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Summary 
In this paper, we have proposed a new internal model control 
structure (IMC). It is aimed at unstable overactuated multivariable 
systems whose transfer matrices are singular and unstable. The 
model inversion problem is essential to understand this structure. 
Indeed, the precision between the output of the process and the 
setpoint is linked to the quality of the inversion. This property is 
preserved in the presence of an additive disturbance at the output. 
This inversion approach proposed in this article can be applied to 
multivariable systems with no minimum phase or minimum phase 
shift with or without delays in their transfer matrices. It is proven 
by an example of simulation through which we have shown its 
good performance as a guarantee of stability, precision as well as 
rapidity of system responses despite the presence of external 
disturbances and we have tested this control structure in the 
frequency domain hence the robustness of the IMC. 
Key words: 
unstable overactuated system with time delays; internal 
model control; virtual outputs, stability; robustness. 

1. Introduction 

The control structure by internal model is known as 
robust, makes it possible to consider the effects of modeling 
errors and external disturbances. Its main advantages lie in 
the simplicity of the controller, its ease of implementation 
and the explicit adjustment of the robustness. As for the 
drawbacks of this structure, they mainly concern its 
applicability, reserved for stable open loop or stabilized 
systems, the controller designed in this case must also be 
stable and feasible [1], [2], [3], [4]. 

 
In this structure, the synthesis of the controller is 

reduced to a problem of constructing an inverse model of 
the system to be controlled [5]. In addition, the perfect 
inversion of the exact model is often impossible to achieve, 
in this case in the case of nonlinear systems and when the 
model can present sub-models with non-Minimum phase or 
presenting modeling delays or when the order of the 
numerator is lower than that of the denominator and in the 

case where the input number is greater than the output 
number [6], [7], [8]. 

 
The proposed internal model controller synthesis 

approach is based on a specific inversion exploited by [6] in 
the case of overactuated systems. The results obtained with 
this controller are very encouraging, which led to their 
extension to cases of overactuated systems with unstable 
dynamics which will be treated in this paper. The design of 
IMC for unstable multivariable systems is a two-step 
process. The first is to apply the pre-stabilization approach 
by stabilizing feedback to the unstable over-actuated system. 
The choice of this stabilization technique is because, in 
practice, knowledge of the complete state of the system is 
not always possible. Indeed, the state of the system is 
sometimes difficult to measure because of its variables 
which are not measurable or not accessible or because of the 
high price of the sensor allowing to measure them [9]. In 
this case, we only have system outputs. The second step is 
to apply the IMC approach to the stabilized overactuated 
system. 
 

In this paper, we propose the parameterization of all 
proper stabilizing IMC for unstable overactuated systems 
such that the internal model controller and the internal 
model control are proper. A modified IMC structure has 
been proposed to apply to unstable systems without losing 
the advantages of IMC characteristics. In addition, we 
present an application of the result for controller design for 
overactuated system with time delays. The organization of 
the article is presented as follows. In Section II, a proposal 
for a structure by internal model control for unstable 
overactuated systems is presented. In Section III, an internal 
model control that have been apply to control unstable 
overactuated system, the IMC illustrate the effectiveness of 
the proposed controller. Finally, a conclusion and a future 
work are given in Section IV. 
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2. Structure of the internal model control for 
unstable overactuated system 

Overactuated systems having more inputs than outputs, 
hence their transfer matrices are singular. However, the 
IMC requires that the synthesis of its controller be equal to 
the direct inverse of the system model. However, direct 
inversion is impractical [10], [11]. To remedy this problem, 
we use the IMC structure presented in figure 1, inspired by 
the work of [6], [7] [12]. The solution proposed in this case 
consists in making the model M(s) square then in removing 
the excess outputs which will appear at the outputs of the 
system G(s). 

 I MCC s

K

 G s

 M s

 

Fig. 1. Structure of the internal model control of unstable 
overactuated systems 

 

where G(s) is the process transfer function, M(s) is the 
transfer function of the process model, CIMC(s) is the 
internal model controller, y is the controlled variable, r is 
the setpoint (reference), e is the error (offset), u is the 
control variable and v is the disturbance. 

According to figure 1, the difference signal d between the 
output disturbed by the signal v of the process and that of 
the model is expressed by the following equation: 

      SVOd G s M s u v                                                (1) 

where  SVOG s represents the stabilized system G(s) having 

a square transfer matrix which is obtained using the 
technique of virtual outputs on the transfer matrix of G(s) 
which is singular [6], [12]. 
The control signal u is described as a function of the 
reference signal r and the disturbance signal v by this 
equation: 
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The output vector expression is given there as follows:
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(3) 

According to [6], when the plant G(s) is stable, the 
process model M(s) is stable, the controller CIMC(s) is stable 
then we can apply the IMC structure. However, is it possible 
to use the IMC structure given in figure 1 for unstable 
systems ? the answer is the following: we can use this 
structure on condition of stabilizing the systems with 
controllers. 

Chen et al. give a solution to this problem and propose 
the parameterization of all proper stabilizing IMC for 
minimum-phase unstable system such that the IMC and the 
internal model controller are proper and showed that 
stabilizing controllers for SISO minimum-phase unstable 
system can be represented by IMC structure [13]. However, 
this method cannot apply for unstable overactuated system. 

We propose in this paper, in the case of unstable 
overactuated system, a local loop pre-stabilization is 
necessary before applying the IMC [14]. The problem of 
stabilizing linear multivariable systems is solved by 
Lyapunov quadratic approaches using LMI tools. For this, 
the proposed structure for over-actuated multivariable 
continuous systems must be modified based on a 
stabilization technique using a stabilizing status feedback 
control by Lyapunov approach, shown in figure 2. 

According to figure 2, the transfer matrix of the 
overactuated system G(s) is of dimension (nxm), knowing          
(n <m) where n is the number of outputs and m is the 
number of inputs, it is described by the following 
expression: 
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(4) 

and the process model M(s) is given as follows: 
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The matrix represented by the block named Virtual 

Outputs (VO) which aims to have an invertible square 
transfer M(s) matrix in order to perform the inversion 
operation to obtain the internal model controller. This 
transfer matrix M+(s) ((m-n), m) is made up of first-order 
systems with fast dynamics and unit static gain or constants, 
it is given as follows [6], [7]: 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.1, January 2021 

 

66

 

 

     
     

     

1,1 1,2 1,

2,1 2,2 2,

1 2

n n n m

n n n m

m m mm

M s M s M s

M s M s M s
M s

M s M s M s

  

  


 
 
   
  
 





   


                  

(6) 

The block called "elimination (m-n) outputs" its role is 
to remove excess (m-n) outputs using logical operators, as 
shown in the following figure 2 [7]: 
 

 

Fig. 2. Internal architecture of the elimination block (n-m) 
outputs 

 
From figure 2, K is the process feedback gain, stabilizes 

the unstable process G(s). This state feedback looping 
establishes a control law u(t), its equation is defined as 
follows [15]: 

( ) ( )u t Kx t                                                                            (7)        

The gain equation K is defined as follows [16], [17]:    

1K RP                                                                                (8)  
                                                                                                                                                                                                                                
knowing that P is a symmetric matrix. It is positive definite 
and a matrix R solutions of Linear Matrix Inequality (LMI) 
is describe by this equation [18], [19]: 

0T T TAP PA BR R B                                                       (9)                                                                                                                                 

where m nA  and n mB   denote respectively the 
state and command matrices of the system to be controlled.  
The structure of the controller CIMC(s) is shown in figure 3 
and its expression is given by equation (5) [2], [3]: 
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Fig. 3. Generalized structure of the IMC controller 

  1 2

m 1I ( )


IMC

K K
C s

K M s
                                                       

(10) 

With 1 mI ,  K a a R  allowing to invert the process 

model M(s) and to ensure the stability of the controller. The 
value of a must be chosen sufficiently large, which allows 
the controller CIMC(s) to be approximated by the inverse of 
the model [6], [7]. 

The gain matrix K2 makes it possible to compensate for 
the static errors of the system, its expression is described by 
the following equation: 

m 1
2

1

I (0)

(0)

K M
K

K M




                                                               

(11) 

where M (0) is the matrix of static gains of the process 
model M(s). 
 

3. Simulation Results  

The system studied is an example from the literature and 
described by the transfer matrix given by equation (9), this 
system having three inputs and two outputs: 
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The system G(s) is unstable, it admits four positive 
eigenvalues among these six eigenvalues  1 6i i


 

, which 

are as follows; 

1 2 3 4 5 61.33, 0.36, 0.25 , 1.36, ? .36, ? .25                  

Using the LMI technique, the P and R matrices for 

stabilizing the feedback control are described by the 

following equations: 

3.97 1.58 1.39 0.08 0.11 0.92
1.58 2.96 1.90 0.11 0.24 1.27
1.39 1.90 5.43 0.46 0.63 0.26
0.08 0.11 0.46 3.74 1.27 0.31
0.11 0.24 0.63 1.27 3.62 0.42

0.92 1.27 0.20 0.31 0.42 5.60

P

   
    
     

   
    
  

                       

(13) 

5.03 10.67 38.06 9.79 0.97 38.97
71.54 14.33 14.43 3.93 4.77 98.96

11.02 0.97 2.73 3.15 13.27 15.55
R

  
     
  

              

(14)  

 
The state feedback gain matrix K is defined as follows: 

19.31 30.45 11.34 9.45 9.93 18.77

73.49 79.98 54.80 18.46 24.64 17.61

10.82 12.10 7.78 2.05 0.14 2.16

K

     
       
   

  

(15) 
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Three simulation scenarios are considered: the first 
consists in studying the nominal case without the presence 
of external disturbances, the second concerns the study of 
the robustness of the IMC with respect to external 
disturbances and the third corresponds to the study of the 
robustness of the IMC in the frequency domain. 

 Scenario 1: Nominal case 

In this scenario, we will consider the class of linear 
overactuated systems stabilized by LMI in the nominal case 
(in the absence of external disturbances). The values of the 
gains K1 and K2 are respectively given as follows: 
 

1 3 2

30.03 16.02 3.22

0.1 , 103.51 201.41 13.19

31.04 3.23 0.65

   
    
  

K I K

 

Figures 4 shows the simulation results obtained from the 
closed-loop study system without IMC. The dynamics of 
the outputs y1(t) and y2(t) are stabilized, however 
unsatisfactory performance is obtained, on the one hand in 
transient state of slight oscillations at start-up, on the other 
hand, at steady state the outputs are not precise and they do 
not follow the instructions r1(t) and r2(t). 

 

Fig. 4. : Evolution of the responses y1(t) and y2(t) 
of the stabilized closed loop system 

Let us now consider the problem of following the 
trajectories of the system, we apply the internal model 
control using the controller CIMC(s). The numerical 
simulations of the different dynamics of the system are 
shown in figure 5, the desired set points r1(t)=0.5 and r2(t)=1, 
are followed by the outputs y1(t) and y2(t) with zero error in 
steady state. 

 
Fig. 5. Evolution of the responses y1(t) and y2(t) with IMC 

Figure 6 illustrates the evolution of the control signals 
u1(t) and u2(t). We notice that the signals converge towards 
negative finite values as soon as the outputs of the system 
y1(t) and y2(t) follow their reference instructions. 

 
Weak peaks at the level of control signals which appear 

at the initial instants due to the low value of has chosen it is 
equal to 0.1. If a increases the more the peaks increase. This 
is because the system at startup behaves like an open loop 
system subjected to a control vector CIMC(s) which is equal 
to a r(s). 

 

 
Fig. 6. Evolution of control signals u1(t) and u2(t) 

 Scenario 2: Robustness study with respect to 
external disturbances 

The objective of this scenario is to test the robustness of 
the proposed internal model controller with respect to 
external disturbances. 
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We apply directly to the outputs of the system three 
disturbance signals of the echelon type of amplitude 0.05 
from the instant 50s. The results of simulations of figures 7 
and 8, show that the disturbances were quickly rejected 
proving the robustness of the internal model control with 
respect to the external disturbances of overactuated linear 
systems. 

 

 
Fig. 7. Response of output y1(t) in the presence of 

disturbance 

 
Fig. 8. Response of output y2(t) in the presence of 

disturbance 
 

 Scenario 3: Study of the Robustness of IMC in the 
frequency domain 

In this scenario, we propose to test the robustness of the 
internal model control. We apply two sinusoidal references 
signals r1(t) and r2(t) which are described by the following 
equation: 

   
   

1

2

0.5sin 2 0.01

sin 2





 



r t f t where f Hz

r t f t
                      

(15) 

Figures 9 and 10 show the evolutions of the sinusoidal 
responses of the system. We notice that the outputs y1(t) and 
y2(t), follow their references r1(t) and r2(t) in amplitudes and 
in frequencies which makes it possible to note that the IMC 
satisfies in this case the assigned objectives. 

 

Fig. 9. Evolution of y1(t) for a sine set point with a 
frequency of 0.01Hz 

 

Fig. 10. Evolution of y2(t) for a sine set point with a 
frequency of 0.01Hz 

 
From figures 9 and 10, one can notice the capacity of the 
proposed IMC structure to ensure the reconstitution of the 
reference signals. 
 
 
4. Conclusion  
 

For internal model control, inverting the model of a 
process to be controlled is the most difficult step to achieve. 
In this paper, we propose a new method of performing the 
inverse of the models to design a new structure of IMC for 
unstable overactuated systems whose transfer matrices are 
singular. 
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In this paper we have developed a new control approach by 
internal model for unstable overactuated systems whose 
transfer matrices are singular. 
 

The new structure of IMC is proven by a simulation 
example through which we have shown its satisfactory 
performance as a guarantee of stability, precision as well as 
rapidity of system responses despite the presence of 
external disturbances and sinusoidal reference signals. 
hence the robustness of IMC. 

 
In perspective, we plan to improve the developed 

inversion technique, in particular the influence of the 
criterion on robustness and servo performance. It would 
also be beneficial to develop the transient behavior 
according to the criterion used and to develop inversion 
strategies of fuzzy models of nonlinear overactuated 
multivariable systems. 
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