
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

209

Manuscript received December 5, 2020
Manuscript revised December 20, 2020

https://doi.org/10.22937/IJCSNS.2020.20.12.23

Keystroke Dynamics Analysis for User Authentication Using a Deep
Learning Approach

Najwa Altwaijry

Department of Computer Science
College of Computer and Information Sciences

King Saud University
Riyadh, Saudi Arabia

Summary
With the ubiquitous use of the Internet, the importance of

secure access to computing resources has grown. Many computer
systems authenticate users through a password selected by the user.
User typing patterns are usually distinct, allowing users to be
differentiated and verified through a suitable verification system,
and are considered a behavioral biometric. Authentication based
on keystroke dynamics has many advantages, such as ease of data
acquisition, continuous non-intrusive monitoring, and ease of
integration into existing systems. In this paper, we present a
convolutional neural network, which we call CNN-Detect, to
detect unauthorized users that attempt to access resources by their
typing patterns. We test our model on the publicly available CMU
keystroke dynamics dataset, after suitable feature engineering. Our
proposed model shows significant improvement over other models
in the literature, achieving an average equal error rate (EER) of
0.009, and a zero-miss false acceptance rate (ZM-FAR) of 0.027.

Keywords:
Deep Learning; Convolutional Neural Network; Keystroke
Dynamics; Machine Learning, Biometrics.

1. Introduction

Access control is a broad term that covers several
different types of mechanisms that enforce access control
features on computer systems, networks, and information.
Secure access to computing resources is an integral part of
security systems, especially considering the ubiquitous use
of computers nowadays. For a user to be able to access a
resource, he or she must be identified, authenticated,
authorized. Identification can be provided with the use of a
username, while authentication is the process of verifying
the identity of a subject, usually by providing a second piece
to the credential set, such as a password. Simple and low-
cost user identification and authentication is a desirable
aspect of security systems. Although passwords and
passphrases are common authentication methods, they are
not free from drawbacks. For example, passwords may be
forgotten, lost or hacked.

Biometrics refers to any measure used to uniquely
identify a user based on biological or physiological traits

and is considered one of the most effective and accurate
methods of verifying identification. Unfortunately, it is
usually much more expensive and complex than other types
of verification. A behavioral biometric refers to any pattern
of behavior that is specific to the user, such as the rhythm
and cadence with which users type on their computer
keyboard. Behavioral biometrics are attractive as they allow
more secure authentication, while still being less expensive
and invasive than physical biometrics.

Keystroke dynamics is a behavioral biometric that
analyzes typing rhythms to differentiate among authentic
users and impostors, both insiders and external attackers
[11]. It is difficult to impersonate typing behavior, making
it a useful biometric measure. As it is also unobtrusive, it
can augment standard security measures seamlessly [1].
Keystroke dynamics are considered a cost effective and
user-friendly user authentication method. On the other hand,
the physical and emotional state of an individual affects this
biometric [7], potentially causing misclassification of users.

Biometric analysis of typed text can be either
structured, on predetermined phrases, or dynamic, on
continuously typed text. Many features may be extracted
from text, such as key-press latency (keyup-keyup,
keydown-keydown, keydown-keyup), pressure, force, total
duration, or speed.

More formally, a keystroke dynamics dataset 𝐷 is
comprised of a collection of keystroke sequences (𝑥 |𝑥 ∈
𝐷), where 𝑥 ൌ ሼ𝑥ଵ,𝑥ଶ, … , 𝑥ሽ is a keystroke sequence with
𝑛 attributes, and 𝑥 represents time duration in milliseconds
(ms). 𝑥 is generated from various timing attributes, such as
keyup-keyup or keydown-keydown, collected as text input
of length (𝑚|𝑚 ൏ 𝑛) that is entered by a user.

Various approaches have been proposed in the
literature to classify users based on the features collected,
such as statistical methods that calculate the mean, standard
deviation, or other distance measures, and machine learning
methods, including neural networks, support vector
machines (SVM), and decision trees. Other approaches
used evolutionary and swarm intelligence algorithms, such
as genetic algorithms (GA), ant colony optimization (ACO),
and particle swarm optimization (PSO). Unfortunately, it is

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

210

not always possible to compare different methods and
algorithms, because of the different datasets researchers
employ in their studies. For this reason, this work focuses
on the CMU keystroke dynamics benchmark dataset [11].

This paper aims to leverage a deep neural network to
detect unauthorized users that attempt to access computing
resources by entering a correct password. The neural
network should learn the specific features of an authentic
user’s typing patterns, i.e. the user’s behavioral biometric,
in order to correctly deny access to imposters. This work
presents the following contributions to the literature: a
feature engineering approach of the CMU dataset as
explained in Section 3.2, and a novel convolutional neural
network model for behavioral biometrics. Our proposed
model outperforms other models in the literature by a
significant margin, indicating its applicability as a suitable
behavioral biometric verification method.

Table 1: Nomenclature of abbreviations
 Acronyms Definition

ACO Ant Colony Optimization

ANN Artificial neural network

CMU Carnegie Mellon University

CNN Convolutional neural network

DFS Deep Feature Synthesis

DNN Deep Neural Network

EER Equal Error Rate

FAR False Acceptance Rate

FRR False Rejection Rate

GA Genetic Algorithms

GRU Gated Recurrent Unit

𝑘-NN 𝑘-Nearest Neighbor

LSTM Long short-term memory

PSO Particle Swarm Optimization

ReLU Rectified Linear Unit

ROC Receiver operating characteristic

SMOTE Synthetic Minority Oversampling Technique

SVM Support vector machines

The rest of this paper is organized as follows. Section 2
presents a review on various works in this field. Section 3
describes the CMU dataset, the data preprocessing, and our
model, CNN-Detect. Section 4 presents a detailed
evaluation of CNN-Detect on the CMU dataset. We
conclude our work in Section 5. Table 1 presents the
nomenclature of abbreviations used in this paper.

2. Related Work

This section presents research work on the usage of
keystroke dynamics as a biometric method for user
identification and authentication, with particular emphasis
on works done on the CMU dataset by Killourhy and
Maxion [11]. The CMU dataset is a keystroke dynamics
benchmark dataset. Killourhy and Maxion implemented 14
detectors on their proposed dataset: Manhattan (scaled),
Nearest Neighbor (Mahalanobis), Outlier Count (𝑧-score),
SVM (one-class), Mahalanobis, Mahalanobis (normed),
Manhattan (filter), Manhattan, Neural Network (auto-
assoc), Euclidean, Euclidean (normed), Fuzzy Logic, 𝑘 -
Means, and Neural Network (standard). They trained each
detector on their proposed dataset as follows: train detector
on 200 passwords by a user and use a further 200 passwords
by the same user to generate user scores. They also generate
5 imposter scores per 50 imposters. They use the user
scores and imposter scores to generate an ROC curve and
calculate the equal-error and zero-miss rates for each user.
The error means of the 51 users are used to measure the
detectors performance. The best equal-error rate was 0.096,
obtained by the Manhattan (scaled) detector, and the best
zero-miss false-alarm rate was 0.468, obtained by the
Nearest Neighbor (Mahalanobis) detector.

Zhong et al. [18] improved the above results on the
CMU dataset using a new distance metric that incorporates
the Mahalanobis distance and Manhattan distance. First,
features are normalized and decorrelated, and then the
Manhattan distance is computed. They applied the nearest
neighbor classifier on the new features, and also tested the
classifier with outliers removed. They achieved an equal-
error rate of 0.084 and a zero-miss false-alarm rate of 0.405.
In another study, Deng and Zhong [6] performed user
authentication using a Gaussian mixture model with
universal background model (GMM-UBM), identity vector
(i-vector), and deep neural network (DNN). They achieved
the best performance using the DNN model [5], with an
equal-error rate of 0.035.

Ho and Kang [8] proposed two algorithms: the mini-
batch bagging (MINIBAG) method, tested with Euclidean,
Manhattan, and Manhattan scaled, as well as with various
aggregation operators, and the attribute ranking of one-class
naÃ¯ve Bayes (AR-ONENB) algorithm. MINIBAG with
Manhattan scaled achieved a best EER of 0.056 using
aggregation operators, and AR-ONENB achieved an EER
of 0.066. Both reported scores are for an imposter
unfamiliar with the password, as done in [11].

Ivannikova et al. [9] introduced a Dependence
Clustering (DC) based approach for user authentication
using keystroke dynamics, as well as applying a 𝑘 -NN-
based approach. They also designed a cross-validation
procedure which artificially generates impostor samples to
improve the learning process while allowing fair
comparison to previous works. The DC approach achieved

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

211

an EER of 0.077, and the 𝑘-NN approach achieved an EER
of 0.078, outperforming previous works in the literature.

Kobojek and Saeed [13] presented two models, a long
short-term memory (LSTM) model and a gated recurrent
unit (GRU) model trained on the CMU dataset. They tested
various architectures for the LSTM model, achieving a best
equal-error rate of 0.14 using a 2-cell LSTM model and a
zero-miss false-alarm rate of 0.379. Their best zero-miss
false-alarm rate was achieved by their 3-cell LSTM, with a
value of 0.33, however, the equal error-rate degraded to
0.165. Both LSTMs outperformed the GRU model.

Maheshwary et al. [15] introduced Deep Secure, a
neural network-based approach for keystroke dynamics
user authentication. Deep Secure is a fully connected neural
network comprised of three hidden layers of 100, 400 and
100 dimensions respectively. The higher size of hidden
layers introduces sparsity and helps in capturing the inter-
feature relations, eliminating the need for manual feature
selection or engineering. They employed batch
normalization, dropout, and used the Leaky ReLU function
with Adam as the optimizer. They achieved an EER of 0.30
on the CMU dataset.

Çeker and Upadhyaya [2] proposed transfer learning to
transfer acquired knowledge of keystroke dynamics with
the objective of authenticating an enrolled user under
different environmental conditions with the least amount of
re-training. They used three techniques: Adaptive SVM,
Deformable Adaptive SVM and Projective Model Transfer
SVM. Transfer learning performed up to 13% better on the
CMU dataset compared with the classifier trained from
scratch. In another work, Çeker and Upadhyaya [3] applied
deep learning, specifically, a convolutional neural network
on three different datasets, including the CMU dataset.
They also augmented the keystroke dataset using Gaussian
data augmentation techniques [14, 17]. Their CNN is
composed of a single convolutional layer, employing a
ReLU function, followed by a max-pooling layer, then a
fully connected layer with dropout. They achieved an EER
of 0.023.

This section presented an overview of various works
proposed by researchers and tested on the CMU dataset.
The EER rates and ZM-FAR rates were mentioned (where
applicable). The results demonstrate acceptable EER rates,
however, the ZM-FAR rates were unacceptably high,
rendering the systems proposed unusable in any real-life
scenario. These results show that an improved system, one
that can achieve low EER and ZM-FAR rates, is desirable,
and an open research area.

3. Methodology

 In this section, we outline our methodology for
keystroke dynamics user authentication. First, we present
the dataset used in our experiments, followed by our data

preprocessing techniques. Then, we present our deep neural
network approach for detecting unauthorized users.

Table 2: CMU Dataset: Detailed features
Feature Type Content
subject text Unique ID for each user, e.g. s002
sessionIndex integer The session number the user entered the

password in, ranges from 1-8
rep integer The repetition number of the password in

each session, ranges from 1-50
H.period real Hold time for the period key
DD.period.t real KeyDown-Keydown time: period key to t

key
UD.period.t real KeyUp-Keydown time: period key to t key
H.t real Hold time for the t key
DD.t.i real KeyDown-Keydown time: t key to i key
UD.t.i real KeyUp-Keydown time: t key to i key
H.i real Hold time for the i key
DD.i.e real KeyDown-Keydown time: i key to e key
UD.i.e real KeyUp-Keydown time: i key to e key
H.e real Hold time for the e key
DD.e.five real KeyDown-Keydown time: e key to 5 key
UD.e.five real KeyUp-Keydown time: e key to 5 key
H.five real Hold time for the 5 key
DD.five.Shift.r real KeyDown-Keydown time: 5 key to R key
UD.five.Shift.r real KeyUp-Keydown time: 5 key to R key
H.Shift.r real Hold time for the R key
DD.Shift.r.o real KeyDown-Keydown time: R key to o key
UD.Shift.r.o real KeyUp-Keydown time: R key to 0 key
H.o real Hold time for the o key
DD.o.a real KeyDown-Keydown time: o key to a key
UD.o.a real KeyUp-Keydown time: o key to a key
H.a real Hold time for the a key
DD.a.n real KeyDown-Keydown time: a key to n key
UD.a.n real KeyUp-Keydown time: a key to n key
H.n real Hold time for the n key
DD.n.l real KeyDown-Keydown time: n key to l key
UD.n.l real KeyUp-Keydown time: n key to l key
H.l real Hold time for the l key
DD.l.Return real KeyDown-Keydown time: l key to return

key
UD.l.Return real KeyUp-Keydown time: l key to return key
H.Return real Hold time for the return key

3.1 Dataset

The dataset used in this study is the Carnegie Mellon
University (CMU) Keystroke Dynamics dataset [11]. Data
were collected from 51 people at CMU, each of whom typed
400 repetitions of the same password (.tie5Roanl). The
passwords were typed in 8 sessions, where in each session,
the user entered 50 repetitions of the password. Various
timing features were extracted from the data, and the
authors consider the “Enter” key to be part of the password.
The authors extracted keydown-keydown (keystroke
latency) times, keyup-keydown (flight) times, and hold
(dwell) times for all keys in the password. The total number
of keys in the password (including “Enter”) is 11, for a total

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

212

of 31 timing features. Timing features are in seconds and
are represented as floating point numbers. Many of the
timing features are correlated: keydown-keydown time is
the sum of a hold time and a keyup-keydown time. In Table
2, a detailed list of the dataset features is presented.

3.2 Data Preprocessing

 Preprocessing data usually involves cleaning the data,
allowing it to be passed into the next stage, feature
extraction, where relevant information that aids in
classification is extracted. Feature extraction is a difficult
process and is usually time consuming. The CMU dataset
contains 31 real timing features, as well as two integer
features, and the label. First, using the real timing features,
the total time to enter each password is calculated. This
produces a total of 34 features. Next, we use these features
to create 1156 new features using the Deep feature synthesis
(DFS) algorithm [10]. The DFS algorithm automates and
optimizes the feature engineering process. In DFS, features
are derived from relationships among data points in the
dataset by using similar mathematical operators, called
primitives. In addition, feature creation is a multi-level
process, where features may be created utilizing previously
created features. For our purposes, we create features via
addition and multiplication primitives. These features are
then standardized by subtracting the mean and scaling to
unit variance. Feature scaling is an important step while
preparing data for any machine learning algorithm, as
features may have largely differing ranges. The “subject”
feature is treated as the label, where the text is encoded into
ordinal integers.

The dataset contains 20400 rows for 51 users. We follow
the process described by Killourhy et al. [11], where we
split the dataset into 51 datasets, each containing the data
for one user, i.e., 400 rows. This represents the negative
class in our dataset (not an attacker). Next, we select the
first 5 rows from the remaining 50 users as the positive class
(attacker). The 51 datasets now contain 650 rows each, and
are imbalanced, with 400 negative class observations, and
250 positive class observations. We could have selected 8
rows from the remaining 50 users, but that would deviate
our dataset from the process by Killourhy et al. [11]. Instead,
we balance our data using the Synthetic Minority
Oversampling Technique (SMOTE) [4]. SMOTE is an
oversampling technique used to increase the observations in
the minority class. It generates synthetic observations by
detecting nearest neighbors in the feature space of the target,
then selects similar samples and randomly changes a
column at a time in the feature space of the neighboring
samples. Following this step, we have 51 datasets, of size
800 ൈ 1156.

The preprocessed data for all 51 datasets is split into two
parts: 75% training set, and 25% testing set. The training
set is further split into 80% training set and 20% validation

set. The final step in the data preprocessing process is
reshaping the input into a format suitable for our model,
which is presented in the next section.

3.3 Convolutional Neural Network Model: CNN-
Detect

In this section, we discuss our deep neural network and
the methods implemented to improve the recognition
performance on the CMU dataset. We use a convolutional
neural network (CNN) as our model, and we train it on the
51 datasets outlined in Section 3.2. We call our model
CNN-Detect.

Input Layer:

The input layer in CNN-Detect is of size 34 ൈ 34. One
input row in the dataset is of size 1156. We transform each
row into a square matrix of size 34 ൈ 34, to fit our input
layer. This matrix can be thought of as the input image into
our convolutional neural network.

Hidden Layers:

A CNN has a number of hidden layers, such as
convolutional layers, pooling layers, and fully connected
layers. We note our small dataset size, 600 training samples
(120 of which are used for validation) and 200 testing
samples. This implies that a small network size should be
sufficient to learn all the needed parameters for our
classification purposes. Our model is composed of three
convolutional layers, where each layer performs a batch
normalization operation after a Leaky ReLU activation
function. This architecture was inspired by a number of
CNN architectures in the literature for similarly sized
images. Our input image is 34 ൈ 34 pixels and so a small
filter size of 2 ൈ 2 is appropriate in this case, as is a small
stride, we have stride ൌ 1. The number of features maps in
the first, second, and third convolutional layers is 8, 16, and
32, respectively. Increasing the number of features maps as
the network deepens strengthens the representational power
of the network. In addition, zero padding is applied in all
convolutional layers. Zero padding is used to overcome the
problems of image shrinkage and information loss around
the perimeter of the image as the filter is passed over the
image.

Each activation map 𝑖 is calculated as shown in

Equation 1, where 𝑙 is the current layer, 𝐵
ሺሻ is a bias matrix,

𝑘ሺିଵሻ is the number of kernels used in the previous layer,
𝑊 is the current layer kernel matrix, and 𝑌ሺିଵሻ is the output
of the previous layer. Our nonlinearity is the Leaky ReLU
function, defined as shown in Equation 2, where we set 𝛼 ൌ
0.2.

𝑌
ሺሻ ൌ 𝐵

ሺሻ

ሺషభሻ

ୀଵ

𝑊
ሺሻ 𝑌

ሺିଵሻ ሺ1ሻ

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

213

𝐿𝑒𝑎𝑘𝑦 െ 𝑅𝑒𝐿𝑈ሺ𝑥ሻ ൌ ቄ𝛼𝑥 𝑥 ൏ 0
𝑥 𝑥 0

ሺ2ሻ

The convolutional layers are followed by a max-pooling

layer with a 2 ∗ 2 ∗ 1 window size, and a stride of 2 ,
resulting in a 16 ∗ 16 ∗ 32 layer. Max pooling is useful in
reducing overfitting, by providing a more abstract view of
the data, as well as reducing computational requirements.
The tensor is then flattened into a 9248 neuron layer,
followed by four other fully connected layers, with sizes
500 300, 100 and 20, respectively. Fully connected layers
aid in the final classification by combining all the signals
into one cohesive framework. All fully-connected layers
use a 30% dropout rate to reduce overfitting [16], set
experimentally. In addition, each fully connected layer
implements Ridge Regression, also known as L2
regularization, which adds the squared magnitude of
coefficients as a penalty term to the loss function, defined
in Equation 3, where 𝜆 ൌ 0.0008.

𝐶𝑜𝑠𝑡 ൌ 𝑌
ሺሻ 𝜆

ሺషభሻ

ୀଵ

𝑊
ሺሻ ሺ3ሻ

Output Layer:

The output layer is a 2 class Sigmoid layer: one class for
the authorized user, and the other for the unauthorized user.
The Sigmoid layer uses Equation 4 as the activation
function.

𝑆𝑖𝑔𝑚𝑜𝑖𝑑 ൌ
1

1 𝑒ି௫
ሺ4ሻ

Optimization:

In our model, we tested two optimizers: Stochastic
Gradient Descent and Adam [12], and selected Adam as it
was found to work better. In our model, we set the learning
rate to 𝑙𝑟 ൌ 0.001, set experimentally. The loss for CNN-
Detect is calculated using the binary–cross entropy loss
(Log loss), as in Equation 5, where 𝑁 is the number of

samples, 𝑦 is the label and 𝑝ሺ𝑦ሻ is the predicted probability
of the label. A summary of our model is shown in Figure 1.

𝐿𝑜𝑠𝑠 ൌ െ
1
𝑁

ே

ୀଵ

𝑦 ⋅ log൫𝑝ሺ𝑦ሻ൯

ሺ1 െ 𝑦ሻ ⋅ 𝑙𝑜𝑔ሺ1 െ 𝑝ሺ𝑦 ሺ5ሻ

4. Experimental Results

In this section, we present the evaluation metrics and the
evaluation results for CNN-Detect on the CMU dataset.

4.1 Evaluation Metrics

The receiver operating characteristic (ROC) curve is
generally used to evaluate biometric systems. The ROC
measures the tradeoff between the false acceptance rate
(FAR) and the false rejection rate (FRR). FRR is also
known as Type I Error and is the rate at which the system
rejects a sample provided by a genuine user, and so a small
FRR indicates a small number of genuine users rejected.
FAR, also known as Type II Error, is the rate of incorrectly
accepting an erroneous or false sample. In other words, the
system accepts impostors who should be rejected. FAR
errors are the most dangerous, thus, they are the most
important to avoid in a biometrics system. Low FAR values
indicate that imposters are rarely successful at accessing
resources. The overall goal is to obtain low numbers for
each type of error.

To describe system performance overall and to compare
different biometric systems, the equal error rate (EER) is
used. The EER is sometimes referred to as the crossover
error rate (CER) and is defined as the point at which both
FAR and FRR are equal. A lower EER indicates better
system performance. The zero-miss false alarm rate (ZM-
FAR) is a threshold that measures system performance
when the miss rate is zero. In other words, when the system
threshold for accepting users is high enough to block all

Figure 1: Convolutional Neural Network for Keyword Dynamics Recognition

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

214

imposter attempts, it provides the rate of authentic users
who are denied access. A low ZM-FAR rate is very
desirable, as it measures the system performance while
preventing unauthorized users from accessing the system.
Figure 2 shows the relationship between FAR, FRR and
EER.

Figure 2: The Relationship between FAR, FRR, and EER

4.2 Performance Evaluation

Our experiments are designed to evaluate the ability of
CNN-Detect at detecting unauthorized user access. We use
the 51 datasets that we prepared in Section 3.2 from the
CMU dataset. We compare our results with other
classification algorithms in the literature, presented
previously in Section 2. All models were trained on 75% of
each dataset (with 20% used for validation), and results are
reported on the test set, which is 25% of the dataset. The
training set has 480 records, the validation set has 120
records, and the testing set has 200 records. We create 51
models, one for each user, and report the EER and ZM-FAR
for each user in Table 3. For 16 users (s002, s007, s011,
s012, s016, s017, s018, s020, s027, s028, s033, s035, s041,
s043, s047, s053), CNN-detect was able to correctly classify
all users as authentic or imposters. The ZM-FAR rates are
reported in the third and sixth columns, and are very low,
indicating excellent performance by CNN-Detect at
blocking unauthorized access.

We present detailed CNN-Detect confusion matrix
results for each user in Table 4. The false negative counts in
the table show the number of users incorrectly classified as
authentic, while they are actually imposters or attackers. In
other words, it shows the number of users who were granted
access incorrectly. The low counts show that CNN-Detect
is able to differentiate users well. The highest counts can be
seen for users s025 and s031, whose patterns were not
sufficiently unique for the network to classify correctly.

Table 3: Detailed CNN-Detect results for each user
User EER ZM-FAR User EER ZM-FAR
s002 0.000 0.000 s032 0.031 0.000
s003 0.010 0.000 s033 0.000 0.000
s004 0.031 0.000 s034 0.031 0.000
s005 0.020 0.000 s035 0.000 0.000
s007 0.000 0.000 s036 0.010 0.000
s008 0.010 0.000 s037 0.020 0.000
s010 0.010 0.000 s038 0.010 0.031
s011 0.000 0.000 s039 0.010 0.010
s012 0.000 0.000 s040 0.010 0.000
s013 0.020 0.031 s041 0.000 0.000
s015 0.010 0.000 s042 0.020 0.020
s016 0.000 0.000 s043 0.000 0.000
s017 0.000 0.000 s044 0.010 0.000
s018 0.000 0.000 s046 0.010 0.000
s019 0.000 0.031 s047 0.000 0.000
s020 0.000 0.000 s048 0.031 0.000
s021 0.000 0.051 s049 0.010 0.000
s022 0.000 0.031 s050 0.020 0.082
s024 0.010 0.000 s051 0.020 0.000
s025 0.010 0.041 s052 0.010 0.000
s026 0.010 0.000 s053 0.000 0.000
s027 0.000 0.000 s054 0.020 0.000
s028 0.000 0.000 s055 0.010 0.000
s029 0.031 1.000 s056 0.010 0.000
s030 0.000 0.010 s057 0.000 0.010
s031 0.000 0.020

Table 4: Detailed CNN-Detect confusion matrix results
for each user

User TP FP FN TN User TP FP FN TN
s002 102 0 0 98 s032 102 3 0 95
s003 102 1 0 97 s033 101 0 1 98
s004 102 3 0 95 s034 102 3 0 95
s005 102 2 0 96 s035 102 0 0 98
s007 102 0 0 98 s036 102 1 0 97
s008 102 1 0 97 s037 102 2 0 96
s010 102 1 0 97 s038 100 1 2 97
s011 102 0 0 98 s039 100 1 2 97
s012 102 0 0 98 s040 102 1 0 97
s013 101 2 1 96 s041 100 0 2 98
s015 102 1 0 97 s042 101 2 1 96
s016 102 0 0 98 s043 102 0 0 98
s017 102 0 0 98 s044 102 1 0 97
s018 102 0 0 98 s046 102 1 0 97
s019 100 0 2 98 s047 101 0 1 98
s020 102 0 0 98 s048 102 3 0 95
s021 101 0 1 98 s049 102 1 0 97
s022 101 0 1 98 s050 100 2 2 96
s024 102 1 0 97 s051 102 2 0 96
s025 99 1 3 97 s052 102 1 0 97
s026 102 1 0 97 s053 102 0 0 98
s027 102 0 0 98 s054 102 2 0 96
s028 102 0 0 98 s055 102 1 0 97
s029 101 3 1 95 s056 102 1 0 97
s030 101 0 1 98 s057 101 0 1 98
s031 99 0 3 98

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

215

We compare CNN-Detect to other models in the

literature in Table 5. As can be seen in the second column,
EER rate, CNN-Detect is better than all other models. CNN-
Detect outperforms all models in the literature by a large
margin when it comes to its ZM-FAR rate, indicating its
applicability as a component in a user authentication system
as a keyboard dynamics secondary authentication measure,
with the first being the password entered itself.

Table 5: Average equal-error rates and average zero-miss
false-alarm rates

 Detector EER ZM-FAR
Manhattan (scaled) [11] 0.096 0.601
Nearest Neighbor (Mahalanobis) [11] 0.100 0.468
Nearest Neighbor with outlier removal [18] 0.084 0.405
DNN [5] 0.035 N/A
LSTM (2 cells) [13] 0.136 0.379
Deep Secure [15] 0.030 N/A
CNN [3] 0.023 N/A
MINIBAG [8] 0.056 N/A
AR-ONENB [8] 0.066 0.700
DC [9] 0.077 0.358
𝑘-NN [9] 0.078 0.377
CNN-Detect 0.009 0.027

5. Conclusion

In this paper, we have studied the characteristics of
keystroke dynamics as a behavioral biometric for user
authentication using traditional PC keyboards on the CMU
dataset. We have introduced a successful feature
engineering approach for the CMU dataset that enabled our
proposed classifier, CNN-Detect, to achieve excellent
results at classifying imposters and authentic users.

CNN-Detect was trained using both positive samples
from the genuine user and samples from background users,
labelled as imposters, resulting in enhanced discriminative
power. 51 CNN-Detect models were trained on the 51
datasets created from the original CMU dataset, and the
individual and average scores of the models reported.
Specifically, the equal error rate (EER) and zero-miss false
alarm rate (ZM-FAR) were reported. Our model
outperformed all other models in the literature by a large
margin and was able to achieve that in both measures. The
low ZM-FAR rate was very low, meaning CNN-Detect is
suitable as part of a pipe-lined system for user
authentication. CNN-Detect can be periodically retrained
(using transfer learning) to capture variations of users’
typed text over time. For future research, CNN-Detect may
be integrated and deployed in a user authentication system.
In addition, the applicability of CNN-Detect to
authentication of free typed text should be studied.

References

[1] Salil P Banerjee and Damon L Woodard. Biometric
authentication and identification using keystroke
dynamics: A survey. Journal of Pattern Recognition
Research, 7(1):116–139, 2012.

[2] Hayreddin Çeker and Shambhu Upadhyaya. Adaptive

techniques for intra-user variability in keystroke
dynamics. In 2016 IEEE 8th International Conference
on Biometrics Theory, Applications and Systems
(BTAS), pages 1–6. IEEE, 2016.

[3] Hayreddin Çeker and Shambhu Upadhyaya. Sensitivity

analysis in keystroke dynamics using convolutional
neural networks. In 2017 IEEE Workshop on
Information Forensics and Security (WIFS), pages 1–
6. IEEE, 2017.

[4] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall,

and W Philip Kegelmeyer. SMOTE: synthetic
minority over-sampling technique. Journal of artificial
intelligence research, 16:321–357, 2002.

[5] Yunbin Deng and Yu Zhong. Keystroke dynamics user

authentication based on gaussian mixture model and
deep belief nets. International Scholarly Research
Notices, 2013, 2013.

[6] Yunbin Deng and Yu Zhong. Keystroke dynamics user

authentication using advanced machine learning
methods. Recent Advances in User Authentication
Using Keystroke Dynamics Biometrics, GCSR, 2:23–
40, 2015.

[7] Clayton Epp, Michael Lippold, and Regan L Mandryk.

Identifying emotional states using keystroke dynamics.
In Proceedings of the sigchi conference on human
factors in computing systems, pages 715–724, 2011.

[8] Jiacang Ho and Dae-Ki Kang. Mini-batch bagging and

attribute ranking for accurate user authentication in
keystroke dynamics. Pattern Recognition, 70:139–151,
2017.

[9] Elena Ivannikova, Gil David, and Timo Hämäläinen.

Anomaly detection approach to keystroke dynamics
based user authentication. In 2017 IEEE Symposium
on Computers and Communications (ISCC), pages
885–889. IEEE, 2017.

[10] James Max Kanter and Kalyan Veeramachaneni. Deep

feature synthesis: Towards automating data science
endeavors. In 2015 IEEE International Conference on
Data Science and Advanced Analytics, DSAA 2015,

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

216

Paris, France, October 19-21, 2015, pages 1–10. IEEE,
2015.

[11] Kevin S Killourhy and Roy A Maxion. Comparing

anomaly-detection algorithms for keystroke dynamics.
In 2009 IEEE/IFIP International Conference on
Dependable Systems & Networks, pages 125–134.
IEEE, 2009.

[12] Diederik P Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[13] Pawe ł Kobojek and Khalid Saeed. Application of

recurrent neural networks for user verification based
on keystroke dynamics. Journal of
telecommunications and information technology,
(3):80–90, 2016.

[14] John Leggett, Glen Williams, Mark Usnick, and Mike

Longnecker. Dynamic identity verification via
keystroke characteristics. International Journal of
Man-Machine Studies, 35(6):859–870, 1991.

[15] Saket Maheshwary, Soumyajit Ganguly, and Vikram

Pudi. Deep secure: A fast and simple neural network
based approach for user authentication and
identification via keystroke dynamics. In IWAISe:
First International Workshop on Artificial Intelligence
in Security, page 59, 2017.

[16] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky,

Ilya Sutskever, and Ruslan Salakhutdinov. Dropout: a
simple way to prevent neural networks from
overfitting. The Journal of Machine Learning
Research, 15(1):1929–1958, 2014.

[17] Deian Stefan, Xiaokui Shu, and Danfeng Daphne Yao.

Robustness of keystroke-dynamics based biometrics
against synthetic forgeries. computers & security,
31(1):109–121, 2012.

[18] Yu Zhong, Yunbin Deng, and Anil K Jain. Keystroke

dynamics for user authentication. In 2012 IEEE
computer society conference on computer vision and
pattern recognition workshops, pages 117–123. IEEE,
2012.

Najwa Altwaijry is an Assistant Professor of Computer
Science at King Saud University. She received her PhD
degree in 2014 from the College of Computer Sciences at
King Saud University. Her research interests include
machine learning, swarm intelligence, evolutionary
computation, cyber security and bioinformatics.

