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Summary 
With the ubiquitous use of the Internet, the importance of 

secure access to computing resources has grown. Many computer 
systems authenticate users through a password selected by the user. 
User typing patterns are usually distinct, allowing users to be 
differentiated and verified through a suitable verification system, 
and are considered a behavioral biometric. Authentication based 
on keystroke dynamics has many advantages, such as ease of data 
acquisition, continuous non-intrusive monitoring, and ease of 
integration into existing systems. In this paper, we present a 
convolutional neural network, which we call CNN-Detect, to 
detect unauthorized users that attempt to access resources by their 
typing patterns. We test our model on the publicly available CMU 
keystroke dynamics dataset, after suitable feature engineering. Our 
proposed model shows significant improvement over other models 
in the literature, achieving an average equal error rate (EER) of 
0.009, and a zero-miss false acceptance rate (ZM-FAR) of 0.027. 
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1. Introduction 

Access control is a broad term that covers several 
different types of mechanisms that enforce access control 
features on computer systems, networks, and information. 
Secure access to computing resources is an integral part of 
security systems, especially considering the ubiquitous use 
of computers nowadays. For a user to be able to access a 
resource, he or she must be identified, authenticated, 
authorized. Identification can be provided with the use of a 
username, while authentication is the process of verifying 
the identity of a subject, usually by providing a second piece 
to the credential set, such as a password. Simple and low-
cost user identification and authentication is a desirable 
aspect of security systems. Although passwords and 
passphrases are common authentication methods, they are 
not free from drawbacks. For example, passwords may be 
forgotten, lost or hacked. 

Biometrics refers to any measure used to uniquely 
identify a user based on biological or physiological traits 

and is considered one of the most effective and accurate 
methods of verifying identification. Unfortunately, it is 
usually much more expensive and complex than other types 
of verification. A behavioral biometric refers to any pattern 
of behavior that is specific to the user, such as the rhythm 
and cadence with which users type on their computer 
keyboard. Behavioral biometrics are attractive as they allow 
more secure authentication, while still being less expensive 
and invasive than physical biometrics. 

Keystroke dynamics is a behavioral biometric that 
analyzes typing rhythms to differentiate among authentic 
users and impostors, both insiders and external attackers 
[11]. It is difficult to impersonate typing behavior, making 
it a useful biometric measure. As it is also unobtrusive, it 
can augment standard security measures seamlessly [1]. 
Keystroke dynamics are considered a cost effective and 
user-friendly user authentication method. On the other hand, 
the physical and emotional state of an individual affects this 
biometric [7], potentially causing misclassification of users. 

Biometric analysis of typed text can be either 
structured, on predetermined phrases, or dynamic, on 
continuously typed text. Many features may be extracted 
from text, such as key-press latency (keyup-keyup, 
keydown-keydown, keydown-keyup), pressure, force, total 
duration, or speed. 

More formally, a keystroke dynamics dataset 𝐷  is 
comprised of a collection of keystroke sequences (𝑥  |𝑥 ∈
𝐷), where 𝑥 ൌ ሼ𝑥ଵ,𝑥ଶ, … , 𝑥ሽ is a keystroke sequence with 
𝑛 attributes, and 𝑥 represents time duration in milliseconds 
(ms). 𝑥 is generated from various timing attributes, such as 
keyup-keyup or keydown-keydown, collected as text input 
of length (𝑚|𝑚 ൏ 𝑛) that is entered by a user. 

Various approaches have been proposed in the 
literature to classify users based on the features collected, 
such as statistical methods that calculate the mean, standard 
deviation, or other distance measures, and machine learning 
methods, including neural networks, support vector 
machines (SVM), and decision trees. Other approaches 
used evolutionary and swarm intelligence algorithms, such 
as genetic algorithms (GA), ant colony optimization (ACO), 
and particle swarm optimization (PSO). Unfortunately, it is 
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not always possible to compare different methods and 
algorithms, because of the different datasets researchers 
employ in their studies. For this reason, this work focuses 
on the CMU keystroke dynamics benchmark dataset [11]. 

This paper aims to leverage a deep neural network to 
detect unauthorized users that attempt to access computing 
resources by entering a correct password. The neural 
network should learn the specific features of an authentic 
user’s typing patterns, i.e. the user’s behavioral biometric, 
in order to correctly deny access to imposters. This work 
presents the following contributions to the literature: a 
feature engineering approach of the CMU dataset as 
explained in Section 3.2, and a novel convolutional neural 
network model for behavioral biometrics. Our proposed 
model outperforms other models in the literature by a 
significant margin, indicating its applicability as a suitable 
behavioral biometric verification method. 

Table 1: Nomenclature of abbreviations 
 Acronyms   Definition  

ACO   Ant Colony Optimization  

ANN   Artificial neural network  

CMU   Carnegie Mellon University  

CNN   Convolutional neural network  

DFS   Deep Feature Synthesis  

DNN   Deep Neural Network  

EER   Equal Error Rate  

FAR   False Acceptance Rate  

FRR   False Rejection Rate  

GA   Genetic Algorithms  

GRU   Gated Recurrent Unit  

𝑘-NN   𝑘-Nearest Neighbor  

LSTM   Long short-term memory  

PSO   Particle Swarm Optimization  

ReLU   Rectified Linear Unit  

ROC   Receiver operating characteristic  

SMOTE   Synthetic Minority Oversampling Technique  

SVM   Support vector machines  

 
 

The rest of this paper is organized as follows. Section 2 
presents a review on various works in this field. Section 3 
describes the CMU dataset, the data preprocessing, and our 
model, CNN-Detect. Section 4 presents a detailed 
evaluation of CNN-Detect on the CMU dataset. We 
conclude our work in Section 5. Table 1 presents the 
nomenclature of abbreviations used in this paper. 
 

2. Related Work 

This section presents research work on the usage of 
keystroke dynamics as a biometric method for user 
identification and authentication, with particular emphasis 
on works done on the CMU dataset by Killourhy and 
Maxion [11]. The CMU dataset is a keystroke dynamics 
benchmark dataset. Killourhy and Maxion implemented 14 
detectors on their proposed dataset: Manhattan (scaled), 
Nearest Neighbor (Mahalanobis), Outlier Count (𝑧-score), 
SVM (one-class), Mahalanobis, Mahalanobis (normed), 
Manhattan (filter), Manhattan, Neural Network (auto-
assoc), Euclidean, Euclidean (normed), Fuzzy Logic, 𝑘 -
Means, and Neural Network (standard). They trained each 
detector on their proposed dataset as follows: train detector 
on 200 passwords by a user and use a further 200 passwords 
by the same user to generate user scores. They also generate 
5 imposter scores per 50 imposters. They use the user 
scores and imposter scores to generate an ROC curve and 
calculate the equal-error and zero-miss rates for each user. 
The error means of the 51 users are used to measure the 
detectors performance. The best equal-error rate was 0.096, 
obtained by the Manhattan (scaled) detector, and the best 
zero-miss false-alarm rate was 0.468, obtained by the 
Nearest Neighbor (Mahalanobis) detector. 

Zhong et al. [18] improved the above results on the 
CMU dataset using a new distance metric that incorporates 
the Mahalanobis distance and Manhattan distance. First, 
features are normalized and decorrelated, and then the 
Manhattan distance is computed. They applied the nearest 
neighbor classifier on the new features, and also tested the 
classifier with outliers removed. They achieved an equal-
error rate of 0.084 and a zero-miss false-alarm rate of 0.405. 
In another study, Deng and Zhong [6] performed user 
authentication using a Gaussian mixture model with 
universal background model (GMM-UBM), identity vector 
(i-vector), and deep neural network (DNN). They achieved 
the best performance using the DNN model [5], with an 
equal-error rate of 0.035. 

Ho and Kang [8] proposed two algorithms: the mini-
batch bagging (MINIBAG) method, tested with Euclidean, 
Manhattan, and Manhattan scaled, as well as with various 
aggregation operators, and the attribute ranking of one-class 
naÃ¯ve Bayes (AR-ONENB) algorithm. MINIBAG with 
Manhattan scaled achieved a best EER of 0.056 using 
aggregation operators, and AR-ONENB achieved an EER 
of 0.066. Both reported scores are for an imposter 
unfamiliar with the password, as done in [11]. 

Ivannikova et al. [9] introduced a Dependence 
Clustering (DC) based approach for user authentication 
using keystroke dynamics, as well as applying a 𝑘 -NN-
based approach. They also designed a cross-validation 
procedure which artificially generates impostor samples to 
improve the learning process while allowing fair 
comparison to previous works. The DC approach achieved 
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an EER of 0.077, and the 𝑘-NN approach achieved an EER 
of 0.078, outperforming previous works in the literature. 

Kobojek and Saeed [13] presented two models, a long 
short-term memory (LSTM) model and a gated recurrent 
unit (GRU) model trained on the CMU dataset. They tested 
various architectures for the LSTM model, achieving a best 
equal-error rate of 0.14 using a 2-cell LSTM model and a 
zero-miss false-alarm rate of 0.379. Their best zero-miss 
false-alarm rate was achieved by their 3-cell LSTM, with a 
value of 0.33, however, the equal error-rate degraded to 
0.165. Both LSTMs outperformed the GRU model. 

Maheshwary et al. [15] introduced Deep Secure, a 
neural network-based approach for keystroke dynamics 
user authentication. Deep Secure is a fully connected neural 
network comprised of three hidden layers of 100, 400 and 
100 dimensions respectively. The higher size of hidden 
layers introduces sparsity and helps in capturing the inter-
feature relations, eliminating the need for manual feature 
selection or engineering. They employed batch 
normalization, dropout, and used the Leaky ReLU function 
with Adam as the optimizer. They achieved an EER of 0.30 
on the CMU dataset. 

Çeker and Upadhyaya [2] proposed transfer learning to 
transfer acquired knowledge of keystroke dynamics with 
the objective of authenticating an enrolled user under 
different environmental conditions with the least amount of 
re-training. They used three techniques: Adaptive SVM, 
Deformable Adaptive SVM and Projective Model Transfer 
SVM. Transfer learning performed up to 13% better on the 
CMU dataset compared with the classifier trained from 
scratch. In another work, Çeker and Upadhyaya [3] applied 
deep learning, specifically, a convolutional neural network 
on three different datasets, including the CMU dataset. 
They also augmented the keystroke dataset using Gaussian 
data augmentation techniques [14, 17]. Their CNN is 
composed of a single convolutional layer, employing a 
ReLU function, followed by a max-pooling layer, then a 
fully connected layer with dropout. They achieved an EER 
of 0.023. 

This section presented an overview of various works 
proposed by researchers and tested on the CMU dataset. 
The EER rates and ZM-FAR rates were mentioned (where 
applicable). The results demonstrate acceptable EER rates, 
however, the ZM-FAR rates were unacceptably high, 
rendering the systems proposed unusable in any real-life 
scenario. These results show that an improved system, one 
that can achieve low EER and ZM-FAR rates, is desirable, 
and an open research area. 

3. Methodology 

  In this section, we outline our methodology for 
keystroke dynamics user authentication. First, we present 
the dataset used in our experiments, followed by our data 

preprocessing techniques. Then, we present our deep neural 
network approach for detecting unauthorized users.  

Table 2: CMU Dataset: Detailed features 
Feature  Type Content  
subject  text Unique ID for each user, e.g. s002 
sessionIndex  integer The session number the user entered the

password in, ranges from 1-8 
rep  integer The repetition number of the password in

each session, ranges from 1-50 
H.period  real Hold time for the period key  
DD.period.t  real KeyDown-Keydown time: period key to t

key  
UD.period.t  real KeyUp-Keydown time: period key to t key 
H.t  real Hold time for the t key  
DD.t.i  real KeyDown-Keydown time: t key to i key 
UD.t.i  real KeyUp-Keydown time: t key to i key 
H.i  real Hold time for the i key  
DD.i.e  real KeyDown-Keydown time: i key to e key 
UD.i.e  real KeyUp-Keydown time: i key to e key 
H.e  real Hold time for the e key  
DD.e.five  real KeyDown-Keydown time: e key to 5 key 
UD.e.five  real KeyUp-Keydown time: e key to 5 key 
H.five  real Hold time for the 5 key  
DD.five.Shift.r real KeyDown-Keydown time: 5 key to R key 
UD.five.Shift.r real KeyUp-Keydown time: 5 key to R key 
H.Shift.r  real Hold time for the R key  
DD.Shift.r.o  real KeyDown-Keydown time: R key to o key 
UD.Shift.r.o  real KeyUp-Keydown time: R key to 0 key 
H.o  real Hold time for the o key  
DD.o.a  real KeyDown-Keydown time: o key to a key 
UD.o.a  real KeyUp-Keydown time: o key to a key 
H.a  real Hold time for the a key  
DD.a.n  real KeyDown-Keydown time: a key to n key 
UD.a.n  real KeyUp-Keydown time: a key to n key  
H.n  real Hold time for the n key  
DD.n.l  real KeyDown-Keydown time: n key to l key 
UD.n.l  real KeyUp-Keydown time: n key to l key 
H.l  real Hold time for the l key  
DD.l.Return  real KeyDown-Keydown time: l key to return

key 
UD.l.Return  real KeyUp-Keydown time: l key to return key 
H.Return  real Hold time for the return key  
 

3.1 Dataset 

The dataset used in this study is the Carnegie Mellon 
University (CMU) Keystroke Dynamics dataset [11]. Data 
were collected from 51 people at CMU, each of whom typed 
400 repetitions of the same password (.tie5Roanl). The 
passwords were typed in 8 sessions, where in each session, 
the user entered 50 repetitions of the password. Various 
timing features were extracted from the data, and the 
authors consider the “Enter” key to be part of the password. 
The authors extracted keydown-keydown (keystroke 
latency) times, keyup-keydown (flight) times, and hold 
(dwell) times for all keys in the password. The total number 
of keys in the password (including “Enter”) is 11, for a total 
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of 31 timing features. Timing features are in seconds and 
are represented as floating point numbers. Many of the 
timing features are correlated: keydown-keydown time is 
the sum of a hold time and a keyup-keydown time. In Table 
2, a detailed list of the dataset features is presented. 

3.2 Data Preprocessing 

 Preprocessing data usually involves cleaning the data, 
allowing it to be passed into the next stage, feature 
extraction, where relevant information that aids in 
classification is extracted. Feature extraction is a difficult 
process and is usually time consuming. The CMU dataset 
contains 31 real timing features, as well as two integer 
features, and the label. First, using the real timing features, 
the total time to enter each password is calculated. This 
produces a total of 34 features. Next, we use these features 
to create 1156 new features using the Deep feature synthesis 
(DFS) algorithm [10]. The DFS algorithm automates and 
optimizes the feature engineering process. In DFS, features 
are derived from relationships among data points in the 
dataset by using similar mathematical operators, called 
primitives. In addition, feature creation is a multi-level 
process, where features may be created utilizing previously 
created features. For our purposes, we create features via 
addition and multiplication primitives. These features are 
then standardized by subtracting the mean and scaling to 
unit variance. Feature scaling is an important step while 
preparing data for any machine learning algorithm, as 
features may have largely differing ranges. The “subject” 
feature is treated as the label, where the text is encoded into 
ordinal integers. 

The dataset contains 20400 rows for 51 users. We follow 
the process described by Killourhy et al. [11], where we 
split the dataset into 51 datasets, each containing the data 
for one user, i.e., 400 rows. This represents the negative 
class in our dataset (not an attacker). Next, we select the 
first 5 rows from the remaining 50 users as the positive class 
(attacker). The 51 datasets now contain 650 rows each, and 
are imbalanced, with 400 negative class observations, and 
250 positive class observations. We could have selected 8 
rows from the remaining 50 users, but that would deviate 
our dataset from the process by Killourhy et al. [11]. Instead, 
we balance our data using the Synthetic Minority 
Oversampling Technique (SMOTE) [4]. SMOTE is an 
oversampling technique used to increase the observations in 
the minority class. It generates synthetic observations by 
detecting nearest neighbors in the feature space of the target, 
then selects similar samples and randomly changes a 
column at a time in the feature space of the neighboring 
samples. Following this step, we have 51 datasets, of size 
800 ൈ 1156. 

The preprocessed data for all 51 datasets is split into two 
parts: 75% training set, and 25% testing set. The training 
set is further split into 80% training set and 20% validation 

set. The final step in the data preprocessing process is 
reshaping the input into a format suitable for our model, 
which is presented in the next section. 

3.3 Convolutional Neural Network Model: CNN-
Detect 

In this section, we discuss our deep neural network and 
the methods implemented to improve the recognition 
performance on the CMU dataset. We use a convolutional 
neural network (CNN) as our model, and we train it on the 
51 datasets outlined in Section 3.2. We call our model 
CNN-Detect. 
 
Input Layer: 

The input layer in CNN-Detect is of size 34 ൈ 34. One 
input row in the dataset is of size 1156. We transform each 
row into a square matrix of size 34 ൈ 34, to fit our input 
layer. This matrix can be thought of as the input image into 
our convolutional neural network. 
 
Hidden Layers: 

A CNN has a number of hidden layers, such as 
convolutional layers, pooling layers, and fully connected 
layers. We note our small dataset size, 600 training samples 
(120  of which are used for validation) and 200  testing 
samples. This implies that a small network size should be 
sufficient to learn all the needed parameters for our 
classification purposes. Our model is composed of three 
convolutional layers, where each layer performs a batch 
normalization operation after a Leaky ReLU activation 
function. This architecture was inspired by a number of 
CNN architectures in the literature for similarly sized 
images. Our input image is 34 ൈ 34 pixels and so a small 
filter size of 2 ൈ 2 is appropriate in this case, as is a small 
stride, we have stride ൌ 1. The number of features maps in 
the first, second, and third convolutional layers is 8, 16, and 
32, respectively. Increasing the number of features maps as 
the network deepens strengthens the representational power 
of the network. In addition, zero padding is applied in all 
convolutional layers. Zero padding is used to overcome the 
problems of image shrinkage and information loss around 
the perimeter of the image as the filter is passed over the 
image. 

Each activation map 𝑖  is calculated as shown in 

Equation 1, where 𝑙 is the current layer, 𝐵
ሺሻ is a bias matrix, 

𝑘ሺିଵሻ is the number of kernels used in the previous layer, 
𝑊 is the current layer kernel matrix, and 𝑌ሺିଵሻ is the output 
of the previous layer. Our nonlinearity is the Leaky ReLU 
function, defined as shown in Equation 2, where we set 𝛼 ൌ
0.2. 

𝑌
ሺሻ ൌ 𝐵

ሺሻ  

ሺషభሻ

ୀଵ

𝑊
ሺሻ 𝑌

ሺିଵሻ ሺ1ሻ 
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𝐿𝑒𝑎𝑘𝑦 െ 𝑅𝑒𝐿𝑈ሺ𝑥ሻ ൌ ቄ𝛼𝑥 𝑥 ൏ 0
𝑥 𝑥  0

ሺ2ሻ 

 
The convolutional layers are followed by a max-pooling 

layer with a 2 ∗ 2 ∗ 1  window size, and a stride of 2 , 
resulting in a 16 ∗ 16 ∗ 32 layer. Max pooling is useful in 
reducing overfitting, by providing a more abstract view of 
the data, as well as reducing computational requirements. 
The tensor is then flattened into a 9248  neuron layer, 
followed by four other fully connected layers, with sizes 
500 300, 100 and 20, respectively. Fully connected layers 
aid in the final classification by combining all the signals 
into one cohesive framework. All fully-connected layers 
use a 30%  dropout rate to reduce overfitting [16], set 
experimentally. In addition, each fully connected layer 
implements Ridge Regression, also known as L2 
regularization, which adds the squared magnitude of 
coefficients as a penalty term to the loss function, defined 
in Equation 3, where 𝜆 ൌ 0.0008. 
 

𝐶𝑜𝑠𝑡 ൌ 𝑌
ሺሻ  𝜆 

ሺషభሻ

ୀଵ

𝑊
ሺሻ ሺ3ሻ 

 
Output Layer: 

The output layer is a 2 class Sigmoid layer: one class for 
the authorized user, and the other for the unauthorized user. 
The Sigmoid layer uses Equation 4 as the activation 
function. 
 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ൌ
1

1  𝑒ି௫
ሺ4ሻ 

 
Optimization: 

In our model, we tested two optimizers: Stochastic 
Gradient Descent and Adam [12], and selected Adam as it 
was found to work better. In our model, we set the learning 
rate to 𝑙𝑟 ൌ 0.001, set experimentally. The loss for CNN-
Detect is calculated using the binary–cross entropy loss 
(Log loss), as in Equation 5, where 𝑁  is the number of 

samples, 𝑦 is the label and 𝑝ሺ𝑦ሻ is the predicted probability 
of the label. A summary of our model is shown in Figure 1. 
 

𝐿𝑜𝑠𝑠 ൌ െ
1
𝑁


ே

ୀଵ

𝑦 ⋅ log൫𝑝ሺ𝑦ሻ൯

ሺ1 െ 𝑦ሻ ⋅ 𝑙𝑜𝑔ሺ1 െ 𝑝ሺ𝑦 ሺ5ሻ

 

4. Experimental Results 

In this section, we present the evaluation metrics and the 
evaluation results for CNN-Detect on the CMU dataset. 
 

4.1 Evaluation Metrics 

The receiver operating characteristic (ROC) curve is 
generally used to evaluate biometric systems. The ROC 
measures the tradeoff between the false acceptance rate 
(FAR) and the false rejection rate (FRR). FRR is also 
known as Type I Error and is the rate at which the system 
rejects a sample provided by a genuine user, and so a small 
FRR indicates a small number of genuine users rejected. 
FAR, also known as Type II Error, is the rate of incorrectly 
accepting an erroneous or false sample. In other words, the 
system accepts impostors who should be rejected. FAR 
errors are the most dangerous, thus, they are the most 
important to avoid in a biometrics system. Low FAR values 
indicate that imposters are rarely successful at accessing 
resources. The overall goal is to obtain low numbers for 
each type of error. 

To describe system performance overall and to compare 
different biometric systems, the equal error rate (EER) is 
used. The EER is sometimes referred to as the crossover 
error rate (CER) and is defined as the point at which both 
FAR and FRR are equal. A lower EER indicates better 
system performance. The zero-miss false alarm rate (ZM-
FAR) is a threshold that measures system performance 
when the miss rate is zero. In other words, when the system 
threshold for accepting users is high enough to block all 

Figure 1: Convolutional Neural Network for Keyword Dynamics Recognition 
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imposter attempts, it provides the rate of authentic users 
who are denied access. A low ZM-FAR rate is very 
desirable, as it measures the system performance while 
preventing unauthorized users from accessing the system. 
Figure 2 shows the relationship between FAR, FRR and 
EER. 
 

 
Figure 2: The Relationship between FAR, FRR, and EER 

 

4.2 Performance Evaluation 

Our experiments are designed to evaluate the ability of 
CNN-Detect at detecting unauthorized user access. We use 
the 51 datasets that we prepared in Section 3.2 from the 
CMU dataset. We compare our results with other 
classification algorithms in the literature, presented 
previously in Section 2. All models were trained on 75% of 
each dataset (with 20% used for validation), and results are 
reported on the test set, which is 25% of the dataset. The 
training set has 480 records, the validation set has 120 
records, and the testing set has 200 records. We create 51 
models, one for each user, and report the EER and ZM-FAR 
for each user in Table 3. For 16 users (s002, s007, s011, 
s012, s016, s017, s018, s020, s027, s028, s033, s035, s041, 
s043, s047, s053), CNN-detect was able to correctly classify 
all users as authentic or imposters. The ZM-FAR rates are 
reported in the third and sixth columns, and are very low, 
indicating excellent performance by CNN-Detect at 
blocking unauthorized access. 

We present detailed CNN-Detect confusion matrix 
results for each user in Table 4. The false negative counts in 
the table show the number of users incorrectly classified as 
authentic, while they are actually imposters or attackers. In 
other words, it shows the number of users who were granted 
access incorrectly. The low counts show that CNN-Detect 
is able to differentiate users well. The highest counts can be 
seen for users s025 and s031, whose patterns were not 
sufficiently unique for the network to classify correctly. 

 

Table 3: Detailed CNN-Detect results for each user 
User EER ZM-FAR User EER ZM-FAR 
s002 0.000 0.000 s032 0.031 0.000 
s003 0.010 0.000 s033 0.000 0.000 
s004 0.031 0.000 s034 0.031 0.000 
s005 0.020 0.000 s035 0.000 0.000 
s007 0.000 0.000 s036 0.010 0.000 
s008 0.010 0.000 s037 0.020 0.000 
s010 0.010 0.000 s038 0.010 0.031 
s011 0.000 0.000 s039 0.010 0.010 
s012 0.000 0.000 s040 0.010 0.000 
s013 0.020 0.031 s041 0.000 0.000 
s015 0.010 0.000 s042 0.020 0.020 
s016 0.000 0.000 s043 0.000 0.000 
s017 0.000 0.000 s044 0.010 0.000 
s018 0.000 0.000 s046 0.010 0.000 
s019 0.000 0.031 s047 0.000 0.000 
s020 0.000 0.000 s048 0.031 0.000 
s021 0.000 0.051 s049 0.010 0.000 
s022 0.000 0.031 s050 0.020 0.082 
s024 0.010 0.000 s051 0.020 0.000 
s025 0.010 0.041 s052 0.010 0.000 
s026 0.010 0.000 s053 0.000 0.000 
s027 0.000 0.000 s054 0.020 0.000 
s028 0.000 0.000 s055 0.010 0.000 
s029 0.031 1.000 s056 0.010 0.000 
s030 0.000 0.010 s057 0.000 0.010 
s031 0.000 0.020    

Table 4: Detailed CNN-Detect confusion matrix results 
for each user 

User TP FP FN TN User TP FP FN TN 
s002 102 0 0 98 s032 102 3 0 95 
s003 102 1 0 97 s033 101 0 1 98 
s004 102 3 0 95 s034 102 3 0 95 
s005 102 2 0 96 s035 102 0 0 98 
s007 102 0 0 98 s036 102 1 0 97 
s008 102 1 0 97 s037 102 2 0 96 
s010 102 1 0 97 s038 100 1 2 97 
s011 102 0 0 98 s039 100 1 2 97 
s012 102 0 0 98 s040 102 1 0 97 
s013 101 2 1 96 s041 100 0 2 98 
s015 102 1 0 97 s042 101 2 1 96 
s016 102 0 0 98 s043 102 0 0 98 
s017 102 0 0 98 s044 102 1 0 97 
s018 102 0 0 98 s046 102 1 0 97 
s019 100 0 2 98 s047 101 0 1 98 
s020 102 0 0 98 s048 102 3 0 95 
s021 101 0 1 98 s049 102 1 0 97 
s022 101 0 1 98 s050 100 2 2 96 
s024 102 1 0 97 s051 102 2 0 96 
s025 99 1 3 97 s052 102 1 0 97 
s026 102 1 0 97 s053 102 0 0 98 
s027 102 0 0 98 s054 102 2 0 96 
s028 102 0 0 98 s055 102 1 0 97 
s029 101 3 1 95 s056 102 1 0 97 
s030 101 0 1 98 s057 101 0 1 98 
s031 99 0 3 98      



IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020 
 

 

215

 

 
We compare CNN-Detect to other models in the 

literature in Table 5. As can be seen in the second column, 
EER rate, CNN-Detect is better than all other models. CNN-
Detect outperforms all models in the literature by a large 
margin when it comes to its ZM-FAR rate, indicating its 
applicability as a component in a user authentication system 
as a keyboard dynamics secondary authentication measure, 
with the first being the password entered itself. 

Table 5: Average equal-error rates and average zero-miss 
false-alarm rates 

 Detector  EER ZM-FAR 
Manhattan (scaled) [11]  0.096 0.601 
Nearest Neighbor (Mahalanobis) [11]  0.100 0.468 
Nearest Neighbor with outlier removal [18]  0.084 0.405 
DNN [5]  0.035 N/A 
LSTM (2 cells) [13]  0.136 0.379 
Deep Secure [15]  0.030 N/A 
CNN [3]  0.023 N/A 
MINIBAG [8]  0.056 N/A 
AR-ONENB [8]  0.066 0.700 
DC [9]  0.077 0.358 
𝑘-NN [9]  0.078 0.377 
CNN-Detect  0.009 0.027 
 

5. Conclusion 

In this paper, we have studied the characteristics of 
keystroke dynamics as a behavioral biometric for user 
authentication using traditional PC keyboards on the CMU 
dataset. We have introduced a successful feature 
engineering approach for the CMU dataset that enabled our 
proposed classifier, CNN-Detect, to achieve excellent 
results at classifying imposters and authentic users. 

CNN-Detect was trained using both positive samples 
from the genuine user and samples from background users, 
labelled as imposters, resulting in enhanced discriminative 
power. 51 CNN-Detect models were trained on the 51 
datasets created from the original CMU dataset, and the 
individual and average scores of the models reported. 
Specifically, the equal error rate (EER) and zero-miss false 
alarm rate (ZM-FAR) were reported. Our model 
outperformed all other models in the literature by a large 
margin and was able to achieve that in both measures. The 
low ZM-FAR rate was very low, meaning CNN-Detect is 
suitable as part of a pipe-lined system for user 
authentication. CNN-Detect can be periodically retrained 
(using transfer learning) to capture variations of users’ 
typed text over time. For future research, CNN-Detect may 
be integrated and deployed in a user authentication system. 
In addition, the applicability of CNN-Detect to 
authentication of free typed text should be studied. 
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