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Summary 
The term behavior engineering (BE) encompasses a broad 
integration of behavioral and compositional requirements needed 
to model large-scale systems. BE forms a connection between 
systems-engineering processes and software-engineering 
processes. In software engineering, interpreting requirements can 
be perceived as specifying behavior, which is viewed in terms of 
chronology of events in the modeled system. In this paper, we 
adopt BE in its general and integrating sense to search for a 
unifying notion of an event as a fundamental behavior-modeling 
concept. We examine several bodies of research with various 
definitions of an event and its basic units and structure. We use the 
thinging machine (TM) model to analyze notions related to events, 
including Dromey’s behavior trees, fluents (change over time), 
recurrent events, and Davidson’s events. The results point to an 
underlying meaning that can lead to a unifying event concept.  
Key words:  
software engineering, systems engineering, behavior, event, 
conceptual modeling  

1. Introduction 

Behavior engineering (BE) [1] creates a link between systems 
engineering processes and software engineering processes. 
According to some researchers [2], BE is highly effective in 
practical, industry-based situations when applied to large complex 
systems. The present use of the term BE embraces a broader 
rigorous formalization and integration of large sets of behavioral 
and compositional requirements needed to model large-scale 
systems. In BE [3], a behavior model is developed systematically 
from requirements “in such a way that issues with consistency and 
completeness are revealed and resolved as the tree is built. The 
resulting [behavior] tree expresses all the scenarios and use cases 
that are implied by the requirements in a single coherent model” 
[4]. 
 
In software engineering, the clarity of a system’s description and 
the absence of ambiguity are essential in specifying software 
requirements. Interpreting requirements can be viewed as 
specifying behavior [5]. The behavioral aspect of a model is 
viewed in terms of events as “the representation of a fact that 
participates in reactions of the modelized system. It occurs in a 
spontaneous random manner (in the case of external event) or is 
generated by the application” [6]. A unifying notion of events in 
the context of dynamic systems modeling is important for 

behavioral modeling. Such an achievement would advance and 
extend the field of behavior engineering as a link between 
systems-engineering processes and software-engineering 
processes.  

In this paper, we adopt BE in its general and integrating sense to 
search for a unifying notion of an event as a fundamental 
behavior-modeling concept. We examine several bodies of 
research with various definitions of an event and its basic units 
and structure. Throughout the paper, we will apply thinging 
machine (TM) modeling [7-16] to analyze some concepts related 
to events. 

1.1 A Glimpse at Some Definitions of Events 

Similar to objects, events belong to categories and have properties 
and parts. What is an event? According to Huang and Chuang [17], 
an event’s definitions include the following:  
- Something that happens at a given place and time.  
- Any physical, social, or mental process.  
- A processual entity that is the fiat or bona fide instantaneous 
temporal boundary of a process.  
- An occurrence of actions and changes in the real world.  
- A perduring entity that unfolds over time.  
- An action or occurrence taking place at a certain time at a 
specific location.  
- A thing that has happened/is scheduled to happen.  
- An event cannot be assigned a specific definition. Events 
encompass everything that happens, even fictional events.  
 
Events are typically distinguished from objects. For example, 
events are exemplified by births or meetings and objects by people 
and organizations that (may) experience these events. As with 
objects, events can have attributes that describe their properties 
and qualities.  
 
Some of the definitions of an event in software engineering are: 
- A function that responds to an action the user or the system itself 
takes, e.g., the click event. A function is a group of related 
statements that perform some action [18].  
- An action or occurrence such as a mouse click, a keystroke, 
mouse movements, or any system-generated notification [19]. 
- A significant change of state, e.g., an order in an ecommerce site 
or when a user views a web page [20].  
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1.2 Outlines of the Paper 

The next section includes a brief review of our main tool to model 
events. The remaining sections involve examining 
conceptualizations of events as follows: 

Section 3: [21]’s behavior-tree model 
Section 4: The murder of Caesar as an event 
Section 5: Events and fluents (in artificial intelligence) 
Section 6: Modeling events in a geospatial domain 
Section 7: Repetition of an event (recurrent events) 
Section 8: Davidson’s events 

2. Thinging Machine Modeling 

The main TM thesis is that any entity has a double nature as (i) a 
thing and (ii) a process (abstract machine); thus, we call these 
thing/machine entities thimacs. In TM modeling, intertwining with 
the world is accomplished by integrating these two entities’ modes 
of being.  

Thimacs inhibit traditional categorization, properties, and 
behavior, replacing them with the five actions: creating, 
processing, releasing, transferring, and receiving. Such a thesis 
implies that all actions in a system can be reduced to these five 
generic (elementary) actions. Since generic events are time-
injected actions, there are five generic events to be explained next. 
Events are thimacs in conceptual space-time; conceptual space 
includes concepts as thimacs. 
 
Because machines are things, all things can be reduced to five 
lementary things. In TM modeling, a thing’s machine operates on 
other things by creating, processing, releasing, transferring, and/or 
receiving them. The term “machine” refers to a special abstract 
machine (see Fig. 1, simplified in Fig. 2). Among the five stages, 
flow (represented by the solid arrows in Fig. 1) signifies 
conceptual movement from one machine to another or among a 
machine’s actions. An enduring thing is a static thimac (a thing + 
its machine specification) and becomes a dynamic event thimac if 
it embeds a time subthimac. Russell interpreted “the enduring 
thing or object of common sense as a world-line, a causally related 
sequence of events, and...it is events and not substances that we 
perceive.” Even though Russell distinguishes between eternal 
objects and actual objects, he does not distinguish between an 
enduring thing without time and one with time. For example, 
thimacs without time include the Pythagorean intelligible 
structures and Aristotle’s unmoved mover, i.e., pure form. 
However, Aristotle considered a sensible object to consist of both 
matter and form, neither of which can exist without the other. In 
TM, so-called objects as “matter and form” formations have two 
modes: static thimac (thing/machine) and dynamic (event-based) 
thimac. The distinction between staticity and dynamism is 
essential for modeling, as will be exemplified later in this paper. 

Thimacs without time form a system’s static specification, while 
time is an indispensable ingredient for describing its behaviour.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The TM’s actions (also called stages) can be described as follows: 
 Arrival: A thing reaches a new machine.  
 Acceptance: A thing is permitted to enter the machine. If 

arriving things are always accepted, arrival and acceptance can 
then be combined into the “receive” stage. For simplicity, this 
paper’s examples assume a receiving stage exists. 

 Processing (change): A thing undergoes a transformation that 
changes the thing without increasing the population size of 
things in the system. Processing may trigger the creation of a 
new thing; e.g., processing a thought may trigger the creation of 
a new thought. 

 Release: A thing is marked as ready to be transferred outside 
the machine. 
 

 Transference: A thing is transported somewhere outside the 
machine. 

 Creation: A new thing is born (created/emerges) within a 
machine. Creation can be designated as “bringing into existence” 
in the system because what exists is what is found. Creation in 
a TM also means appearance in the system. Appearance here is 
not limited to form or solidity, but extends to any sense of the 
system’s awareness of the new thing. 

In addition, the TM model includes: 
 Memory and 
 Triggering (represented as dashed arrows), or relations among 

the processes’ stages (machines); for example, the process in 
Fig. 1 triggers the creation of a new thing. 

To approach TM modeling smoothly, we focus on the machine 
side of thimacs. TM modeling is a three-level process that 
involves the following: 
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Fig. 1 The machine 

 

 

 

 

Process 

Transfer 

Release  Receive 

Create 

Fig. 2 The machine simplified 



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020   
 

 
 

 

97

 

 A static model of the state of affairs that produces an atemporal 
diagrammatic description, denoted as S. The state of affairs and 
actions are caused by the mixture of thimacs that penetrate each 
part (e.g., process, receive). The time of S is the present in the 
sense that everything subsists now. 

 Decomposing S into subdiagrams that form the base of 
temporal events. 

 The model’s behavior, denoted as B, formulated as a 
chronology of events. Behavior refers to executing composite 
actions. 

3. Example: Alternative Model to Behavior Tree 

Dromey [21] modeled the following linguistic description:  

When a car arrives, if the gate is open, the car proceeds; if the 
gate is closed, when the driver presses the button, it causes the 
gate to open. 

Dromey [21] based his solution on the notion of a “behavior tree” 
as shown partially in Fig. 3. The TM model starts with the static 
model (Fig. 4) to arrive to the description of the behavioral model. 
In Fig. 4, the car arrives in the area just in front of the gate, ready 
to enter (circle 1). If the gate is open (2), the car proceeds (3). If 
the gate is closed (4), the driver presses (5) the button that causes 
the gate to open (2).  

The behavior of this gate system is built from the static model (Fig. 
4) after applying the notion of an event. An event in TM includes 
a time machine. For example, Fig. 5 shows the event The car 
arrives in the area just before the gate, ready to enter. The event 
includes the region where the event occurs in addition to other 
properties (e.g., intensity) that are not of concern in this paper. For 
simplification purposes, we will represent events by their regions. 
Fig. 6 shows the events in such a system as follows: 
Event 1: The car arrives in the area just before the gate, ready to 
enter. 
Event 2: The gate is open. 
Event 3: The car proceeds in. 
Event 4: The gate is closed. 
Event 5: The driver presses the button. 
 

 

 

 

 
 

Fig. 7 shows the behavioral model. Notice that repeated 
events in the figure (reflexive arrow) are used as a modeling 
convenience to denote events with the same regions (subdiagrams 
of the static model). Such three-stage TM modeling can be applied 
to all works related to the behavior tree. 

 
TM modeling can be applied in a variety of systems to 

represent a portion of reality. According to Pegden [22], “Over the 
50-year history of simulation there have been three distinct world 
views in use: event, process, and objects. In event worldview, the 
system is viewed as a series of instantaneous events that change 
the state of the system over time.” In the TM worldview, the 
system is viewed as:  

(1) An assembly of thimacs, including things, machines, five 
actions, and flows, and 

(2) A chronology of events that describes the system’s 
behavior over time. 

Guizzardi and Wagner [23] give as an example the event e: 
the murder of Caesar. This event can be further decomposed into 
sub-events, namely, e1: the attack on Caesar, and e2: Caesar’s 
death. Event e1 can, in turn, be decomposed into events e11: 
conspirators restraining Caesar, and e12: Brutus stabbing Caesar.  
 

 
Events can be atomic or complex, depending on their mereological 
structure. While atomic events have no proper parts, complex 
events are aggregations of at least two disjointed events. Fig. 8 
shows the TM model of the murder of Caesar. The figure shows 
that there is Caesar (1) who moved (2) to be in the range of the 
conspirators (3) who restrained him (3). In this situation, Brutus 
stabbed Caesar (5), triggering Caesar’s death. The original 
creation means existence; hence, decreation is the reverse, in 
which the thing is dissolved (no longer appears in the system’s 
view). 
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Such a static description includes all facts about Caesar in the 
given narrative. Figs. 9 and 10 show the events in the static model 
and the behavioral model. Note that “atomic events,” in TM, are 
the five events that correspond to the five actions. 
 

 
 
5. Fluents and Events 

It seems that TM modeling can be applied to various 
conceptualizations of events. In artificial intelligence, a fluent is a 
condition that can change over time. For example, the condition 
“the box is on the table,” if it can change over time, cannot be 
represented by the predicate On(table, box) but ON(table, box, t) 
where t represents time. Thielscher [24] presented fluent calculus 
as a specification language for robots, which met the requirements 
of designing robots capable of task planning on a high level. Such 
robots are embedded in and constantly interact with a dynamic 
environment. It is difficult to program suitable action sequences 
for all possible situations, and such an environment requires an 
autonomous robot to be capable of searching on its own for plans 
tailored to the current situation [24]. 

The fluent calculus is formalism for expressing dynamical 
domains in first-order logics in which situations are considered 
representations of states. For example, the action of moving the 
box from the table to the floor is formalized as: 
State(Do(move(box,table,floor),s)) ○ on(box,table)=State(s) 
○on(box,floor) [24]. According to Thielscher [24], a fluent 
represents an atomic property of the physical world, which may 

change in the course of time. Examples of such properties can be 
the location of a movable object, the status of a door (i.e., whether 
open or closed), or the position of the robot.  
 
These properties are regions in TM events. Thielscher [24] 
introduced a delivery scenario of a robot (see Fig. 11) using 
domain sorts: room, door, object, and person. Several functions 
are also declared, e.g., 
room |→ fluent: robot is in room;  
object |→ fluent: robot carries object;  
room × object × room |→ fluent: there is a request to deliver object 
x2 from room x1 to room x3. 
Note that the fluent calculus is a second-order logic language. 
 
This section is focused on the representation issue that includes 
dynamic behaviour, leaving the high-level task-planning issue for 
future research. Hence, we illustrate two methods to model 
(represent) events for the purpose of enhancing the understanding 
of events of dynamic systems. Fig. 12 shows the TM model that 
corresponds to the delivery scenario, with some modifications and 
limitations. The figure includes the offices (circles 1–3 in Fig. 12), 
storage (4), and the robot with its stations (5).  
 

 
Fig. 11. A delivery scenario (partially from Thielscher [24]). 
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In the storage, instructions are sent (7) to the robot (8), where they 
are processed (9). Accordingly, the robot moves to the ally (9 and 
10), then the storage (11). In the storage, a package is loaded (12) 
to the robot (13). The robot carrying the package (14) moves to the 
ally according to the office destination. Assuming office 1, 
- The robot carrying the package moves from the ally (16) to the 

office (17). 
- The robot delivers its package (18 and 19). 
- The robot moves to the ally (20 and 21). 
- From the ally, the robot moves to its station (22 and 23).  
 
Fig. 13 shows the selected events for this delivery scenario. The 
events are as follows. 
Event 1 (E1): Delivery instructions reach the robot 
Event 2 (E2): The robot moves to the ally 
Event 3 (E3): The robot leaves the ally 
Event 4 (E4): The robot moves to the storage 
Event 5 (E5): The package is loaded in the robot 
Event 6 (E6): The robot carries the package  
Event 7 (E7): The robot moves to the ally 
Event 8 (E8): The robot moves to office 1 
Event 9 (E9): The robot delivers the package 
Event 10 (E10): The robot leaves office 1 
Event 11 (E11): The robot moves to office 2 
Event 12 (E12): The robot leaves office 2 
Event 13 (E13): The robot moves to office 3 
Event 14 (E14): The robot leaves office 3 
Event 15 (E15): The robot moves from the ally to its station  

 

in the diagram are not marked. Fig. 14 shows the behavioral 
model of the delivery system. 
 
The robot performs only three types of behaviors (plans) as shown 
in Fig. 15. Such a description is reasonable for a department with 
tens of offices. However, the system should be supplemented with 
exceptional events. For example: 
 

- The office door is closed: This situation can be handled 
within the system by returning the robot to storage to return 
the package. 

- The office door is closed and the storage door is closed: This 
situation can be handled with the robot going back to its 
station. 

- The employment of multiple robots with multiple types of 
things to carry. It is possible to build a traffic system using 
the same modeling method. 

-  
The point here is that such techniques to handle exceptions are 
almost sub-plans of the three established plans. The remaining 
questions concern the practicality of this exhaustive modeling 
method for handling large systems, e.g., thousands of offices. 
Another issue is related to complementing this model with the type 
of logic machine developed in Thielscher’s work [24]. Each of 
these two modeling approaches can benefit from developments in 
the other, especially with regard to unifying the conception of 
events.  
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6. Modeling Events in Geospatial Domains 

Hornsby and Cole [25] modelled the dynamic happenings 
entities experience in a geospatial domain as events; from an 
analysis of these events, they showed how meaningful information 
about objects’ movement can be abstracted. A set of eight possible 
event pattern types are distinguished and discussed. Modeling 
events provides a foundation for distinguishing particular 
semantics of movement based on patterns of events, forming a 
basis for querying different kinds of events and developing 
automated event notification systems. 

 
   

outbound traffic lanes’ separation schemes. The zones provide a 
reference for defining objects’ spatial locations and the events 
associated with those objects. As an entity moves and experiences 
various occurrents, “describing movement from the perspective of 
the occurrents rather than the more typical location-based 
approach affords a new view of moving entities where the 
semantics of occurrents are the prime focus,” said Hornsby and 
Cole  [25]. Occurrents are modelled as events to generate an 
event-based perspective of an object’s movement in a geospatial 
domain. An example of a representative sequence of events is:  
 
 
 
Representing a moving object’s path as a sequence of changing 
zone events is a rather basic semantic description of an object’s 
movement. Such a path can portray richer depictions of object 

movement incorporating more semantics by including more 
refined types of events, referred to as specialized events. Hornsby 
and Cole [25] model events as being instantaneous, that is, events 
have no duration and mark a change in the state of an object. 

 
To illustrate the TM modeling of changing zone events, we 
simplify the zones map to involve six zones as shown in Fig. 17. 
Additionally, to save space, we explain the model in the events 
diagram since it is easy to extract the static diagram by eliminating 
all events. In the figure, each zone has three events, 

- entering the zone (transfer and receive), 
- leaving the zone, and (release and transfer). 
- being in the zone (processing as being in the zone takes 

its course). 
  
All events in TM modeling are based on generic events (grounded 
on generic actions) in which events have duration. The 
instantaneity notion is applied only to the transition between 
generic events. In TM, the exact time between transfer/output (in 
the source machine) and transfer/input (in the destination machine) 
can be calculated from the end point that includes the transfer out 
and transfer input. The two transfers represent the boundary 
between zones. We can consider the object in a target zone if any 
part of the object is inside that zone. This is similar to running 
competitions in which a runner finishes the race (distance) as soon 
as their foot (not their whole body) touches the finishing line. 
 
From Fig. 17, we can identify sequences of events, for example, 
E1, E2, E4, E5, E6, E7, E8, E9, E15. E14, and E16, that describe the 
sequence of events for an object coming from the open sea and 
ending in the destination ferry landing. All types of analysis that 
Hornsby and Cole [25] discussed can be applied to the TM model. 
It seems that such a TM model is suitable for this type of 
application. 
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7. Repetition of an Event (Recurrent Events) 

Carriero et al. [26] described an ontology design pattern for 
modeling events that recur regularly over time and share some 
invariant factors that unify them conceptually. Recurrent events 
are seen as collections of events of the same type. Such a recurrent 
event is represented as “both a collection of events and a situation 
in which these events are contextualized and unified according to 
one or more properties that are peculiar to each event, and occur 
at regular intervals” [26]. 

7.1 Endurants and perdurants 

Carriero et al. [26] used Bottazzi et al.’s [27] concept of collection 
to categorize objects as: 
- Endurants: e.g., physical (a hammer), nonphysical, social (an 

organization), or mental (a belief) objects. 
- Perdurants: e.g., event (a departure) or stative (sitting). 
According to Casati and Varzi [28], the variety of the world seems 
to lie not only in the assortment of its animals and physical 
objects—and perhaps minds but also in the sort of things that 
happen to or are performed by them. Entities of this sort appear in 
many situations; e.g., 
- Infants appear to be able to discriminate events. 
- Humans and animals appear to plan and execute actions. 
- Linguistic devices (e.g., verb tenses) are tuned to events and 

event structures. 
- Thinking about the temporal and causal aspects of the world 

requires events and their descriptions. [28] 
 
However, there is significant disagreement concerning the precise 
nature of such entities. Defining events as “things that happen” 
merely shifts the focus to clarifying the meaning of “happen.” 
Some philosophers treat both objects and events as entities of the 
same kind: an object would be a “monotonous” event, and an event 
would be an “unstable” object [28]. 
 
In a TM, an event is a thing with a time submachine. A real event 
happens in (physical) time and, say, a fairy tale event happens in 
fairy tale time. Newtonian laws are events in which the time of 
their regions is the “all time” of the Newtonian world.  
 
Further, it is important to note the notion of events implied in the 
used terms. Endurants are of two types, static or atemporal things 
(e.g., a single image [static picture]) and things that do not change 
over time. For example, consider a single image in a film 
appearing repeatedly while the film is running forward or 
backward with no change of the image. In the TM view, the model 
has many events with the same region (the image). The image is 
an endurant object in both situations. Analogously, world objects 

such as hammers, organizations, and beliefs change over time 
(ignoring the Whitehead’s process theory) but have many events 
during their lifetime (hour, day, etc.). Therefore, so-called 
endurants have events, as in the film example mentioned 
previously.  
 
Back to Carriero et al.’s [26] examples of endurants and perdurants, 
a departure is an event with a region constructed from the actions 
released and transferred plus the time submachine. Sitting is a 
region of an event, say, involving a person and a chair, and a time 
that involves transfer; received and processed (hence, there is no 
release and transfer of time because of ing). Fig. 18 shows a thing 
(e.g., a stone) persisting over time. Things such as stones persist 
through time by continuously eventizing through time. Things 
“endure” through time by “being wholly present [created] at more 
than one time” [29]. This is in contrast to the theory of persistence 
that claims things that last for any period of time are spatially 
extended as things are spread out through space—a different part 
for each region that the thing fills [29]. 
 
The TM modeling of these concepts is illustrated in the following 
two models. 
1. A thing persists by repeated events that create and process 

(change) it—Fig. 18. 
2. A thing is created and flows into time (Fig. 19). The act of 

creation is considered an atemporal instantaneous action that 
represents the spontaneous action of the thing’s emergence. 
The creation is a phenomenon between a pre-”there is” and 
“there is.” It happens in an instance.  

An instant has no duration, so it is not included in the time event 
in Fig. 19. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Philosophy of religion distinguishes between creation as the 
action that brings a thing into existence and conservation as the 
action that maintains the existence of a thing over time. 
Conservation is continuous creation [30]. ”We call the act 
‘creation’ if it occurs at the first time at which the creature exists, 
and we call it ‘conservation’ if it occurs at a later time, but the 
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action is the same” ([30] quoting Quinn [31]). Conservation must 
be an on-going act, whereas creation occurs in an instant. 
 
In TM, the terms “conservation” and “processing” correspond to 
the event creation process that is continuously repeated, in which 
a process triggers creation. The point here is that the notions of 
endurants and perdurants may be analyzed in the TM modeling of 
these concepts, which may shed some light on these concepts as a 
topic for future research. 

 7.2 The event Umbria Jazz 

Returning to Carriero et al. [26]’s ontology pattern for modeling 
events that recur regularly, they provided a graph consisting of a 
network of ontologies and facts on Italian cultural properties that 
represent events regularly recurring over time. Umbria Jazz is a 
recurrent event series, as shown partially in Fig. 20.  
 
According to our understanding (and to further illustrate the TM 
representation), we add two subthings: workshops 1 and 2. Fig. 21 
shows the static description of Umbria Jazz, Fig. 22 divides it into 
three events, and Fig. 23 shows its chronology of events. Umbria 
Jazz is one recurrent event with its unifying factors and other 
attributes and subthings.  

8. Related Work (Davidson’s Events) 

An important role in linguistic theory is Davidson’s [32] claim that 
events are spatiotemporal things.  

8.1 Transitive Verbs 

Maienborn et al. [33] gave a pre-Davidsonian example of a 
transitive verb introducing a relation. Jones buttered the toast, thus 
yielding the logical form BUTTER (jones, the toast). According to 
Maienborn et al. [33], it seems that the sentence and its logical 
form reflect one event. However, such an assumption fail to 
consider the structure of the involved event. This would lump 
information in the language. 
 
Fig. 24 shows the TM static representation of Jones buttered the 

toast. 
 

 
 
 
 

 
 
Fig. 20 Umbria Jazz is a recurrent event series, (partial, from   Carriero 

et al. [26]) 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
First, there are Jones (1), toast (2), and butter (3). The toast and 
butter enter Jones’s realm, expressed in TM in terms of their flow 
(3 and 4) to John’s machine. Figs. 25 and 26 show selected 
meaningful events in the example and the chronology of events, 
respectively. The TM diagrammatic representation seems to be 
richer than the logical one. However, whether the diagrammatic 
representation is susceptible to the reasoning process remains to 
be investigated. Here, we point to possible further research work. 
Currently, we are interested only in exploring the application of 
TM in Davidson’s [32] ideas of the notion of events. 
 

Fig. 25 The events of the TM representation of Jones buttered the toast. 
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Fig. 26 The chronology of events in Jones buttered the toast. 
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8.2 Implicit Actions 

Davidson [32] pointed out that such a logical expression of the 
example does not allow us to refer explicitly to the action the 
sentence describes and specify it further by adding, e.g., that Jones 
did it slowly, deliberately, with a knife, in the bathroom, at 
midnight (Maienborn, et al. [33]). Accordingly, Davidson 

proposed that, Jones buttered the toast in the bathroom with the 
knife at midnight takes the logical form, ∃e [BUTTER (jones, the 
toast, e) & IN (e, the bathroom) & INSTR (e, the knife) & AT (e, 
midnight)] [33]. Figs. 27 and 28 show the static and events TM 
models of this last logical form. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In Fig. 27, Jones goe to the bathroom with the butter, toast, and a 
knife (1). Their arrival in the bathroom triggers (means) the arrival 
of the butter, toast, and knife (1, 2, and 3, respectively) in the 
bathroom. This begins a buttering process (5) that is slow and 
deliberate (6) to produce buttered toast (7).  
 
Fig. 29 shows the chronology of these events. Event 1’s time is 
midnight. Again, the TM diagrammatic representation seems to 
expose different aspects of the whole linguistic analysis of events. 
For example, our discussion in this field invites investigation of 
whether the diagrammatic representation is susceptible to the 
reasoning process.  
 
 

 

 

 

 

8.3 Identical Actions 

Maienborn et al. [33] also discussed the issue of two events that 
are identical because they occupy the same portion of space and 
time. They take Davidson’s example, in which we “wouldn’t be 
able to distinguish the event of a metal ball rotating around its 
own axis during a certain time from an event of the metal ball 

 

Fig. 27 The static model of ∃e [BUTTER (jones, the toast, e) & IN (e, the bathroom) & INSTR (e, the knife) & AT (e, midnight)] 
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becoming warmer during the very same time span” [33]. Figs. 30 
and 31 show the TM static and events models of this case. The 
three events occur simultaneously; however, we can indicate the 
obvious causal relationship between them as shown in Fig. 32. 
The three events occupy different conceptual regions. They 
happen simultaneously with the causal relationship repeatedly.  

 
The TM modeling seems to open a new type of event analysis such 
as the last example, which admittedly needs further examination. 

8.4 Hidden Events 

Maienborn et al. [33] also discussed the issue of a hidden event. A 
sentence such as Anna saw Heidi cut the roses expresses that Anna 
perceived the event of Heidi cutting the roses. This does not imply 
that Anna was necessarily aware of, e.g., who was performing the 
action Anna saw Heidi cut the roses. Fig. 33 shows the 
corresponding TM model. First, there are people (1), Anna (2) and 
Heidi (3). The image of a person (4), which could be the image of 
Heidi, appears to cut roses (5). Anna perceives this image (6). She 
then processes it (7) to recognize Heidi (8). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
Fig. 34 shows selected events in this example.  
Event 1: Appearance of a person. 
Event 2: Appearance of Anna. 
Event 3: Appearance of Heidi. 
Event 4: A person cutting roses. 
Event 5: Anna perceives the image of a person cutting roses. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Event 6: Anna recognizes that Heidi is cutting the roses 
Event 7: The union of events 1–5 
Event 8: The union of events 1–6 
 
Fig. 35 shows the chronology of events, including the two events 
of recognizing and not recognizing Heidi. The TM model presents 
a tool to represent and analyze the events, at least in the software 
engineering field.  
 
 
 
 
 
 
 
 

 

 

 

 

 

Fig. 34 Events of Anna saw Heidi cut the roses 
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9. Conclusion 
 
In this paper, we have examined several bodies of 
research with different definitions of events and their 
basic units and structure. We used the thinging machine 
(TM) model to analyze various notions related to events, 
including Dromey’s behavior trees, fluents, recurrent 
events, and Davidson’s events. The various 
conceptualizations of the event notion were recast using 
the TM model. The results point to TM’s ability to express 
these conceptualizations. Additionally, TM has brought 
up some new aspects of these conceptualizations that 
deserve future exploration. The result points to the 
viability of TM as a unifying base for modeling events.  
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