
IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

242

Manuscript received December 5, 2020
Manuscript revised December 25, 2020

https://doi.org/10.22937/IJCSNS.2020.20.12.27

A Cohesion and Coupling Driven Ontology for Measuring
Software Quality at Code Levels

 Ezekiel U Okike

University of Botswana, Gaborone, 267, BOTSWANA

Summary
The need for quality and reliable software systems has led to the
development of rigorous software measures of quality at code level.
One of the basic problems in software measurement is that many of
the existing measures do not measure what they claim to be
measuring. Chidamber and Kemerer metric suites were used to
measure cohesion and coupling in six industrial systems. Findings
of the study indicated that cohesion and coupling measured quality
at code level in four of the systems in terms of the systems being
highly cohesive and low in coupling. Cohesive systems 1, 2, 4, 6 had
median values [0,1]. In these systems the level of coupling is
acceptably low. In terms of correlations cohesion and coupling,
cohesion and size, coupling and size all correlated significantly.
The study concludes that cohesion and coupling were useful quality
software measures in the studied systems.

. Key words:
Ontology, cohesion, coupling, software quality, measurement.

1. Introduction

Ontologies are models that represent concepts of interest
in a domain using acceptable formalism [13,26]. There
has been a growing interest in the use of ontologies due
mainly to their possibilities in using them to represent
knowledge in a structured manner [17]. Apart from
knowledge representation and structuring, ontologies
have useful applications in computational models,
definition of objects and their functions [9]; Browsing
and searching of semantic contents, construction of
models of theories of domains; organizing contents in
digital libraries, databanks, data marts, data warehouses,
dictionaries and thesaurus systems, and relational data
bases [24]. Furthermore, the role of ontologies in
information systems research has been discussed in [20].
Figure 1 illustrates ontological approach in research.

Fig.1. Ontology research method. Source:
http://research methology.net

From figure 1, research method can be quantitative or
qualitative or mixed; a research strategy can be case study,
experiment or deductive, inductive; a research approach can
be empiricist or interpretivist either of which has a view of
Ontology or epistemology.
One area of interest in the application of ontologies is the
measurement and evaluation of software quality at code level.
This study is concerned with the application of an
ontological approaches in software quality evaluation at code
level using cohesion and coupling measures.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

243

1.1 Understanding Software Complexity and
Measurement

Generally, software is a computer program written using
appropriate programming language such as JAVA, C++,
PYTHON, etc. There exist hundreds of programming
languages to date as computer programming languages
are dynamically evolving with the application and the
technology of the day. Despite this development,
software complexity remains the same as any other
object in real life. As shown in figure 2, there are seven
sources of software complexity. Of these components,
cohesion and coupling have been identified as two
dominant dimensions of software complexity [8].

Fig. 2. Dimensions of software complexity

From figure 2, these dimension are internal attributes of
software, usually measured as code level attributes. The
internal quality of software products have no inherent,
practical meaning within themselves except they are
characterized in terms of the external quality of a
software product. This is shown in the software quality
model represented in figure 3.

Fig. 3. Software Quality

From figure 3, the internal quality of software (Software,
Cohesion, Coupling, Data Structures, Algorithms, Control
structures, Nesting Level) influence the external quality
which in turn depends on the internal quality. It is also
evaluated by the internal/external complexity of a design.
Similarly, the external quality of software influences the
quality in use which in turn depends on the external quality.
It is evaluated by maintainability, testability, reusability of
design.

This study is concerned with measuring software quality at
code level using Cohesion and Coupling. The empirical
study is based on six industrial systems developed using
Java programming language.

1.1 Statement of the Problem.

One of the basic problems in software measurement is that
many of the existing measures do not measure what they
claim to be measuring [22]. This situation is due largely to
a poorly intuitive understanding of the concept of the
software attributes being measured as well as the general
lack of proper application of a rigorous approach to
software measurement based on sound measurement
theory.

Influences

InternaI

Quality Depends

on
External

Quality

SOFTWARE

Quality

in Use

Influences

D
epends on

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

244

1.2 Objective.
The objective of this paper is to apply a cohesion and
coupling based ontological models in the measurement of
module cohesion and module coupling in order to
determine software quality at code level in six studied
industrial systems. The term module refers to a class in the
object oriented paradigm.

The specific objectives of this paper are

i. To demonstrate how cohesion and

coupling metrics measure software

quality at code level.

ii. To demonstrate the relationship between

cohesion and coupling as attributes of

software quality at code level.

iii. To investigate the relationship between

cohesion, coupling and size measures in

software quality

1.3 Research Questions

i. Does cohesion and coupling measure

software quality at code level?

ii. Do cohesion and coupling correlate?

iii. Do cohesion, coupling and size

measures correlate?

2. Measuring Software Complexity in terms
of Cohesion and Coupling

Measurement is a process of assigning numbers or symbols
to attributes of entities in the real world so as to describe
them clearly.

2.1 Module cohesion

According to [26], Cohesion refers to the functional
relatedness in software modules. Other terms sometimes
used to denote the same concept are “module strength”,
“binding”, and “functionality” [19]. Therefore, Cohesion
as a software attribute captures the binding strength of
elements in a module, or class.

2.2 Module coupling

In structural design, a large software system is usually
partitioned into manageable units (modules) to make each
small unit independent. Hence, coupling refers to the
degree of independence between two modules. A desirable
attribute of software is low coupling between modules which
indicate a well partitioned system [22]

2.3 Measuring cohesion and coupling in object-

oriented systems

This study is concerned with the measurement of class
cohesion and coupling in the object oriented paradigm. A
number of metrics for example [1, 2,3,4,5,6,7,8,12,13,15,
18,24,26] measuring cohesion and coupling exist in the
literature. The major existing coupling Object oriented
metrics are Coupling Between Objects (CBO), Response
for a class (RFC) [7,8,15], Afferent coupling (CA). Other
coupling measures are variants of CBO, RFC and CA.
These include Conceptual Coupling Between Classes
(CCBC), Conceptual Coupling between Methods (CCM),
Coupling Between Methods and a Class (CCMC),
Structural Coupling, Conceptual coupling [6]. All of these
studies were inspired by the initial work of Chidamber and
Kemerer) who defined the Lack of Cohesion in Methods
(LCOM) metric for OO systems . To date the most
acknowledged Object Oriented specific metrics are the
Chidamber and Kemerer suite of metrics [7,8].

3.0 The Lack of Cohesion in Methods

 (LCOM) metric

Definition1.

Given a class C, with methods M, and instance
variables I (M,I= 1:n),
Then

L𝑒𝑡 P ൌ ሼሺ𝐼𝑖. 𝐼j| 𝐼𝑖 ∩ 𝐼𝑗 ൌ 𝛷ሽ and Q ൌ ሼሺ𝐼𝑖. 𝐼𝑗 ሻ| 𝐼𝑖 ∩ 𝐼𝑗 ് 𝛷ሽ
 LCOMൌ |P|-|Q| If |P| ˃ |Q|

 ൌ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 ሺ1)

Practically, the metric identifies the number of method pairs
in a class with zero (0) or null minus the number of
methods pairs whose similarity is not zero.

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

245

Let C2 be a class with two methods M1 and M2, with
instance variable I1 and I2 then degree of similarity of
method β;

𝛽 ൌ ሼ𝐼1ሽ ∩ ሼ𝐼2ሽ .

This definition of LCOM was refined in LCOM2 to include
inherited methods and attributes as follows [14]:

Definition 2.

 𝐿𝑒𝑡 𝑃 ൌ 𝛷, 𝑖𝑓 𝐴𝑅ሺ𝑀ሻ ൌ 𝛷 ⍱⩝∧∨∪∊ ∀𝑚 ∊
𝑀𝑖 (c)
 ൌ ሼ ሺ𝑚1.𝑚2𝑗 ሻ ┤| 𝑚1,𝑚2 ∊ 𝑀𝑖 ∧ 𝑚1 ് 𝑚2 ∧
𝐴𝑅ሺ𝑚1ሻ ∩ 𝐴𝑅ሺ𝑚2ሻ ∩ 𝐴𝑖ሺ𝑐 ሻ ൌ 𝛷ሽ
 else
 𝐿𝑒𝑡 𝑄 ൌ ሼ ሺ𝑚1.𝑚2𝑗 ሻ | 𝑚1,𝑚2 ∊ 𝑀𝑖ሺ𝑐 ሻ ∧ 𝑚1 ്
 𝑚2 ∧ 𝐴𝑅ሺ𝑚1ሻ ∩ 𝐴𝑅ሺ𝑚2ሻ ∩ 𝐴𝑖ሺ𝑐 ሻ ് 𝛷ሽ

Then

𝐿𝐶𝑂𝑀2 ൌ ሼ|𝑃| ̶ |𝑄| If |𝑃| ˃ |𝑄|

ൌ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (2)

Note: Mi (c) are the methods in class c, Ai (c) are the
attributes (instance variables) in class c, and AR represent
attribute reference. There is enough evidence which
indicates that LCOM = [0,1] indicates a cohesive class
[3,2,20]. In addition, designing classes with less than 5
methods have proved to yield cohesive values, while classes
with up to 5 or more methods needs to be split into 2 or
more lasses to make them cohesive and hence achieve a
well-designed class [12].

Cohesiveness and coupling are interconnected such that as
one increases, the other decreases. Therefore, as a way of
evaluating the effective use of software, designers
generally try to achieve high cohesion and low coupling. A
highly cohesive module is one which has a single basic
function and is difficult to split. Seven levels of cohesion
were discussed in [20] from the least functionally cohesive
to the best functionally cohesive.

4. The Empirical Study

4.1 Methodology

Six different Java based programs developed for industrial
application were used in this study. The Java codes contained
3254 classes, 503986 attributes, 249179 methods and 15476
public methods. The codes were developed by different
people in different places and domains. Chidember and
Kemerer metric tools were used to measure cohesion and
coupling.

Accordingly, LCOM and NLCOM were defined for this
study as follows:

𝐿𝐶𝑂𝑀 ൌ ሼ|𝑃| ̶ |𝑄| If |𝑃| ˃ |𝑄|

ൌ 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑁𝐿𝐶𝑂𝑀 ൌ ଵ

ைெ
,𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(3)

where LCOM is as defined in LCOM2 (equation 2 above),
and NLCOM the normalized measure of LCOM as defined
in equation 3. The variables used in this study are shown in
Table 1, while the characteristics of the systems are shown
in Table 2. The metric calculation process is shown in figure
2.

 Fig. 2 Metric calculation process

Metric tool

applied to

classes data

Results

generated by

metric tool

System

Source

Code Scanned

by Java scanner

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

246

Manuscript received December 5, 2020
Manuscript revised December 25, 2020

https://doi.org/10.22937/IJCSNS.2020.20.12.27

Table 1. Metric variables used in this study

Metric

Meaning Attribute Measured Source

LCOM Lack of Cohesion
in Methods

Cohesion Chidamber & Kemerer (1994)

NLCOM Normalized LCOM Cohesion Okike (2007)

CBO Coupling between
Objects

Coupling Chidamber & Kemerer (1994)

RFC Response for a
Class

Coupling Chidamber & Kemerer (1994)

CA Afferent Coupling Spinellis (2005)
WMC Weighted

Methods per class
Size Chidamber & Kemerer (1994)

NOC Number of
Children

Size Chidamber & Kemerer (1994)

DIT Depth of
Inheritance

 Chidamber & Kemerer (1994)

Table 2. Characteristics of the selected systems

Systems 1 2 3 4 5 6 Total

Classes 34 4 318 383 1055 1460 3254
Attrib. 4 4 2414 233 231110 270221 503986

Methods 30 10 3388 685 22000 223066 249179
NPM 21 7 2536 266 6232 6414 15476

Size(KB) 3.9 1.1 172.9 180 770 1030 2157.9

4. Results and Discussion

Using descriptive statistics and correlation analysis the
following findings emerged from this study:

4.1 Descriptive statistics for the test systems

From Table 3, well designed systems are highly cohesive and have
median values [0,1]. Similarly, systems exhibiting low coupling
imply good design, and hence, quality software. Systems 1,2,4,
and 6 satisfy these conditions. A close observation shows that for
these systems, cohesion (LCOM) range [0,1]. This means that
cohesion measures software quality (research question 1). In
terms of coupling, systems 1,2,4 and 6 CBO values range
between 3 and 5; while CA values range between 0 and 3. Hence,
coupling is low in the systems.

4.2 Correlation Analysis for the test systems

Using systems 3, 4, 5, and 6 correlation analysis was
performed in order to verify the relationship between
cohesion and coupling research question 2 and 3:
Tables 4, 5, 6, and 7 present the results of correlation analysis
for systems 5, 6, 4 and 3 respectively. Correlation is significant
at 0.01 level or 0.05 level. This study adopted the 0-01 level of
significance as appropriate for software systems involving
human activity as developers [20]. In all the systems, cohesion
and coupling are significantly correlated (research question 2].
This implies that high cohesion implies low coupling (see also
Table 3). This agrees with previous studies such as [3,2]. In
terms of size measures (WMC, NPM), cohesion and size are
significantly correlated in all the systems. There is also
significant correlation between coupling (CBO, RFC, CA) and
size (WMC, NPM) in all the systems

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

247

Manuscript received December 5, 2020
Manuscript revised December 25, 2020

https://doi.org/10.22937/IJCSNS.2020.20.12.27

Table 3. System Statistics

Systems No of
classes

Stat. LCOM N LC
M

CBO RFC CA W M C D I T N O C

Sys 1 34 Min 0 0 0 0 0 1 0
 Max 2534 31 129 22 74 2 8
 Mean 79.0 5.6 22.2 4.2 7.9 1.4 .4
 Med 0 0 5.0 18.5 2.0 4.0 1.0 .0
 StD 440.2 5.9 24.2 4.9 13.0 .5 1.5

Sys2 4 Min 0 0 0 I 0 1 0
 Max 8 5 71 5 11 4 0
 Mean 1.8 2.0 34.2 2.3 4.8 1.8 .0
 Med 1.0 1.5 33.0 1.5 4.0 1.0 .0
 StD 2.4 2.5 36.0 1.9 4.7 1.5 .0

Sys3 318 Min 0 0 0 0 0 1 0
 Max 6075 16 182 10 118 41 3
 Mean 93.9 0.8 18.2 .6 9.7 1.2 4.0
 Med 3.0 0.0 7.0 .0 5.0 1.0 .0
 StD 490.0 2.2 28.1 1.5 12.5 2.3 .25

Sys4 383 Min 0 0 0 0 0 1 0
 Max 16290 195 265 157 118 5 36
 Mean 150.4 8.3 20.9 5.7 8.2 2.1 .6
 Med 1.0 5.0 10.0 3.0 3.0 2.0 .0
 StD 1318 20.0 31.1 14. 19.2 1.2 3.0

Sys5 1055 Min 0 0 0 0 0 1 0
 Max 2744 65 210 71 109 4 64
 Mean 44.9 6.25 26.5 1.7 8.0 1.4 .4
 Med 6.0 3.0 16.0 .0 5.0 1.0 .0
 StD 180.5 7.6 30.9 5.8 9.4 .6 3.0

Sys6 1460 Min 0 0 0 0 0 1 0
 Max 9870 56 270 50 141 5 35
 Mean 25.3 4.3 15.9 1.9 5.5 1.3 .2
 Med 1.0 3.0 8.0 1.0 3.0 1.0 .0
 StD 283.0 5.4 20.3 3.8 8.2 .6 1.4

Total 3254

Table 4. System 5. (N= 1055)
Metric a B c d E f g H
WMC a 1.000 -.104** .102** .420** .758** .765** .212** .846*
DIT b -.104 ** .077* -.136**

NOC c .102** .062* .077* .114**
CBO d .420** .077* .062* .793** .298** .270**
RFC e .758** .793** .610** .084** .572**
LCOM f .765** .077* .298** .610** .090** .654**
CA g .212** -.136** .518** .084** .090** .188**
NPM h .846** .114** .270** .572** .654** .188**

 Pearson Correlation at 0.01**, 0.05* levels (2 tailed)

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

248

Table 5. System 6. (N= 1460)
Metric A B c d E F g H

WMC a 1.000 .094** .309** .833** .625** .212** .846*
DIT b .080** -.136**

NOC c .094** .065* .114**
CBO d .309** .080** .661** .091** .270**
RFC e .833** .065* .661** .385** .084** .572**
LCOM f .625** .091** .385** .090** .654**
CA g .243** .065* .497** .231** .252** .089** .188**

NPM h .967** .096** .238** .759** .625** .188**

Pearson Correlation at 0.01**, 0.05* levels (2 tailed)

Table 6 System 4 (N=383)

Table 7. System 3. (N= 318)

Pearson Correlation at 0.01**, 0.05* levels (2 tailed)

5. Conclusion

In conclusion, measuring software quality at code level using
cohesion and coupling offers many advantages. It assists in
understanding the software and its operations from the code
view which gives confidence about its likely operations when
deployed in the user environment. Code level quality
measurements satisfy the expectation of rigorously building
software that is reliable, reusable, maintainable and robust.

At design level, software developers with the aid of code
level measurements easily identify poorly designed classes
(modules) and are able to fix such issues for better working
of the software. Therefore, this study underscores the need
for software measurement in the production of reliable,

reusable, maintainable and robust software systems.

Metric a b c d e f g h
WMC a 1.000 -.211** .889** .849** .822** .268** .992**
DIT b -.211 ** .131* -.268 -.105 -.130* -.191**
NOC c .102** .249**

CBO d .889** .131* .807** .782** .225** .892**
RFC e .849** -.268** .807** .547** .144** .813**
LCOM f .822** -.105* .249** .782* .547** .332** .843**
CA g .268** -.130* .225** .144** .332** .274**
NPM h .992** -.191** .892** .813** .843** .274**

** *

Metric a b c d e f g h
WMC a 1.000 .265** .792** .810** .786**
DIT b
NOC c
CBO d .265** .716** .281**
RFC e .792** .716** .571** .211** .523**
LCOM f .810** .571** .343**
CA g .281** .211**

NPM h .786** * .523** .343**

IJCSNS International Journal of Computer Science and Network Security, VOL.20 No.12, December 2020

249

References
.
[1] H. Aman, K. Yamasski,, M.A.Noda, :A proposal of class

cohesion metrics using sizes of cohesive parts. Knowledge
based software engineering. T. Welzer et al. eds. IOS
press102-107 (2002)

[2] L. Badri, and M. Badri, “ A proposal of a new class cohesion
criterion: an empirical study,” Journal of object technology, 3,
4:145-159 (2004).

[3] J.M. Bieman and B. K Kang, “Cohesion and reuse in an object
oriented system,” Proceedings of the symposium on software
reusability (SSR’95), Seattle:WA. 259-262 (1995).

[4] J. M. Bieman, and B. K. Kang, “Measuring Design-level
Cohesion. IEEE Transactions on Software Engineering,”
24(2), 111–124 (1998).

[5] Candela, I. : Using cohesion and coupling for software
modularization: Is it enough? ACM transactions on software
engineering and methodology, vol. 25, no.3, article 24:1-24
(2016).

[6] S. R. Chidamber and C. F. Kemerer, “ A Metric Suite for
Object Oriented Design,” IEEE Transactions on Software
Engineering 26, 6:476-493 (1994)

[7] P.D. Darcey, C. F. Kemerer, S. A. Slaughter, J. E. Tamayko,
M. Farelo, and C Morris, “The structural complexity of
software: An experimental test,” IEEE transactions on
software engineering, 32,1:54-64 (2005).

[8] T.Gruber, Ontology. In. L.L.Ozsu (ed), encyclopedia of
database systems. Springer-verlag (2009).

[9] B. Henderson-Sellers, Software metrics. U.K:Prentice-Hall,
(1996)

[10] M. Hitz and B. Montazeri, “Chidamber and Kemerer's
Metric Suite: A Measurement Theory Perspective,” IEEE
Transactions on Software Engineering 22, 4:267-270 (1996).

[11] M. Z. Jiang, E. A. Hassan, and C. R Holt, “Visualizing clone
cohesion and coupling. Proceedings of xiii Asia Pacific
software engineering conference (APSEC’06), IEEE
computer society 0-7695-2685-3/06^(2006).

[12] Y. Kang, “Ontologies for crisis contagion management in
financial institution,”. Journal of Information science 35(5)
548-562 (2009).

[13] Y. Lee, B. Liang, and F. Wang, “ Measuring coupling and
cohesion of an object oriented program based on information
flow,” Proceedings of the international conference on
software quality, Maribor, Slovenia (1995)

[14] T. M. Meyers and D. Binkley, “An empirical study of slice-
based cohesion and coupling metrics,” ACM Trans. Software.
Eng. Methodology, 17, 1, Article 2 (December2007) 27
 pages.

[15] P. Mitzias, R. Marina, E. Kontopoulos, T. G. Stavropoulos,
S. Andreadis,, G. Meditskos, and I. Kompatsiaris, User-
driven ontology population from linked data. http://www
(2005). Last accessed 7 November, 2020

[16] S. Oh, H. Y. Yeom, and J. Ahn, “Cohesion and coupling
metrics for ontology modules,”. Inf Technology Management,
12, 81, (2011)

[17] L. Ouyang, B. Zou, M. Qu, C. Zhang, “ A method of
ontology evaluation based on coverage of cohesion and
coupling,” 11th (FSKD) conference, .IEEE, 2451-2455
(2011)..

[18] E.U. Okike, Measuring class cohesion in object-oriented
systems using Chidamber and Kemerer metric and Java as

case study. Ph.D Thesis, Department of Computer S,
University of Ibadan (2007)

[19] E. U. Okike, T. Motshegwa T and M.N. Kgobathe,
“Ontological perspectives in Information systems security
and computer attack incidents (CERTS/CIRTS),”
Proceedings of the 1st international conference on the internet,
Cyber Security, and Information Systems (ICICIS), 46-60
(2016).

[20] L. M. Ott,(2005). Software measurement. Accessed 15
December, 2005. http://www.cs.mtu.edu/~linda/soft.html

[21] M. Page-Jones, The Practical Guide to Structured Systems
Design (Yourdon Press Computing Series, Prentice Hall,
Englewood Cliffs, New Jersey).

[22] M. Paixao, M, Harman, Y. Zhang, Y. Yu, “ An empirical
study of cohesion and coupling: balancing optimization and
disruption,”. IEEE transactions on evolutionary computation,
vol. 22, no. 3 (2018).

[23] T. Pierera, H and H. Santos, “An ontology based approach to
information security,” . F. Sartori., M. A. Siccilia., N.
Manouselu (eds): MTSR CCIS, 46, 183-192(2009).

[24] H. A. Reijers and I. T.. P Vanderfeesten , Cohesion and
Coupling Metrics for Workflow Process Design. In: Desel J.,
Pernici B., Weske M. (eds) Business Process Management.
BPM 2004. Lecture Notes in Computer Science, vol 3080.
Springer, Berlin, Heidelberg

[25] P . Silvonen, Ontologies and knowledge base.
http://www.ling.helsinki.fi/~stviitan/documents/ontologies_and
_kb/ontology.ht ml. Last accessed22 October, 2015.

[26] E.Yourdon, I. I, Constantine, Structured design:
fundamentals of a discipline of computer program and
systems design. Englewood cliff, New Jersey: Prentice-Hall,
(1979)

Ezekiel U. Okike received the
BSC (Computer Science), Master of
Information Science and PhD
(Computer Science) from University
of Ibadan, Nigeria in 1992, 1995 and
2007 respectively. He is currently the
cluster chair of Information Systems
Cluster, Department of Computer
Science, University of Botswana. He
is a Senior Member of IEEE, and a
Member of ACM. His research

interests are Software Quality, Models and Architectures;
Software Measurements; Information Systems; Software
Engineering; Machine Learning; Information Security /Cyber
Security, E-Systems.

