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Summary 
We propose a new post-quantum commitment scheme 

whose security is based on the hardness of spLWE 
assumption. This scheme satisfies computational hiding 
and perfect binding properties. To the best of our 
knowledge, our scheme is the first LWE-based 
commitment scheme where the message space is a whole 
vector space over ℤ௤. This property is efficient and useful 
when constructing zero-knowledge proofs for actively 
secure threshold encryptions based on LWE. In order to 
improve its performance, we exploit spLWE that is a 
sparse secret variant of LWE. Our implementation shows 
that the proposed scheme takes tens of milliseconds for 
committing, and verifying. As an application, we give a 
zero-knowledge proof for opening information of 
commitments which can be used for the active security. 
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1. Introduction 

Lattice-based cryptography has developed and 
improved in terms of efficiency rapidly. Due to the 
seminal work of Ajtai [1] who proved reductions 
from the worst-case to the average-case for some 
lattice problems, cryptographers can design 
provably secure schemes and protocols unless all 
instances of lattice problems are easy to solve. This 
is necessary as it is an important candidate as a 
post-quantum alternative for the factoring, and 
discrete logarithm problem. In 2004, Regev 
introduced the Learning with Errors (LWE) [2]. 
This work also shows that there are connections 
between some worst-case lattice problems (the 
shortest independent vectors problem, the shortest 
vector problem with a gap) and LWE. With a strong 
security guarantee, it is of important versatile 
cryptographic primitives including encryption, 
signature, commitment based on it. ([3-8]) 
Commitment schemes [9] which are interested in 

this paper are basic building blocks in design of 

cryptographic protocols and have a lot of 
applications including a classical application, coin 
flipping over telephone. Intuitively, they can be 
described as electronic version of lockable box. 
Probably the best-known commitment scheme is 
the Pederson commitment scheme [10]. However, 
its security is based on the discrete logarithm 
assumption which can be broken by using quantum 
computers. It is essential to design post-quantum 
cryptographic commitments. 
When used to commit to some value in zero-

knowledge proofs, they can enforce regular behavior 
of corrupted parties. As a result, it is possible to 
make protocols secure against active attackers. 
Prime examples of these are threshold decryption 
and threshold signatures. In threshold decryption, 
the decryption key of an original public-key 
encryption scheme is split to N shares and then 
distributed to N servers, so that any t servers can 
decrypt collaboratively. By giving suitable proofs for 
partial decryption via some zero-knowledge proofs, 
malicious behaviors of partial decryption servers 
can be detected. This prevents unusual or incorrect 
decryption results. In order to construct zero-
knowledge proofs that checks each server performs 
decryption honestly and correctly, it is essential to 
consider commitment schemes which can commit 
arbitrary vector over ℤ௤.  
There are several related works for this topic: A 

commitment scheme based on SIS problem was 
introduced in [11]. However, the message space is 
only binary. The LWE-based commitment scheme 
[12] is also the case. Thereafter, Jain et al. also 
proposed a bit commitment scheme whose security 
is based on the Learning Parity with Noise (LPN) 
problem, and zero-knowledge proofs to prove 
general relations [13].  
In this paper, we propose a post-quantum 

commitment scheme with homomorphic property 
which can commit to arbitrary vectors over ℤ௤. Our 
commitment scheme satisfies computational hiding 
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and perfect binding properties under LWE-
assumption. In order to improve its performance, 
we exploit spLWE assumption that is a variant of 
LWE assumption with sparse secret vectors. We can 
reduce the size of parameters and communication 
overheads from spLWE-based instantiation. As an 
application, we give a zero-knowledge proof of 
knowledge which can be used for actively secure 
LWE-based threshold cryptosystems. We adopt the 
relaxing idea of verifying conditions of commitment 
scheme as in [14]. This enables the proposed zero-
knowledge proofs achieve negligible soundness 
error without multiple iterations. 
 

2. Preliminaries 

We use upper-case bold letters to denote matrices, 
and lower-case, letters with arrow accent for 
column vectors. For a distribution 𝐷 , 𝑎 ← 𝐷 
denotes choosing an element according to the 
distribution of 𝐷  and  𝑎⃗  ← 𝐷௠  means that each 
component of 𝑎⃗ is sampled independently from 𝐷. 
For a given set 𝐴 , 𝒰ሺ𝐴ሻ  means a uniform 
distribution on the set 𝐴  and 𝑎 ← 𝐴  denotes 
choosing an element according to the uniform 
distribution on  𝐴 . We denote by ℤ௤ ൌ ℤ/𝑞ℤ ൌ
ሼ0,1 ⋯ , 𝑞 െ 1ሽ  and 𝑇 ൌ ℝ/ℤ  the additive group of 
real numbers modulo 1, and 𝑇௤ the a subgroup of 𝑇 

having order 𝑞 , consisting of ሼ0, ଵ

௤
, ⋯ , ௤ିଵ

௤
ሽ.  The 

⟨ , ⟩ means the inner product of two vectors and 
ሾ𝑥ሿ௜ means the its 𝑖-th component. A function 𝑓ሺλሻ 
is called 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 , 𝑓ሺλሻ ൌ  𝑛𝑒𝑔𝑙ሺλሻ  if 𝑓ሺλሻ ൌ
𝑜ሺλି௖ሻ for any 𝑐 ൐  0, i.e., 𝑓 decrease faster than 
any inverse polynomial. 
 
2.1 Commitment Schemes 
 
Commitment schemes can be regard as a digital 

version of a secure box. One can commit to secret 
values without revealing about their information. 
Whenever checking for the committed values is 
needed, he convinces to a verifier that the value 
claimed by the committer is indeed the value in the 
secure box. we give a formal definition of 
commitment schemes [13], [14]. A commitment 
scheme with message space ℳ  consists of PPT 
(probabilistic polynomial time) algorithms 𝑆𝑒𝑡𝑢𝑝 , 
𝘊𝘰𝘮, 𝘝𝘦𝘳: 

- 𝘚𝘦𝘵𝘶𝘱ሺ1௞, 1சሻ : The setup algorithm 𝑆𝑒𝑡𝑢𝑝 takes as 
input 1௞, 1ச  for security parameters 𝑘, κ, and outputs a 
public key 𝑝𝑘 with public parameter. 
- 𝘊𝘰𝘮ሺ𝑝𝑘, 𝑚ሻ : The commitment algorithm 𝐶𝑜𝑚 takes 

as input a public key 𝑝𝑘, and a message 𝑚 ∈ ℳ. It outputs 
a commitment 𝑐, and a reveal value 𝑑. 
- 𝘝𝘦𝘳ሺ𝑝𝑘, 𝑐, 𝑚, 𝑑ሻ : A verification algorithm 𝘝𝘦𝘳 takes 

as input a public key 𝑝𝑘, a message 𝑚, a commitment 𝑐, 
and a reveal value 𝑑. It returns 1 or 0 to accept or reject, 
respectively. 
Our commitment scheme satisfies the following security 

requirements: 
- 𝘊𝘰𝘳𝘳𝘦𝘤𝘵𝘯𝘦𝘴𝘴 ∶The verification algorithm 𝘝𝘦𝘳 outputs 

1with overwhelming probability for all 𝑚 ∈ ℳ whenever 
the inputs were computed honestly: 

𝑃𝑟ሾ𝘝𝘦𝘳ሺ𝑝𝑘, 𝑐, 𝑚, 𝑑ሻ ൌ 1: 𝑝𝑘 ← 𝘴𝘦𝘵𝘶𝘱ሺ1௞, 1சሻ, ሺ𝑐, 𝑑ሻ
← 𝘊𝘰𝘮ሺ𝑝𝑘, 𝑚ሻሿ ൌ 1 െ 𝑛𝑒𝑔𝑙ሺ𝑘ሻ. 

- 𝘊𝘰𝘮𝘱𝘶𝘵𝘢𝘵𝘪𝘰𝘯𝘢𝘭  𝘏𝘪𝘥𝘪𝘯𝘨:  Every commitment 
computationally hides the committed messages. Formally, 
for every probabilistic polynomial time (PPT) adversary A 
there is a negligible function 𝑛𝑒𝑔𝑙ሺ𝑘ሻ such that: 

𝑃𝑟 ቎
𝑝𝑘 ← 𝘚𝘦𝘵𝘶𝘱ሺ1௞, 1சሻ, ሺ𝑚, 𝑚ᇱ, 𝑎𝑢𝑥ሻ ← 𝐴ሺ𝑝𝑘ሻ

𝑏 ൌ 𝑏ᇱ: 𝑏 ← ሼ0,1ሽ, ሺ𝑐, 𝑑ሻ ൌ 𝘊𝘰𝘮ሺ𝑚௕, 𝑝𝑘ሻ
𝑏ᇱ ← 𝐴ሺ𝑐, 𝑎𝑢𝑥ሻ

቏ 

൑
ଵ

ଶ
൅ 𝑛𝑒𝑔𝑙ሺ𝑘ሻ. 

- 𝘗𝘦𝘳𝘧𝘦𝘤𝘵  𝘉𝘪𝘯𝘥𝘪𝘯𝘨 ∶  Every commitment cannot be 
opened to different messages. This means that the following 
holds with overwhelming probability over the choice of the 
public key 𝑝𝑘 ← 𝑆𝑒𝑡𝑢𝑝ሺ1௞, 1சሻ : 

ሺ𝘝𝘦𝘳ሺ𝑝𝑘, 𝑐, 𝑚, 𝑑ሻ ൌ 1ሻ ∧ ሺ𝘝𝘦𝘳ሺ𝑝𝑘, 𝑐, 𝑚ᇱ, 𝑑ᇱሻ ൌ 1ሻ 
⇒ 𝑚 ൌ 𝑚ᇱ 

 
2.2 Zero-Knowledge Proofs and Σ-Protocols 
 
A zero-knowledge proof of knowledge is a two party 

(prover, P and verifier, V) protocol. P can convince V 
that he knows some secret information without 
revealing anything about the secret apart from 
what is exposed by the claim itself. (For a formal 
definition, see Bellare and Goldreich's work [15]) 
Proof of knowledges are usually designed by using 

Σ-protocols [16], [17]. Our zero-knowledge proof of 
knowledge is an instantiation of the following 
definition, which is a generalization of the standard 

notion of Σ -protocols, and is introduced by 
Benhamouda et al. [14] in order to achieve 
negligible soundness error probability of their 
protocols without parallel repetitions. 
 
Definition 1. Let ሺ𝑃, 𝑉ሻ be a two-party protocol, where 

𝑉 is PPT, and let 𝐿, 𝐿ᇱ ⊆ ሼ0,1ሽ∗ be languages with witness 
relations 𝑅 ⊆ 𝑅ᇱ ⊆ ሼ0,1ሽ∗ ൈ ሼ0,1ሽ∗. Then ሺ𝑃, 𝑉ሻ is called 
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a Σ
ᇱ

 -protocol for 𝑅, 𝑅ᇱ  with completeness error α , 

challenge set 𝐶, public input 𝑐 and private input 𝑤, if and 
only if it satisfies the following conditions: 
  Three-move form: 
- On input ሺ𝑐, 𝑤ሻ , 𝑃  computes a commitment 𝑡  and 

sends it to 𝑉. 
- On input 𝑐, 𝑉 samples a challenge 𝑑 ← 𝐶 and sends 

it to 𝑃. 𝑃 sends a response 𝑠 to the verifier. 
- V accepts or rejects the proof depending on the protocol 

transcript ሺ𝑡, 𝑑, 𝑠ሻ  with public input 𝑐 . Here, ሺ𝑡, 𝑑, 𝑠ሻ  is 
called accepting transcript, if the verifier accepts the 
protocol run with ሺ𝑡, 𝑑, 𝑠ሻ. 
 Completeness: Whenever ሺ𝑐, 𝑤ሻ ∈ 𝑅 , 𝑉  accepts with 

probability 1 െ  α for some 0 ൑ α ൑ 1. 
 Special soundness: There exists a PPT algorithm 𝐸 (the 

knowledge extractor) which takes two accepting transcripts 
ሺ𝑡, 𝑑, 𝑠ሻ, ሺ𝑡, 𝑑ᇱ, 𝑠ᇱሻ  where 𝑑 ് 𝑑ᇱ , and outputs 𝑤ᇱ  such 
that ሺ𝑐, 𝑤ᇱሻ ∈ 𝑅ᇱ. 
 Special honest-verifier computational zero-knowledge: 

There exists a PPT algorithm 𝑆 (the simulator) taking 𝑐 ∈
𝐿  and 𝑑 ∈ 𝐶  as inputs, that outputs triples ሺ𝑡, 𝑑, 𝑠ሻ 
whose distribution is computationally indistinguishable 
from accepting protocol transcripts generated by real 
protocol runs. 
 
Here, α ൐  0  means even an honest prover sometimes 

fails to prove knowledge correctly. Special soundness 
property says that even an dishonest prover, which does not 
know any 𝑤's such that ሺ𝑐, 𝑤ሻ ∈ 𝑅ᇱ can knows a witness 
𝑤଴  such that ሺ𝑐, 𝑤଴ሻ ∈ 𝑅ᇱ  from the given two accepting 
transcripts. Thus, a dishonest prover can answer correctly at 
most one challenge, i.e. the soundness error is 1/|𝐶|. ([17]). 
Finally, the existence of a such simulator in zero-knowledge 
property means the corresponding real protocol reveals no 
information about 𝑤. Unlike real protocols, a challenge 𝑑 
is determined in advance before fixed a commitment 𝑡 in 
the proof. This is possible by rewinding the random tape of 
an honest-verifier. 
 

2.3 Discrete Gaussian Distribution over Lattice 
 
A lattice 𝐿 ⊆ ℝ௠ is a set of integer linear 

combinations of a ሼ𝑏ଵ
ሬሬሬ⃗ , ⋯ , 𝑏௡

ሬሬሬሬ⃗ ሽ which is a subset of 
independent column vectors in ℝ௠ , 𝐿 ൌ
ሼ∑ 𝑎௜

௡
௜ୀଵ 𝑏ప

ሬሬሬ⃗ : 𝑎௜ ∈ ℤሽ . For given 𝑠 ൐ 0 , a discrete 
Gaussian distribution over a lattice 𝐿 ⊆ ℝ௠ 
centered at 𝑣⃗ ∈ ℝ௠  is defined as 𝐷௅,௩ሬ⃗ ,௦ሺ𝑥⃗ሻ ൌ
ρ௩ሬ⃗ ,௦ሺ𝑥⃗ሻ/ρ௩ሬ⃗ ,௦ሺ𝐿ሻ  for any 𝑥⃗ ∈ 𝐿 , where ρ௩ሬ⃗ ,௦ሺ𝑥⃗ሻ ൌ
expሺെπ|𝑥⃗ െ 𝑣⃗|ଶ/𝑠ଶሻ  and ρ௦ሺ𝐿ሻ ≔ ∑ ρ௩ሬ⃗ ,௦ሺ𝑥⃗ሻ௫⃗∈௅ . We note 

that the standard deviation is σ ൌ 𝑠/√2π . Alternatively, 
we can represent the Gaussian function ρ௩ሬ⃗ ,௦ሺ𝑥⃗ሻ as ρ௩ሬ⃗ ,஢ሺ𝑥⃗ሻ 
then the discrete Gaussian distribution 𝐷௅,௩ሬ⃗ ,௦ሺ𝑥⃗ሻ is defined, 

𝐷௅,௩ሬ⃗ ,௦ሺ𝑥⃗ሻ ൌ 𝐷௅,௩ሬ⃗ ,஢ሺ𝑥⃗ሻ ൌ ρ௩ሬ⃗ ,஢ሺ𝑥⃗ሻ/ρ௩ሬ⃗ ,஢ሺ𝐿ሻ  where ρ௩ሬ⃗ ,஢ሺ𝑥⃗ሻ ൌ
expሺെ|𝑥⃗ െ 𝑣⃗|ଶ/2σଶሻ  and ρ௩ሬ⃗ ,஢ሺ𝐿ሻ ≔ ∑ ρ௩ሬ⃗ ,஢ሺ𝑥⃗ሻ௫⃗∈௅ .  When 
𝐿 ൌ  ℤ, 𝑣⃗ ൌ 0 , we omit the subscript 𝐿 , 𝑣⃗  respectively 
and denote 𝐷ℤ೘,௩ሬ⃗ ,஢ሺ𝑥⃗ሻ  by 𝐷௩ሬ⃗ ,஢

௠ ሺ𝑥⃗ሻ . We collect some 
useful lemmas related to bounds of a discrete Gaussian 
distribution. The lemmas will be used to prove 
completeness and soundness of the respective zero-
knowledge protocols. 
 
Lemma 1([18], Lemma 4.4)  
For any 𝑘 ൐  0,  

𝑃𝑟ሾ|𝑧| ൐ 𝑘σ; 𝑧 ← 𝐷஢ሿ ൑ 2 expሺെ𝑘ଶ/2ሻ. 
for any 𝑘 ൐  1,  

𝑃𝑟ൣ|𝑧| ൐ 𝑘σ√𝑚; 𝑧 ← 𝐷஢
௠൧ ൏ 𝑘௠ expሺ𝑚 െ 𝑚𝑘ଶ/2ሻ. 

 
3. spLWE-based Commitment Scheme 
 
In this section, we propose a post-quantum 

commitment scheme based on 𝑠𝑝𝐿𝑊𝐸  . The 
security of our commitment scheme and zero-
knowledge proof is guaranteed by 𝑠𝑝𝐿𝑊𝐸 (learning 
with errors) assumption. 𝑠𝑝𝐿𝑊𝐸  is a variant of 
LWE with sparse and small secrets. This problem is 
harder than 𝐿𝑊𝐸 under some suitable parameters 
as shown in [19]. 
More precisely, 𝐿𝑊𝐸 , and 𝑠𝑝𝐿𝑊𝐸  is defined as 

follows. For integers 𝑛, 𝑞 ൒ 1, a vector 𝑠 ∈ ℤ௤
௡, let 

𝐴௤,௦⃗,஢ be the distribution of the pairs ሺ𝑎⃗, 𝑏 ൌ ⟨𝑎⃗, 𝑠⟩ ൅
𝑒ሻ ∈ ℤ௤

௡ ൈ ℤ௤,  where 𝑎⃗ ← ℤ௤
௡  and 𝑒 ← 𝐷஢ . For 

integers 𝑛, 𝑞 ൒ 1, and a distribution 𝒟  over ℤ௤
௡ , 

𝐿𝑊𝐸௡,௤,஢ሺ𝒟ሻ  is to distinguish (given arbitrarily 
many independent samples) the uniform 
distribution over ℤ௤

௡ ൈ ℤ௤  from 𝐴௤,௦⃗,஢  with a fixed 
sample $𝑠  ←  𝒟. We note that a search variant of 
LWE is the problem of recovering 𝑠 from ሺ𝑎⃗, 𝑏ሻ ൌ
⟨𝑎⃗, 𝑠⟩ ൅ 𝑒 ∈ ℤ௤

௡ ൈ ℤ௤
௡ sampled according to 𝐴௤,௦⃗,஢. Let 

𝐿𝑊𝐸௡,௠,௤,஢ሺ𝒟ሻ denotes the case when the number of 
samples are bounded by 𝑚 ∈ 𝑁. A typical choice of 
the secret distribution 𝒟  is 𝒰൫ℤ௤

௡൯  or the error 
distribution 𝐷஢. For a set 𝑋௡,ఘ,ఏ  which consists of 
the vectors 𝑠 ∈ ℤ௡  whose nonzero components are 
in ሼേ1, േ2, േ4, ⋯ , േ𝜌ሽ, and the number of nonzero 
components is 𝜃, we define 𝑠𝑝𝐿𝑊𝐸௡,௠,௤,௦,ఘ,ఏ as the 

problem 𝐿𝑊𝐸௡,௠,௤,௦ ቀ𝒰൫𝑋௡,ఘ,ఏ൯ቁ.  

 
3.1 Our 𝑠𝑝𝐿𝑊𝐸-based Commitment scheme 
 

Our 𝑠𝑝𝐿𝑊𝐸 -based commitment scheme is simple 
and efficient. Informally, for dimension 𝑛 , the 
number of samples 𝑚 , and modulus 𝑞 , the 
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commitment with message space ℤ௤
௟   is of the form 

𝐴𝑚ሬሬ⃗  ൅  𝐵𝑟  ൅  𝑒 𝑚𝑜𝑑 𝑞 , where ሺ𝐴, 𝐵ሻ  ∈
 ℤ௤

௠ ൈ ௟  ൈ ℤ௤
௠ ൈ ௡ is a public random matrix, 𝑟  ∈

 ℤ௤
௡  is a uniformly random vector, and 𝑒   ∈  ℤ௤

௠ 
is a short error vector. Our scheme consists of three 
sub-algorithms, (Setup, Com, Ver). The setup 
algorithm chooses a 𝑠𝑝𝐿𝑊𝐸  dimension 𝑛 , the 
number of sample 𝑚, a weight 𝜃, a bound of non-
zero coefficient 𝜌 , a prime modulus 𝑞 , a message 
space rank 𝑙, and a bound of elements in a challenge 
set 𝛽 , and set width parameters 𝑠ଵ, 𝑠ଶ, 𝑠ଷ , and 
rejection sampling parameters αଵ, αଶ . The 
commitment algorithm computes the commitment 
vector 𝑐  with public random matrices 𝐴, 𝐵  and 
randomness vectors 𝑟, 𝑒. The verification algorithm 
checks if the commitment computed from opening 
information 𝑚ᇱሬሬሬሬሬ⃗ , 𝑟ᇱሬሬሬ⃗ , 𝑒ᇱሬሬሬ⃗ , 𝑓ᇱ  is indeed the commitment 
𝑐 , and the norm of randomness vector used in the 
commitment 𝑐 is sufficiently small. 

 
 Setup൫1ச, 1௞൯ : Set parameters 𝑛, 𝑚, 𝑞, 𝑙, θ, ρ, β ∈

ℕ and 𝑠ଵ, 𝑠ଶ, 𝑠ଷ ∈ ℝ with 2ச, 2௞-bit security where 
𝑠ଶ ൌ αଵβρ√2πθ , 𝑠ଷ ൌ 2αଶ𝑠ଵβ√𝑚  for some 
αଵ, αଶ ∈ ℝஹଵ  and 𝑞  is prime. Sample 𝑠𝑒𝑒𝑑஺ ←
ሼ0,1ሽ௬భ, 𝑠𝑒𝑒𝑑஻ ← ሼ0,1ሽ௬మ . The public commitment 
key 𝑝𝑘 is ሺ𝑠𝑒𝑒𝑑஺, 𝑠𝑒𝑒𝑑஻ሻ. 
 Com ൫𝑚ሬሬ⃗ ∈ ℤ௤

௡൯: Generate random matrices 𝐴 ←
𝐺𝑒𝑛ሺ𝑠𝑒𝑒𝑑஺ሻ, 𝐵 ← 𝐺𝑒𝑛ሺ𝑠𝑒𝑒𝑑஻ሻ  where ሺ𝐴, 𝐵ሻ ∈
ℤ௤

௠ൈ௟ ൈ  ℤ௤
௠ൈ௡  and sample 𝑟 ← 𝑋௡,஡,஘ , 𝑒 ← 𝐷ℤ, ௦భ

௠ , 
compute 𝑐 ൌ 𝐶𝑜𝑚ሺ𝑚ሬሬ⃗ , 𝑟, 𝑒ሻ ൌ 𝐴𝑚ሬሬ⃗ ൅ 𝐵𝑟 ൅
𝑒 𝑚𝑜𝑑 𝑞. 

 Ver ቀ𝑐, ൫𝑚ᇱሬሬሬሬሬ⃗ , 𝑟ᇱሬሬሬ⃗ , 𝑒ᇱሬሬሬ⃗ , 𝑓ᇱ൯ቁ : Given a commitment 𝑐 

with an opening information ሺ𝑚ሬሬ⃗ , 𝑟, 𝑒, 𝑓ሻ, the verifier 
accepts if and only if 𝐴𝑚ᇱሬሬሬሬሬ⃗ ൅ 𝐵൫𝑓ᇱିଵ𝑟ᇱሬሬሬ⃗ ൯ ൅ 𝑓ᇱିଵ𝑒ᇱሬሬሬ⃗ ൌ
𝑐, ฮ𝑟ᇱሬሬሬ⃗ ฮ

ஶ
൑ 24𝑠ଶ/√2π,  ฮ𝑒ᇱሬሬሬ⃗ ฮ

ஶ
൑ 24𝑠ଷ/√2π,

|𝑓ᇱ| ൑  𝛽. 
 
This commitment scheme is computationally hiding 

under 𝐿𝑊𝐸  assumption. In particular, the 
distribution of 𝐵r⃗  ൅  eሬ⃗   mod q  is statistically 
close to the uniform distribution. It can hide message 
information. The scheme is perfect binding. This 
property follows from that 𝐴൫𝑚ሬሬ⃗  – 𝑚ᇱሬሬሬሬሬ⃗ ൯  ൅  𝐵൫𝑟  െ
  𝑟ᇱሬሬሬ⃗ ൯ ൌ  𝑒 – 𝑒ᇱሬሬሬ⃗   𝑚𝑜𝑑 𝑞  does not hold 
overwhelmingly for sufficiently large 𝑞  and 𝑚 , 
since ฮ𝑒 – 𝑒ᇱሬሬሬ⃗ ฮ  is small. The probability that the 

above equation holds only depends on the cardinalities 
of message and randomness domains under the 
consideration of union bounds. Thus, using of 
relatively small dimensions 𝑙 , 𝑛 and small vectors 
𝑟 ’s rather than arbitrary vectors over ℤ௤

௡  leads to 
more efficient instantiations of the 𝐿𝑊𝐸 -based 
commitment scheme. In this background, 𝑠𝑝𝐿𝑊𝐸 is 
more suitable for efficient instantiations. 

 
Theorem 1. Let 𝑚 ൌ  𝑘𝑛  with 𝑘 ൐  2 , 𝑙 ൌ

 𝑛  and β ൑ 2
೙
ర

ିଵ െ
ଵ

ଶ
. Assuming the hardness of 

𝑠𝑝𝐿𝑊𝐸௡,௠,௤,௦భ,஡,஘ with the following condition 

log 𝑞 ൒
ଶ

௞ିଵ
logሺ24σଶ ൅ 1ሻ ൅

ଶ௞

௞ିଵ
logሺ24σଷ ൅ 1ሻ ൅

1, the above commitment scheme satisfies the 
computational hiding and statistical binding properties. 

 
Proof. We prove correctness, computational hiding 

and statistical binding properties in this order. 
- Correctness : This is obvious since ‖𝑟‖

∞ ൑ ρ ൏

𝑠ଶ ൏ 24𝑠ଶ/√2π  for 𝑟 ← 𝑋௡,஡,஘ , ‖𝑒‖
∞ ൑ 12𝑠ଵ/

√2π  with probability 1 െ 2ିଵ଴଴  for 𝑒 ← 𝐷ℤ,௦భ
௠ , 

which is strictly less than 24𝑠ଷ/√2π and 𝑓ᇱ ൌ 1 ൑
 𝛽. 

- Computational Hiding : Under the 
𝑠𝑝𝐿𝑊𝐸௡,௠,௤,௦భ,஡,஘ -assumption, 𝐵𝑟 ൅ 𝑒 𝑚𝑜𝑑 𝑞  is 
pseudo-random, thus 𝐴𝑚ሬሬ⃗ ൅ 𝐵𝑟 ൅ 𝑒 𝑚𝑜𝑑 𝑞  is also 
pseudo-random. 

- Statistical Binding: Let 𝑐 be a commitment with 
two opening information ሺ𝑚ሬሬ⃗ , 𝑟, 𝑒, 𝑓ሻ, ൫𝑚ᇱሬሬሬሬሬ⃗ , 𝑟ᇱሬሬሬ⃗ , 𝑒ᇱሬሬሬ⃗ , 𝑓ᇱ൯ 

where 𝑚ሬሬ⃗ ് 𝑚ᇱሬሬሬሬሬ⃗ . Then 𝐴𝑚ሬሬ⃗ ൅ 𝐵ሺ𝑓ିଵ𝑟ሻ ൅ 𝑓ିଵ𝑒 ൌ
𝑐 ൌ 𝐴𝑚ᇱሬሬሬሬሬ⃗ ൅ 𝐵൫𝑓ᇱିଵ𝑟ᇱሬሬሬ⃗ ൯ ൅ 𝑓ᇱିଵ𝑒ᇱሬሬሬ⃗  𝑚𝑜𝑑 𝑞  and so  

𝐴൫𝑚ሬሬ⃗ െ 𝑚ᇱሬሬሬሬሬ⃗ ൯ ൅ 𝐵൫𝑓ିଵ𝑟 െ 𝑓ᇱିଵ𝑟ᇱሬሬሬ⃗ ൯  ൌ 𝑓ᇱିଵ𝑒ᇱሬሬሬ⃗ െ
𝑓ିଵ𝑒   

𝑚𝑜𝑑 𝑞.  Let 𝑚ᇱᇱሬሬሬሬሬሬ⃗ ൌ 𝑚ሬሬ⃗ െ 𝑚ᇱሬሬሬሬሬ⃗ ് 0 . Now, we have 
that 

𝑃𝑟 ቈ
𝐴𝑚ᇱᇱሬሬሬሬሬሬ⃗ ൅ 𝐵൫𝑓ିଵ𝑟 െ 𝑓ᇱିଵ𝑟ᇱሬሬሬ⃗ ൯ ൌ ൫𝑓ᇱିଵ𝑒ᇱሬሬሬ⃗ െ 𝑓ିଵ𝑒൯ 

𝑚𝑜𝑑 𝑞: 𝐴 ← ℤ௤
௠ൈ௟, 𝐵 ← ℤ௤

௠ൈ௡ ቉ 

ൌ
1

𝑞௠. 

By taking union bound over all 𝑚ᇱᇱሬሬሬሬሬሬ⃗ , 𝑟, 𝑟ᇱሬሬሬ⃗ , 𝑒, 𝑒ᇱሬሬሬ⃗ , 𝑓, 𝑓ᇱ, 
we have the overall probability that there exist 𝑚ᇱᇱሬሬሬሬሬሬ⃗ ്
0 satisfying the above equation is at most 

𝑞௟ሺ24σଶ ൅ 1ሻଶ௡ሺ24σଷ ൅ 1ሻଶ௠ሺ2β ൅ 1ሻଶ

𝑞௠  
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This probability is negligible in 𝑛 if  
𝑞௟/௡ሺ24σଶ ൅ 1ሻଶሺ24σଷ ൅ 1ሻଶ௠/௡ሺ2β ൅ 1ሻଶ/௡

𝑞௠/௡ ൑
1
𝑐

 

for some constant 1 ൏  𝑐 ൑ 2 or equivalently,  

log 𝑐 ൅ 2 logሺ24σଶ ൅ 1ሻ ൅
2𝑚
𝑛

logሺ24σଷ ൅ 1ሻ

൅
2
𝑛

logሺ2β ൅ 1ሻ ൑
𝑚 െ 𝑙

𝑛
log 𝑞, 

and log 𝑐 ൅
ଶ

௡
logሺ2β ൅ 1ሻ ൑ 1  under the 

conditions in the Theorem. Therefore, the overall 
probability is 𝑐ି௡, which is negligible in 𝑛. ∎ 

 
 
3.2. Implementation Result 
 
We use C++ on a Linux-based system, with GCC compiler 

and apply the Eigen library (www.eigen.tuxfamily.org), 
which makes vector and matrix operations fast. We also 
exploit box-muller transformation to generate discretized 
Gaussian distribution. Our implementation is performed on 
PC (Mac Pro) with CPU 2.6GHz Intel Core i5 without 
parallelization. In order to achieve the binding property, we 
must set the parameters that satisfy 

𝑞௟ሺ24σଶ ൅ 1ሻଶ௡ሺ24σଷ ൅ 1ሻଶ௠ሺ2β ൅ 1ሻଶ

𝑞௠  

is negligible. On the other hand, the 𝑠𝑝𝐿𝑊𝐸௡,௠,௤,௦భ,஡,஘ 
problem is hard. Since the primal and dual attacks are the 
known best attacks for 𝐿𝑊𝐸. Therefore, we follow attack 
strategy in [19] that considers a variety of attack 
methodology for 𝑠𝑝𝐿𝑊𝐸 . As in [19], the parameters in 
𝑠𝑝𝐿𝑊𝐸௡,௠,௤,௦భ,஡,஘  satisfy the classical and quantum 
security. 
 

Table 1: Implementation result for 256-bit message 

𝜿, 𝒌 Setupሺ𝝁𝒔ሻ Comሺmsሻ Verሺmsሻ 

72 32.0 11.2 13.1 

96 56.1 18.6 20.8 

128 91.2 33.5 35.7 

 
 
4. Application: Zero-Knowledge Proofs of 
Knowledge 
 
In order to prove zero-knowledge of protocols and 

security of threshold cryptosystems, it is essential 
that one can construct a simulator that statistically 
simulates the accepting transcripts and the entire 

view of an adversary who can see partial 
decryptions of ciphertexts and has some secret key 
shares respectively. The following lemmas will be 
exploited for these purposes. 
Lemma 2([18] Theorem 4.9, Rejection Sampling) Let 

𝑛, 𝑇 ∈ ℕ  be natural numbers and 𝑈 ⊆ ℤ௡ , such that all 
elements in 𝑈 have norm less than 𝑇. Let further𝐷: 𝑈 →
ℝ be a probability distribution and σ ∈ ω൫𝑇ඥlog 𝑛൯. Then 
there exists a constant 𝑀 ∈ 𝑂ሺ1ሻ  such that the output 
distributions of the algorithms 𝐴ଵ, 𝐴ଶ where 
 𝐴ଵ ∶  draw 𝑣⃗ ← 𝐷, 𝑧 ← 𝐷஢

௡  and output ሺ𝑧, 𝑣⃗ሻ with 

probability 
஽ಚ

೙ሺ௭⃗ሻ

ெ஽ೡሬሬ⃗ ,ಚ
೙ ሺ௭⃗ሻ

. 

 𝐴ଶ ∶  draw 𝑣⃗ ← 𝐷, 𝑧 ← 𝐷஢
௡  and output ሺ𝑧, 𝑣⃗ሻ  with 

probability 
ଵ

ெ
. 

have at most statistical distance 2 െ ωሺlog 𝑛ሻ/𝑀 . In 
particular 𝐴ଵ  outputs something with probability at least 
1 െ 2ିனሺ୪୭୥ ௡ሻ/𝑀. 
For a concrete instantiation σ ൌ  α𝑇  for α ∈¥𝑅வ଴ , we 

have 𝑀 ൌ exp൫12/α ൅ 1/ሺ2αଶሻ൯  and the outputs of 𝐴ଵ 
and 𝐴ଶ are within statistical distance 2ିଵ଴଴/𝑀. 
Intuitively, the rejection sampling lemma says that some 

small translation of a discrete Gaussian distribution with 
sufficiently large standard deviation can be hidden by 
rejecting the sampling with a certain policy. Another simple 
idea about hiding small terms is adding a value which is 
chosen randomly from a relatively large interval. this 
technique is known as "smudging".    
 
Lemma 3([20], Smudging] Let 𝑘  be the security 

parameter and let 𝑛𝑒𝑔𝑙: ℕ → ℝவ଴ be a negligible function. 
Let  𝑏ଵሺ𝑘ሻ, 𝑏ଶሺ𝑘ሻ  ∈  ℕ$  be bounds with 𝑏ଵሺ𝑘ሻ/
𝑏ଶሺ𝑘ሻ ൑ 𝑛𝑒𝑔𝑙ሺ𝑘ሻ . Let 𝑒ሺ𝑘ሻ ∈ ሾെ𝑏ଵ, 𝑏ଵሿ  be an arbitrary 
integer and ψሺ𝑘ሻ  be the uniform distributionon 
ሾെ𝑏ଶ, 𝑏ଶሿ ∩ ℤ. Then the distribution 𝑒 ൅  ψ obtained by 
drawing an 𝑒̃ ∈  𝜓  and returning 𝑒 ൅ 𝑒̃ , is statistically 
indistinguishable to the distribution ψ. 
 

 
4.1. Proof for Opening Information 
 
In this section, we describe our zero-knowledge 

proof of opening information as an application. Let 
𝑐 ൌ 𝐴𝑚ሬሬ⃗ ൅ 𝐵𝑟 ൅ 𝑒  𝑚𝑜𝑑 𝑞 be a commitment that is 
published by the prover. The prover can prove that 
he knows a valid opening information of 𝑐 from the 
following protocol. The public input is 𝑐  and the 
private input is ሺ𝑚ሬሬ⃗ , 𝑟, 𝑒ሻ : 
 
 P computes 𝑡 ൌ 𝐴μሬ⃗ ൅ 𝐵ρሬ⃗ ൅ ηሬ⃗   where μሬ⃗ ← ℤ௤

௟ , ρሬ⃗ ←
𝐷஢మ

௡ , ηሬ⃗ ← 𝐷஢య
௠ , and sends 𝑡 to V. 

 V sends a random integer 𝑑 ∈ ሾെβ, βሿ ∩ ℤ. 
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 P checks 𝑑 ∈ ሾെβ, βሿ ∩ ℤ , and computes 𝑠௠ሬሬሬሬ⃗ ൌ μሬ⃗ ൅
𝑑𝑚ሬሬ⃗  𝑚𝑜𝑑 𝑞, 𝑠௥ሬሬሬ⃗ ൌ ρሬ⃗ ൅ 𝑑𝑟 𝑚𝑜𝑑 𝑞, 𝑠௘ሬሬሬ⃗ ൌ ηሬ⃗ ൅ 𝑑𝑒 𝑚𝑜𝑑 𝑞 . 
If 𝑑 ൌ  0 , P sends 𝑠௠ሬሬሬሬ⃗ , 𝑠௥ሬሬሬ⃗ , 𝑠௘ሬሬሬ⃗   to V. Otherwise, P sends 
𝑠௠ሬሬሬሬ⃗ , 𝑠௥ሬሬሬ⃗ , 𝑠௘ሬሬሬ⃗   to V with probability 𝑝 ൌ 𝐷஢మ

௡ ሺρሬ⃗ ሻ/
𝑀ଶ𝐷ௗ௥⃗,஢మ

௡ ሺρሬ⃗ ሻ ൈ 𝐷஢య
௡ ሺηሬ⃗ ሻ/𝑀ଷ𝐷ௗ௘⃗,஢య

௡ ሺηሬ⃗ ሻ , and ⊥  with 
probability 1 െ  𝑝. 
 V accepts if 𝑡 ൅ 𝑑𝑐 ൌ 𝐴𝑠௠ሬሬሬሬ⃗ ൅ 𝐵𝑠௥ሬሬሬ⃗ ൅ 𝑠௘ሬሬሬ⃗  𝑚𝑜𝑑 𝑞 , 

‖𝑠௥ሬሬሬ⃗ ‖ஶ ൑ 12σଶ, and ‖𝑠௘ሬሬሬ⃗ ‖ஶ ൑ 12σଷ. We prove that the 
above protocol is indeed a zero-knowledge proof.  
 

 

Fig. 1 proof of opening information 

Theorem 2. The protocol is a Σ
ᇱ

 - protocol with 

completeness error close to 
ଵ

ஒ
൅ ஒିଵ

ஒெమெయ
 overwhelmingly for 

the relations: 
Proof. We prove the protocol satisfies the following 

properties: 
 Completeness: The verifier accepts with overwhelming 

probability if the protocol is not aborted by the prover, and 

the accepting probability is close to 
ଵ

ଶஒାଵ
൅

ଶஒ

ሺଶఉାଵሻெమெయ
 

overwhelmingly. 
 Special Soundness: Given a commitment 𝑐 and a pair 

of accepting transcripts ቀ𝑡, 𝑑, ሺ𝑠௠ሬሬሬሬ⃗ , 𝑠௥ሬሬሬ⃗ , 𝑠௘ሬሬሬ⃗ ሻቁ , ቀ𝑡, 𝑑, ൫𝑠௠
ᇱሬሬሬሬ⃗ ,

𝑠௥
ᇱሬሬሬ⃗ , 𝑠௘

ᇱሬሬሬ⃗ ൯ቁ  where 𝑑 ് 𝑑ᇱ , we can extract a vaild opening 

information of 𝑐. 
 Honest-Verifier Zero-Knowledge: Transcripts of the 

protocol with an honest verifier can be simulated with 
computationally indistinguishable distribution. 
 
Completeness: When 𝑑 ൌ  0 , P sends 𝑠௠ሬሬሬሬ⃗ ൌ  μሬ⃗ , 𝑠௥ሬሬሬ⃗ ൌ

 ρሬ⃗ , 𝑠௘ሬሬሬ⃗ ൌ  ηሬ⃗   to V. Thus 𝑡  ൅  𝑑𝑐  ൌ  𝑡  ൌ   𝐴μሬ⃗  ൅
 𝐵ρሬ⃗  ൅ ηሬ⃗  ൌ  𝐴𝑠௠ሬሬሬሬ⃗ ൅  𝐵𝑠௥ሬሬሬ⃗ ൅  𝑠௘ሬሬሬ⃗   𝑚𝑜𝑑 𝑞 . Since ρሬ⃗ ←
𝐷஢మ

௡ , ηሬ⃗ ← 𝐷஢య
௠  , ‖𝑠௥ሬሬሬ⃗ ‖ஶ ൌ  ‖ρሬ⃗ ‖ஶ  ൑  12𝜎ଶ,  and 

‖𝑠௘ሬሬሬ⃗ ‖ஶ ൌ  ‖ηሬ⃗ ‖ஶ  ൑  12𝜎ଷ,with overwhelming probability. 
In the case 𝑑 ്  0 , P sends 𝑠௠ሬሬሬሬ⃗   = μሬ⃗   + d 𝑚ሬሬ⃗  , 𝑠௥ሬሬሬ⃗ ൌ

 ρሬ⃗  ൅ d𝑟, 𝑠௘ሬሬሬ⃗ ൌ  ηሬ⃗  ൅ d𝑒 to V with probability close to 

ଵ

ெమெయ
  overwhelmingly by the rejection sampling lemma. 

Thus 𝐴𝑠௠ሬሬሬሬ⃗ ൅  𝐵𝑠௥ሬሬሬ⃗ ൅  𝑠௘ሬሬሬ⃗ ൌ   𝐴μሬ⃗  ൅ 𝐵ρሬ⃗  ൅ ηሬ⃗  ൅
 𝑑ሺ𝐴𝑚ሬሬ⃗  ൅  𝐵𝑟  ൅ 𝑒ሻ ൌ   𝑡  ൅  𝑑 𝑐 . Note that the 
distribution of 𝑠௥ሬሬሬ⃗ ൌ  ρሬ⃗  ൅  𝑑r⃗, 𝑠௘ሬሬሬ⃗ ൌ  ηሬ⃗  ൅  𝑑𝑒  are 
statistically close to 𝐷஢మ

௡ , 𝐷஢య
௠  respectively by the rejection 

sampling lemma. Hence, ‖𝑠௥ሬሬሬ⃗ ‖ஶ ൑ 12σଶ,  and ‖𝑠௘ሬሬሬ⃗ ‖ஶ ൑
12σଷ with overwhelming probability. Therefore, V accepts 

with probability close to 
ଵ

ଶஒାଵ
൅ ଶஒ

ሺଶఉାଵሻெమெయ
 

overwhelmingly. 
Special Soundness: Suppose two accepting transcripts 

ቀ𝑡, 𝑑, ሺ𝑠௠ሬሬሬሬ⃗ , 𝑠௥ሬሬሬ⃗ , 𝑠௘ሬሬሬ⃗ ሻቁ , ቀ𝑡, 𝑑, ൫𝑠௠
ᇱሬሬሬሬ⃗ , 𝑠௥

ᇱሬሬሬ⃗ , 𝑠௘
ᇱሬሬሬ⃗ ൯ቁ  where 𝑑 ് 𝑑ᇱ 

are given. Then the following equations are hold: 
𝑡  ൅  𝑑𝑐  ൌ  𝐴𝑠௠ሬሬሬሬ⃗ ൅  𝐵𝑠௥ሬሬሬ⃗ ൅  𝑠௘ሬሬሬ⃗   𝑚𝑜𝑑 𝑞 
𝑡  ൅  𝑑ᇱ𝑐  ൌ  𝐴𝑠௠

ᇱሬሬሬሬ⃗ ൅  𝐵𝑠௥
ᇱሬሬሬ⃗ ൅  𝑠௘

ᇱሬሬሬ⃗   𝑚𝑜𝑑 𝑞 
By subtracting the above equations, we get: 

ሺ𝑑 െ  𝑑′ሻ𝑐  ൌ  𝐴ሺ𝑠௠ሬሬሬሬ⃗  െ  𝑠௠
ᇱሬሬሬሬ⃗ ሻ  ൅  𝐵ሺ𝑠௥ሬሬሬ⃗  െ  𝑠௥

ᇱሬሬሬ⃗ ሻ  
൅ ሺ𝑠௘ሬሬሬ⃗  െ  𝑠௘

ᇱሬሬሬ⃗ ሻ 𝑚𝑜𝑑 𝑞 
In other words, we have a witness ൫ሺ𝑑 െ

𝑑ᇱሻିଵ൫𝑠௠ሬሬሬሬ⃗  – 𝑠௠
ᇱሬሬሬሬ⃗ ൯, ൫𝑠௥ሬሬሬ⃗  – 𝑠௥

ᇱሬሬሬ⃗ ൯, ൫𝑠௘ሬሬሬ⃗  – 𝑠௘
ᇱሬሬሬ⃗ ൯, 𝑑 െ 𝑑ᇱ൯  for ሺ𝐴,

𝐵,   𝑐ሻ  such that  ฮ𝑠௥ሬሬሬ⃗ െ 𝑠௥
ᇱሬሬሬ⃗ ฮ

ஶ
൑ 24σଶ , and ฮ𝑠௘ሬሬሬ⃗ െ

 𝑠௘
ᇱሬሬሬ⃗ ฮ

ஶ
൑ 24σଷ . Note that the binding property of the 

commitment scheme implies ሺ𝑑 െ 𝑑ᇱሻିଵ൫𝑠௠ሬሬሬሬ⃗  – 𝑠௠
ᇱሬሬሬሬ⃗ ൯ ൌ

 𝑚ሬሬ⃗ . 
Honest-Verifier Zero-Knowledge: Let 𝑐 and challenge 𝑑 

are given as inputs. First, the simulator samples  𝑠௠
ᇱሬሬሬሬ⃗  ←

 ℤ௤
௟ , 𝑠௥

ᇱሬሬሬ⃗  ←  𝐷஢మ
௡  , and 𝑠௘

ᇱሬሬሬ⃗   ←  𝐷஢య
௠  , and computes 𝑡  ൌ

 𝐴𝑠௠
ᇱሬሬሬሬ⃗ ൅  𝐵𝑠௥

ᇱሬሬሬ⃗ ൅  𝑠௘
ᇱሬሬሬ⃗ െ  𝑑𝑐 . In the case 𝑑 ൌ  0 , the 

simulator outputs ቀ𝑡, 0, ൫𝑠௠
ᇱሬሬሬሬ⃗ , 𝑠௥

ᇱሬሬሬ⃗ , 𝑠௘
ᇱሬሬሬ⃗ ൯ቁ. This is statistically 

indistinguishable from accepting transcripts of the real 
protocol, since the distribution of response ൫𝑠௠

ᇱሬሬሬሬ⃗ , 𝑠௥
ᇱሬሬሬ⃗ , 𝑠௘

ᇱሬሬሬ⃗ ൯ is 
statistically indistinguishable from the the distribution of 
real response by the rejection sampling lemma, and 𝑡  is 
uniquely determined by 𝑠௠

ᇱሬሬሬሬ⃗ , 𝑠௥
ᇱሬሬሬ⃗ , 𝑠௘

ᇱሬሬሬ⃗  , and 𝑑  in the real 
protocol and in the simulation. When 𝑑 ് 0, the simulator 

outputs ቀ𝑡, 0, ൫𝑠௠
ᇱሬሬሬሬ⃗ , 𝑠௥

ᇱሬሬሬ⃗ , 𝑠௘
ᇱሬሬሬ⃗ ൯ቁ  with probability 

ଵ

ெమெయ
 . 

Otherwise, the simulator outputs ( 𝑡଴ሬሬሬ⃗  , d, ⊥ ) where 
𝑡଴ሬሬሬ⃗ ←  ℤ௤

௠. 
The non-aborting case of this simulation is 

indistinguishable from the non-aborting case of the real 
protocol similarly. 𝐵ρሬ⃗  ൅ ηሬ⃗   𝑚𝑜𝑑 𝑞  in 𝑡  ൌ  𝐴μሬ⃗  ൅
 𝐵ρሬ⃗  ൅ ηሬ⃗   𝑚𝑜𝑑 𝑞 in real protocol can be regarded as an 
instance of 𝐿𝑊𝐸௡,௠,௤,ఙయ

൫𝐷ఙమ
௡ ൯ , which is hard under the 

condition, 𝑠𝑝𝐿𝑊𝐸௡,௠ା௡,௤,௦భ,ఘ,ఏ  is hard. Thus 𝑡  is 

computationally indistinguishable from 𝑡଴ሬሬሬ⃗  , which is 
sampled from uniform random distribution over ℤ௤

௠. 
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5. Conclusion 
 
We present a post-quantum commitment scheme 

with its related proof of knowledge which security 
is based on the hardness of spLWE that is a sparse 
secret variant of LWE. These are simple and 
efficient. In particular, these primitives are efficient 
and useful when constructing zero-knowledge 
proofs for actively secure threshold encryptions 
based on LWE. Our implementation shows that the 
proposed scheme takes tens of milliseconds for 
committing, and verifying. This justifies the 
usefulness of spLWE in practical implementation. 
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