDA and OpenCV. The results have been evaluated using 
precision and tracking success rate and show a mix of 
performance for the pre-trained and custom-trained models.  
 
The pre-trained model was unable to deliver consistently 
good performance across all five scenarios both in terms of 
precision and tracking success rate. The results of the 
custom trained models are comparable to the Pre-Trained 
model. A large number of misclassification cases by all 
three models suggest the need of further experimentations. 
A large number of misclassification cases also suggest that 
our models are not over-fitted. This shows that there is a 
need to add more data for training and testing for all three 
models particularly the custom-trained models. An 
important finding of this work is that pre-trained models 
cannot work in KSA environments without retraining due to 
the differences in the language, driving culture, driving 
environments, and vehicle models. Future work will look 
into building larger datasets for vehicle detection, tracking, 
and other problems in road transportation, and developing 
highly accurate deep learning models optimized for the 
environment.    
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