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Summary 
The significance of high-quality development and green total 
factor productivity has attracted widespread attention and research, 
while few studies on green total factor productivity that considers 
the use of water resources have been conducted in the context of 
water shortages and water stress. In this study, the green total 
factor productivity of water use from 2005 to 2015 in mainland 
China is evaluated based on the global Malmquist-Luenberger 
productivity index. Results show that: (1) China’s green total 
factor productivity of water use has been improving since 2005 
with an annual global Malmquist-Luenberger productivity index 
of 1.0104. (2) At the regional level, the eastern zone in mainland 
China owns the highest green total factor productivity of water use, 
while that in the intermediate zone ranks last. (3) The green total 
factor productivity of water use in the southern region (1.0113) 
significantly higher than that in the northern region (1.0095), and 
also higher than the national average level in the same period. BPC 
index has been the most important incluencing factor of green total 
factor productivity of water use at both national level and regional 
level since 2011. 
 
Keywords: Green total factor productivity; water use; Data 
Envelopment Analysis, Global Malmquist-Luenberger index 

1. Introduction 

China is facing severe water use problems. As one of 
the countries with the poorest water resources per capita in 
the world, China’s water resources per capita are only 2,300 
cubic meters, equivalent to 25% of the world's average level. 
Judging from water resources per capita, there are currently 
16 provinces (autonomous regions and municipalities) in 
China whose per capita water resources are below the 
severe water shortage standard, with water resources per 
capita being less than 1,000 cubic meters. In addition to the 
shortage of water resources, China is also facing water-
related problems such as over-exploitation of groundwater 
and serious water pollution. In 2014, only 10.8% of China's 
202 prefecture-level and above cities had good groundwater 
quality. Efforts have been paid to ease China's water 
pressure. Pollutants discharged in wastewater exceeding 
national standards shall be charged according to the 

quantity and concentration of the discharged pollutants and 
according to regulations. At the same time, China has also 
adopted preferential tax policies to guide enterprises and 
individuals in their water use behavior. Real estate, land, 
vehicles and ships used by environmental protection units 
that support environmental protection undertakings and the 
national financial department for their own use are 
exempted from property tax and vehicle and vessel use tax; 
various sprinklers, garbage vehicles and ships used by 
environmental protection departments are exempt from 
vehicle and vessel use tax. 

Studies have also been launched on the utilization, 
especially the use efficiency of water resources. Using Data 
Envelopment Analysis (DEA) model, Deng et al. (2016) 
estimates water use efficiency (WUE) of 31 provinces in 
China from 2004 to 2013, finding that WUE is generally 
higher in economically developed provinces. Using a three-
stage DEA-Malmquist index method, Lu and Xu (2019) 
investigated the total factor productivity instead of WUE in 
China from 2008 to 2015. The same object was also been 
studied by Wang et al. (2018), yet only 30 provinces in 
mainland China were selected. On a finer scale, Pan et al. 
(2020) studied the water use efficiency of 17 prefecture-
level cities in Shandong Province, China from 2006 to 2015.  

Focusing on analysis of returns to scale, Gadanakis et 
al. (2015) evaluate agricultural water use of 66 horticulture 
farms based on different river basin catchments across 
England. They conclude that 47% of the farms operate 
under increasing returns to scale, indicating that farms will 
need to develop economies of scale to achieve input cost 
savings. Also using DEA method, Yan (2019) conducts an 
empirical analysis on investment efficiency of China’s rural 
water conservancy during the period of 2011 to 2015 in 31 
mainland provinces, coming to the conclusion that he 
average investment efficiency of China s rural water 
conservancy in each year during the study period is 0.732 
and the investment efficiency fluctuates for the same period, 
which is mainly caused by scale efficiency. Wang et al. 
(2015) explore the changing trajectories of agricultural 
water use and WUE in the Heihe River Basin in China. 
Irrigation WUE in crop production was also evaluated in 
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Louisiana, USA by DEA method (Gautam et al., 2020). 
Huong et al. (2020) assessed WUE of pig farming systems 
in Vietnam with 247 pig farms as decision making units 
(DMUs). 

In the industry field, Liu et al. (2020) investigates 
industrial WUE in mainland China during 2012-2015. The 
results indicate that the industrial WUE in China is 
improving with the efficiency value increasing. Wang et al. 
(2015) investigate WUE and related pollutants' abatement 
costs of regional industrial systems in China, verifying the 
great potentials to reduce water consumption and pollutants' 
discharges and their evident geographic disparities in China. 
In addition to single industry research, scholars have also 
conducted comparative research on WUE in multiple 
industries. For example, Liu et al. (2020) compared WUE 
and their influential factors in three industrials in China. 

Efficiency and productivity of wastewater treatment 
plants is also a research hotspot in recent years worldwide, 
which tended to take wastewater treatment plants and water 
utilities as the objects of research. Abbott et al. (2012) 
evaluated the different levels of productivity and efficiency 
of urban water and wastewater sectors in Australia. Fuentes 
et al. (2017) analyses the productivity of 199 wastewater 
treatment plants in Spain. Considering both input 
contractions and output expansions, Molinos-Senante et al. 
(2014) assess 22 water companies' productivity 
performance in England and Wales. Cetrulo et al. (2020) 
carry out water utilities performance of 77 Brazilian water 
utilities emphasizing the realization of the human right to 
water, water losses, quality of service, quality of available 
data, and the need for maximization of services provided.  

It can be concluded from the analysis above that the 
existing literature has conducted studies more on WUE 
from the dimensions of region and industry. In all related 
studies, DEA is the most commonly used method. However, 
but there are few studies on the total factor productivity 
(TFP) of water use. Therefore, this paper also applies DEA 
method to assess the provincial green total factor 
productivity of water use (GTFPW) in mainland China from 
2005 to 2015. Limited by the availability of the data, 30 
provinces except Tibet are taken as samples in this paper. 
This paper contributes to the existing literature in: (1) 
assessing the green total factor productivity of water use in 
mainland China and (2) using the GML index for 
assessment thus avoid the infeasibility problem. 

The remaining paper is organized as follows: Section 
2 presents the method as well as the variables and datasets 
used in this paper for assessing GTFPW. Section 3 green 
total factor productivity of water-use. Section 4 concludes. 

 
 
 

2. Methodology, Variables and Datasets 

2.1 Global Malmquist-Luenberger index 

 
By studying the existing literature, it is found that the 

DEA method, first proposed by Charnes et al. in 1978 
(Charnes et al., 1978), is one of the most commonly used 
methods in measuring efficiency and productivity. The first 
DEA model, Charnes-Cooper-Rhodes (CCR) model, 
established by the linear programming method, laid the 
foundation for the DEA method and its application. The 
constant return to scale (CRS) assumption on which the 
CCR model based does not conform to the nature of actual 
production activities, Therefore, Banker et al. (1984) further 
extended the CCR model and proposed the Banker-
Charnes-Cooper (BCC) model established under the 
variable return to scale assumption. However, none of these 
traditional DEA models can solve the unavoidable 
environmental pollution problems in the production process. 
For example, in water-use field, economic outputs are 
always accompanied by the discharge of wastewater 
generated during the use of water resources and the 
pollutants in wastewater. To solve this problem, Chung et 
al. (1997) proposed the directional distance function (DDF) 
to take undesirable outputs in the efficiency and 
productivity assessment when using DEA method. 

 
Denote that there are n  DMUs over T  time periods 

( 1, ,t T  ), for jDMU ( 1, ,j n  ) it can obtain 

p  desirable outputs  1, , py y y  and q  

undesirable outputs  1, , qu u u  by using m  inputs 

 1, , mx x x . Therefore, at time t , the inputs and 

outputs of all the DMUs can be defined as , ,X Y U  Then, 

the production possibility set (PPS) at time t  can be defined 
by:  

The GMLPI under CRS assumption can be 
decomposed into different components of productivity 
growth: 

 

   , , , , 1, ,t t t t t t tPPS X Y B X prcan oduce Y B t T   . 
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where tTE  (technical efficiency, TE) represent the 

technical efficiency at time t , 
, 1t tEC 

 (efficiency change, 
EC) represent the efficiency change from time t  to 1t  , 

, 1t t
tBPG   (best practice gap, BPG) represents the best 

practice gap between the contemporaneous technology 

frontier and the global technology frontier, and 
, 1t tBPC 

 
(best practice gap change, BPC) measures the technical 
change from time t  to 1t  . 

, 1 1t tEC    means the increase of the technical 

efficiency of jDMU  during the period t  to 1t  , 

, 1 1t tEC    means the decrease of the technical efficiency 

of jDMU  during the period t  to 1t  , 
, 1 1t tEC    

means the invariability of the technical efficiency of 

jDMU  during the period t  to 1t  .
, 1 1t tBPC    

means the increase of the best practice of jDMU  during 

the period t  to 1t  , 
, 1 1t tBPC    means the decrease 

of the best practice of jDMU  during the period t  to 

1t  , 
, 1 1t tBPC    means the invariability of the best 

practice of jDMU  during the period t  to 1t  . 

2.2 Variables and datasets 

 
Input-output indicator system for GTFPW assessment 

is constructed according to relevant research in this research 
field (Table 1). Input indicators are necessary inputs in the 
production process, including total investment in fixed 
assets, employed persons, total energy consumption, and 
total water consumption. Output indicators are divided into 
two categories, one is desirable output, and the other is 
undesirable output. Among them, desirable output is the 
desired output during the production process. The more the 
desirable output, the better. In this paper, gross domestic 
product (GDP) is selected as the representative of desirable 
output. Undesirable outputs are expected to be as less as 
possible in the production process. In this paper, total 
wastewater discharge, chemical oxygen demand (COD) 
emission in wastewater, and ammonia nitrogen (AN) 
emission in wastewater are selected as representatives of 
undesirable output when measuring GTFPW. The 
economic indicators used in the calculations in this paper 
are all converted into comparable prices based on the GDP 
price index (2005=100). 

 

 

Table 1. Input and output variables for assessing GTFPW 

Dimension Variable Unit 

input 

total investment in fixed assets billion yuan 

employed persons 10,000 persons 

total energy consumption 
10,000 tons of standard  
coal equivalent (SDE) 

total water consumption billion tons 

desirable output GDP billion yuan 

undesirable output 

total wastewater discharge billion tons 

COD emission in wastewater 10,000 tons 

AN emission in wastewater 10,000 tons 
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3. Empirical Results and Analysis 

3.1 Green total factor productivity of water use on the 
country level 

 
From 2005 to 2015, the average value of GMLPI of 

China's GTFPW was 1.0104, indicating a trend of 
continuous improvement of the overall efficiency water use 
in the production process. Specifically, China's GTFPW has 
shown a sustained growth trend from 2005 to 2009, while 
significant fluctuations occurred during the period from 
2009 to 2015. There were 4 periods (i.e., 2005-2006, 2006-
2007, 2011-2012, 2013-2014) when the GMLPI values of 
GTFPW were less than 1, indicating the regression of 
GTFPW in these periods has regressed compared with the 
previous years. In other periods, the GMLPI values of 
GTFPW were greater than 1, indicating an enhancement of 
GTFPW in these periods has regressed compared with the 
previous years. The maximum GMLPI value of GTFPW 
appeared in the period of 2010-2011, achieving the greatest 
improvement over the previous year with the GMLPI value 
of 1.0625. On the contrary, the minimum value GMLPI 
value of GTFPW appeared in 2011-2012, indicating the 
GTFPW in 2012 was significantly degraded from the 
previous year. 

 
The GMLPI value of China's GTFPW from 2005 to 

2015 was affected to a greater extent by the BPC index not 
only in terms of value but also the trends of change, while 
the EC index had a smaller impact on China's GTFPW. 
Similar to the GMLPI, the BPC index continued to grow 
steadily from 2005 to 2009, and fluctuated continuously 
from 2009 to 2015. In 2005-2009, the BPC index was also 
less than 1 in 2005-2006 and 2006-2007, and it was greater 
than 1 in 2007-2008 and 2008-2009, indicating that China's 
GTFPW best practice levels were lower than that in the 
previous years in 2006 and 2007, whereas the best practice 
level of China's GTFPW was higher than that in the 
previous years in 2008 and 2009. It is worth noting that 
although the BPC index is very similar to GMLPI, the 
amplitude of fluctuation of BPC index is higher than that of 
GMLPI over the years. In 2005-2015, the change direction 
of EC is completely opposite to that of GMLPI and BPC 
index. EC index continued to decline from 2005 to 2009. 
Although there have been fluctuations in 2009-2015, the 
direction of change is opposite to that of GMLPI and BPC 
index (Figure 3). 

3.2 Green total factor productivity of water use on the 
regional level 

 
This section analyses the regional GTFPW in China 

through two regional classification methods: one is to 
divide the Chinese mainland into three regions according to 

the eastern, the intermediate, and the western zones, and the 
other is to divide the Chinese mainland into two regions 
according to the north and south regions. 

 
Among the three zones, the eastern region has the 

highest annual GMLP from 2005 to 2015 with 1.0136, 
which is also higher than the national average level in the 
same period. However, the leading advantage of the GMLPI 
in the eastern zone relative to the intermediate and western 
zones was only obvious in 2005-2010. Since 2011, 
especially since 2013, the GTFPW in the eastern region has 
began to lost its leading position relative to the central and 
western regions. In terms of the influencing factors of 
GMLPI, the GMLPI in the eastern region in 2011 and 
before was more affected by the EC index. After that, BPC 
has become a more important factor affecting GMLPI in the 
eastern region. From this phenomenon, it can be inferred 
that the water-use type in the eastern zone before 2011 can 
meet the requirements of efficiency improvement, under 
which only the improvement of pure technical efficiency 
can achieve the increase of total factor water efficiency. 
However, the original production method has been unable 
to meet the improvement of water-use efficiency in the 
eastern region since 2012. The improvement of efficiency 
needs to rely on changes in water use methods. 

 
The GMLPI of GTFPW in the intermediate zone ranks 

last among the three major zones with an average annual 
GMLPI value of 1.0070. During 2005-2015, the 
intermediate zone experienced a decline in GTFPW level 
nearly half of the time with the corresponding GMLPI value 
was less than 1. However, the intermediate zone has made 
significant progress in the second half of 2005-2015. In the 
two periods of 2010-2011 and 2012-2013, the GMLPI of 
GTFPW in the intermediate zone was higher than that of the 
eastern and the western zones, ranking first in mainlan 
China. In terms of the influencing factors of the GTFPW, 
the GMLPI value in the intermediate zone is always more 
affected by the BPC index. Both the value and the changing 
direction and trend of GMLPI are very similar to the BPC 
index, showing that the intermediate zone has a low level of 
GTFPW is due to the backwardness of water use. 

 
The GMLPI of GTFPW in the western zone is lower 

than that of the eastern zone but higher than that of the 
intermediate zone, but it is also lower than the national 
average. The western zone performed unstable in the early 
period from 2005 to 2015, sometimes higher than the 
eastern zone, and sometimes became the zone with the 
lowest GTFPW level among the three zones. However, the 
GTFPW level in the western zone has reached a relatively 
high level since 2012, with the GMLPI ranking first among 
the three zones in the eastern, the intermediate, and the 
western zones, which has also a clear leading advantage 
relative to the national average over the same period. In 
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terms of the influencing factors of GTFPW, the value of 
GMLPI in the western zone depends on both the EC index 
and the BPC index, but the correlation with the BPC index 
in the direction of change is higher than that of the EC index. 

 

4 Conclusions and discussions 

This paper assessed the GTFPW and its changing 
process in mainland China by DEA approach. Four input 
variables (capital, labour, energy consumption, and water 
consumption), one desirable output variable (GDP), and 
three undesirable output variables (total wastewater 
discharge, COD emission in wastewater, and AN emission 
in wastewater) for the evaluation of GMLPI and its 
decompositions from 2005 to 2015. The main findings are 
as follows: 

 
(1) China's overall GTFPW level continued to improve 

with an average annual GMLPI value of 1.0104, indicating 
a continuous improvement of WUE during 2005 to 2015. 
China's GTFPW has shown a sustained growth trend from 
2005 to 2009, while significant fluctuations occurred during 
the period from 2009 to 2015. In terms of influencing 
factors of GTFPW, China's GTFPW from 2005 to 2015 was 
affected to a greater extent by the BPC index not only in 
terms of value but also the trends of change, while the EC 
index had a smaller impact on China's GTFPW. 

 
(2) In terms of regional GTFPW, the eastern region has 

the highest annual GMLP from 2005 to 2015 with 1.0136 
in the eastern, the intermediate, and the western zones. The 
level of GTFPW in the eastern zone is also higher than the 
national average level in the same period. The level of 
GTFPW in the intermediate zone ranks last among the three 
major zones with an average annual GMLPI value of 1.0070. 
During 2005-2015, the intermediate zone experienced a 
decline in GTFPW level nearly half of the time with the 
corresponding GMLPI value was less than 1. GTFPW in the 
western zone is lower than that of the eastern zone but 
higher than that of the intermediate zone, but it is also lower 
than the national average. 

 
(3) The average GMLPI of GTFPW in the southern 

region (1.0113) significantly higher than that in the northern 
region (1.0095), and also higher than the national average 
in the same period (1.0104). Although the average GMLPI 
values of the southern region are higher than that of the 
northern region, the GTFPW levels of the southern region 
lag behind that of the northern region in most years. GMLPI 
of GTFPW in the southern region is affected more by BPC 
index in most of the years, while GMLPI of GTFPW in the 
north region is affected more by EC index in 2005-2010 and 
by BPC index in 2011-2015. 
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