
 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

158

Manuscript received February 5, 2021
Manuscript revised February 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.2.18

Load Balancing Approach to Enhance the Performance
in Cloud Computing

Iehab AL Rassan† and Noof Alarifi 2,

Department of Computer Science, College of Computer and Information Sciences

King Saud University, Riyadh, Saudi Arabia

Abstract:
Virtualization technologies are being adopted and broadly
utilized in many fields and at different levels. In cloud computing,
achieving load balancing across large distributed virtual
machines is considered a complex optimization problem with an
essential importance in cloud computing systems and data
centers as the overloading or underloading of tasks on VMs may
cause multiple issues in the cloud system like longer execution
time, machine failure, high power consumption, etc. Therefore,
load balancing mechanism is an important aspect in cloud
computing that assist in overcoming different performance issues.
In this research, we propose a new approach that combines the
advantages of different task allocation algorithms like Round
robin algorithm, and Random allocation with different threshold
techniques like the VM utilization and the number of allocation
counts using least connection mechanism. We performed
extensive simulations and experiments that augment different
scheduling policies to overcome the resource utilization problem
without compromising other performance measures like
makespan and execution time of the tasks. The proposed system
provided better results compared to the original round robin as it
takes into consideration the dynamic state of the system.
Key words:
Cloud Computing, Load Balancing, Round Robin, Virtual
Machine

1. INTRODUCTION

Within the recent decade, major innovations in the
field of network technology have emerged, that potentially
add more convenience to daily life practices not only on an
enterprise level but on an individual level as well. Cloud
computing technology has witnessed significant advances
in its implementation and become widely adopted by both
private and public sectors since it provides different
resources over the Internet. Cloud computing allows
sharing hardware and software resources like networks,
servers, storage, software, applications, etc. all over the
Internet since it is an Internet-based computing model [1].

It was obvious recently that a lot of organizations and
enterprises are transferring their workloads to the cloud.
Therefore, providing the highest computational
performance for the intended users is mandatory. However,

one of the most common problems that affects the
performance is the overloading or underloading the cloud
system with different load of tasks. In cloud systems,
different nodes might be assigned with uneven loads of
tasks where some nodes are overloaded and other nodes
underloaded, which may affect the overall performance
and cause multiple issues like longer execution time,
machine failure, high power consumption, etc. Therefore,
load-balancing mechanism is an essential aspect in cloud
computing, which is concerned with detecting the nodes
that are overloaded or underloaded with tasks and balance
the load among them.

Using an efficient load balancing mechanism is an

important aspect in cloud computing that assists in
overcoming different performance issues. In this research,
a proposal for a new approach that combines the
advantages of Round robin algorithm with a threshold
technique. The proposed design expects to enhance
scheduling policies to overcome the resource utilization
problem without compromising other performance
measures: makespan and completion rate.

One of the most significant aspect of cloud computing

is the virtualization technology where there is a several
virtual machines that might run different operating system
on one physical host. Virtualization is achieved through
the help of hypervisor; also called virtual machine monitor
(VMM) which can be placed over the hardware directly or
upon the operating system of the host machine. Different
tasks are allocated to different physical machines then
allocated to different virtual machines on the respective
host or physical machine. The virtual machine migration is
the process of transferring a virtual machine to another
physical machine in order to improve the resource
utilization in case of the physical machine was overloaded.
The task migration is the process of transferring a task
from one virtual machine to another virtual machine either
on the same physical machine or to a virtual machine on
another physical machine. Virtual machine migration and
task migration play an important role in load balancing in
cloud computing. Generally, the load balancing in cloud

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

159

computing is concerned with balancing the load among
different nodes that can be either virtual machines or
physical machines which have uneven amounts of loads
[2].

The reminder of this paper organized as follows:
section 2 includes a detailed background about the cloud
computing architecture, and load balancing algorithms.
Section 3 presents a review of the existing works on load
balancing in cloud systems. Section 4 includes the
proposed approach for achieving the load balance among
different targeted nodes. Section 5 explains the results and
discussion of the research . Section 6 is the conclusion of
the paper.

2. BACKGROUND

In this section, we have highlighted a variety of
concepts related to the load balancing in cloud computing.
Section 2.1 presents cloud computing architecture and its
components. Section 2.2 includes a review of the existing
load balancing algorithm.

2.1. Cloud Computing Architecture

Figure 1 shows the architecture of cloud computing

that consists of the layers of hardware resources, which
includs network bandwidth, main memory, processor, and
secondary storage. Hypervisor such as Denali, VMWare,
Xen, UML, or Virtual Machine Monitor will act as a
crossing point between the Virtual machines and the guest
operating system. This Virtual Machine supports
numerous operating systems that simultaneously execute
applications in only one hardware platform. Various
heterogeneous applications run on every virtual machine.
{VM1; VM2; VM3; ….; VMn} be the set of VMs used in
the cloud hosts [1].

The data center of the cloud consists of fixed number

of various physical hosts. The identification of every host
is through its lists of processing elements, bandwidth,
identification number, memory size, and speed for
processing in terms of MIPS. Every host contains
numerous virtual machines. Just like the host, the virtual
machine has the same attribute. The activities arriving
from various users to the serial loader or central load
balancer for mapping of the cloud resources. Every
computing node that is the virtual machine performs tasks
execution at a time. In case there is a request, the load
balancer allocates it to one of the virtual machines, if there
are enough resources are available to complete within a
specific period or else the task will have to wait if the SLA
allows. Once the task’s execution is completed, the
resources that are used in the corresponding virtual
machine is released and can be used to form a new virtual
machine that can be used to work on a new task [1].

Cloud computing is concerned with services, software,
and hardware provisioning from third parties via the use of
a network. Any cloud computing system contains
substantial components like datacenter, distributed servers,
as well as clients, Figure 2 shows the components of cloud
computing [3]:

a) Datacenter: is a group of servers hosting various
applications. The end-user links to the datacenter to
subscribe to various applications. It may be on a big
remoteness from the clients’ position.

b) Distributed servers: are part of a cloud that are
accessible through the internet. The server hosts various
applications, while using cloud applications, the users may
feel that they are using these applications from their own
computers.

c) Client: the end-users communicate with the
clouds for information management associated with the
cloud.

2.3. Load Balancing Algorithms

Figure 2. Overview of cloud components

Figure 1. Architecture of cloud computing

 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

160

Based on the current state of the system,
load-balancing algorithms can be divided into two
categories [4]:

 Static: decisions on the load balancing doesn’t
depend on the current state of the system. It
needs prior information about the average
behavior of the system.

 Dynamic: decisions on load balancing are made
depending on the current state of the system,
which means that more benefits can be
achieved compared to the static policies. It is
more complex since no prior information is
used.

2.3.1. Brief review of the current algorithms of load
balancing

 Round Robin

The processes in this algorithm are divided between all
processors. In a round robin order, every task is allocated
to a processor. The allocation process kept locally
autonomous of the distributions from distant processors.
The workload allocation amongst the processors are the
same but the processing time of each job is different, one
job may take longer execution time than the others, at any
time some nodes may be loaded heavily, and others
continue to be idle or lightly loaded. Round robin is a
static algorithm that does not need inter process
communication, which results in a less system overhead
[5].

 Central queuing
Central queuing algorithm is a dynamic allocation

algorithm. Each new arriving activity is inserted into the
queue. Once the queue manager receives the requests for
an activity, it deletes the first activity from the queue and
directs it to the requester. If there is no activity ready in the
queue, the request is buffered till a new activity is
available. In case a new activity comes to the queue
whereas there are requests that have not been answered,
the first request is detached from the queue and a new
activity is allocated to it [6].

 Minimum execution time
 It is also known as User Directed Assignment as well

as Limited Best Assignment. Both dynamic and static
strategies are used in this heuristic technique. The
minimum execution time algorithm was created to assign
every task to a virtual machine based on the least
execution time by using the computation of Expected time
to Compute (ETC) in order to execute the entire tasks
within a given time for execution [1]. Min–Min

The primary procedure of this technique is to select the
task with the smallest size as well as a virtual machine
with the least resource or capacity. Once the task
allocation to a virtual machine is done, the task is deleted
from the queue and carry on with the allocation of all tasks

that are unassigned. This algorithm is appropriate for
distributed systems that are only small-scale. The
improved Min-min algorithm will optimize the make-span
as well as improve the utilization of resource. The load
balance improved Min-Min algorithm will divide tasks at
first into two categories A, B according to their priority. B
is only for the tasks that are lower, and A is for tasks of
greater priority. All tasks of A are scheduled by the
algorithm, and then the tasks in B. The function of load
balancing is to maintain the load on every specific
machine to produce a better schedule [1].

 Min-Max algorithm
It is the same as the Min-Min. In the cloud computing,

the primary procedure of Max-Min is to assign the task
that is larger in size to a virtual machine with the least
resource or capacity. Once the tasks distribution to a
virtual machine is done, it is deleted from the queue then
continue with the rest of unallocated tasks. This algorithm
is appropriate for distributed systems of small-scale only.
To accomplish load balancing, the improved Max-Min that
holds a task table status to estimate the virtual machine’s
load in real-time and estimated completion time of the
tasks. The proposed algorithm Elastic Cloud Max-Min is
betters as compared to the Round Robin method in term of
average task pending time [1].

3. PREVIOUS WORK

Achieving load balancing across large, distributed
servers is considered a complex optimization problem with
an essential importance in cloud computing systems and
data centers. Existing schedulers often incur a high
communication overhead when collecting the data
required to make scheduling decisions, hence delaying job
requests on their way to the executing servers.

Many approaches have been developed to overcome
the problem of uneven load distribution among nodes in
cloud computing. An approach for load balancing is
proposed in [7], which is based on Bat Algorithm where it
is supposed to find the optimal host as well as VM for any
incoming task. The BAT algorithm is enforced by a load
balancer in case there is a task that has arrived in the job
pool where the algorithm will select a server that matches
the incoming task. The main factor considered when
applying the BAT algorithm is the type of the task and the
required resources for the excellent assignment execution.
The current server is assigned the task after the necessary
server identification. In case of a load that is higher than
servers available, there is task redistribution to more than
one server. The approach of the BAT algorithm has been
applied for load balancing performance and reducing the
time of response without delay. The proposed BAT
algorithm was evaluated by comparing it with fuzzy and
GSO and round-robin.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

161

In [8] , the authors introduced a scheduling approach
based on Load Balancing Ant Colony Optimization
(LBACO) algorithm. The main goal was trying to balance
the system load and reducing the makespan, which is the
total time needed to complete all tasks submitted to the
system. For the evaluation process, the results of the
proposed LBACO algorithm was compared to FCFS (First
Come First Serve) and the basic ACO (Ant Colony
Optimization) using simulations.

Different approach is proposed in [9] that consider
combining the fuzzy logic method and the Glow Worm
Swarm Optimization method (GSO). Fuzzy machine logic
is used for assigning the fixed-rate arrived tasks to virtual
machines; contrary, the GSO technique is applied.
Excellent results have been realized by using Fuzzy logic
and GSO load balancing than when using the round-robin
technique.

The work in [10] intends to measure the optimization
of cloud computing performance. Hence, there are two
significant approaches to scheduling. There are two
primary scheduling techniques applied with the help of
Cloudsim simulator: Round Robin and the first come first
served. The round-robin approach is a time-shared concept
where a fixed amount of time is assigned to a given job for
all resources. The FCFS approach works depending on the
space shared manner whereby tasks are allocated
depending on their appearance in the array. The two
techniques’ performance are compared and measured. The
comparison of the performance calculations is done by the
use of a simulation trace where the average processing
time, average waiting time and utilization of the CPU
computations are considered. The round-robin approach is
proven to be more efficient in all criterions.

In [11] the authors proposed a hybrid scheduling for
the different application type: workflows and batch jobs.
The suggested algorithm takes into consideration the
clustering of available resources. Execution of jobs takes
place in two phases: there is tasks allocation to resources
in groups in the first phase. The second phase algorithm
scheduling is classical for every resources group. The
algorithm is recommended for heterogeneous distributed
computing, such as high-performance systems where
exists various requirements for modelling applications.
Authors evaluated the performance in a Cloudsim tool
with respect to load-balancing, cost savings, workflow
assurance dependency and efficiency of computation, and
investigated these metrics at runtime.

As virtualization technologies are being adopted and
broadly utilized in many fields and at different levels, it
has a huge significance and there must be an efficient
virtual machine load balancing and migration schemes to
serve as a tool for managing cloud resources and achieve
the primary goals like maintaining the load balance,
reducing the failure possibilities, resource utilization and
so on.

4. METHODOLOGY

In cloud computing, load balancing is required to

distribute the workload evenly across all the nodes. Using
a proper load balancing algorithm leads to minimizing the
resource consumption and overprovisioning of resources,
which improves the performance of the system in different
aspects and helps to achieve higher user satisfaction.

In this paper, we propose a method that combines the
advantages of Round robin with a threshold technique.
Thus, the proposed scheduler enhances scheduling policies
to overcome the resource utilization problem and to reduce
the makespan of the system. An overview of the
environment and its components is presented in the next
subsection.

4.1. System overview and main components

A typical environment for modeling cloud systems
usually involves datacenters, set of host machines and a set
of virtual machines.

 Datacenter: is centralized place that involves
numerous servers where computing and
networking is taking place in the cloud.

 Host: Host machines are connected to the
datacenter. Hosts involves set of virtual
machines.

 VM: is virtual machine that is applied on a
physical machine. Every virtual machine may
run different OS than the physical machine
and have their own resources.

There are an input of tasks (T) from
, and numbers of virtual machines

(VM) from . Load balancer
is essentially based on two characteristics. First, assign
load to the best candidate node, and second, migration of
load from heavily loaded VMs to lightly loaded VMs.

4.2. Proposed work

Figure 3 shows the distribution of tasks across virtual

machines using round robin in one host. Round Robin is a
simple scheduling algorithm as it distributes the load
evenly among the existing VMs in a round robin style.

Figure 3. Tasks distribution using RR in a host

 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

162

Round Robin results in less system overhead; however, it
does not take into consideration the different amount of
resources that were allocated to different VMs, which in
return might cause some lacking in other performance
metrics like makespan, resource utilization and completion
rate of the tasks.

Round robin can be adequate in small systems when all

VMs have the same resource configurations. However, in
this approach we assume that all VMs have different
resources. Thus, after the distribution of the first load in a
round robin style, the utilization of the resources is
calculated, then we are going to use the weighted round
robin algorithm, where each VM is assigned with a weight
that indicates its amount of available resources and based
on this weight the load will be distributed in a round robin
style. This assures the even distribution of load. However,
it doesn’t necessarily improve the makespan or completion
rate as the load might be so heavy on some or all existing
VMs.

Therefore, a threshold is defined, when this threshold
is exceeded, then the tasks should be migrated either to
another VMs in the same host, or to a VM in another host.
First, the VMs in the same host will be checked out as
some tasks might have finished their execution, if not then,
the tasks should be migrated to another host.
In case all the VMs on the same host are overloaded, the
queue of the incoming tasks should stop assigning these
tasks to the VMs until they get lighter in load or migrate

these tasks to another VM on another host. The host will
be picked up according to its load-level state, which is
kept and updated in a table in the datacenter. The state of
the host is represented by the number of the idle VMs
divided by the total number of VMs on that host. which
will provide a percentage that represent the state of the
host. The states of different hosts in the datacenter will be
arranged in ascending order where the lightest-loaded host
is placed on the top, and this order is updated in every time
step.

4.3. Evaluation

There are different performance metrics that can be
affected from the mapping of tasks to the virtual machines.
The following performance metrics are considered in
analyzing the performance of the proposed load balancing
approach:

 Completion Rate:

The rate of the completed jobs will be
calculated as the ratio between the number of
requested jobs and the number of completed jobs:

 Makespan:

This is the amount of time spent between the start
and end of all tasks executed by the system. In this case,
makespan is the total or maximum time taken by the host
to run all tasks. Makespan (MS) is the maximum of ,
calculated as follows in [1] :

First the Expected Time to Compute is calculated
as:

 , where is the length of the task in

terms of Million instructions (MI), and is the
processing speed of the VM in terms of MIPS. Then
the Execution Time of VM is calculated as:

We assume that the metrics of the proposed

system will provide better results compared to the original
round robin as it takes into consideration the dynamic state
of the system.

5. RESULTS AND DISCUSSIONS

In this section, we are providing an experimental
result in order to achieve the objectives of this research.

Figure 4. Flowchart of the proposed work in one host

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

163

For implementation, we used CloudSim, which is a tool
(library) that works with any programming IDEs that
support Java, in our case, we are using Eclipse. CloudSim
enables modeling and simulation of cloud computing
systems [5],[19].

Table 1. Simulation Parameters

5.1 Simulation Setup

We run simulations using different number of
tasks (60, 100, 1000) with random complexities, first with
5 VMs, 10 VMs , and then with 15 VMs. These VMs have

different processing power in terms of CPU (600 to 1000
MIPS). The bandwidth is 1000 MBPS, and for each VM
there is 1 CPU. We run these parameters consecutively to
measure the makespan of the system and the average
execution time in different scenarios. Table1 summarizes
these parameters.

5.2 Simulation Results
We performed eight experiments using different

values of tasks and VMs. In each experiment, we will
input different number of tasks between 60 to 1000 task
with: 5 VMs, 10 VMs, 15 VMs consecutively. In the first
experiment, we used Round Robin mechanism to allocate
the tasks to VMs and using the VM utilization as a
threshold with sorting the hosts in ascending order
according to their utilization. In the second experiment, we
used Round Robin mechanism to allocate the tasks to VMs,
and using the VM utilization as a threshold, but without
sorting the hosts. In the third experiment, we used Random
mechanism to allocate the tasks to VMs, and using the VM
utilization as a threshold with sorting the hosts in
ascending order according to their utilization. In the forth
experiment, we used Random mechanism to allocate the

tasks to VMs, and using the VM utilization as a threshold,
but without sorting the hosts. In the fifth experiment, we
used Random mechanism to allocate the tasks to VMs, and
using the VM’s allocation count as a threshold with sorting
the hosts in ascending order according to their utilization.
In the sixth experiment, we used Random mechanism to
allocate the tasks to VMs, and using the VM’s allocation
count as a threshold without sorting the hosts. In the
seventh experiment, we performed the basic LCM
algorithm. In the eighth experiment, we performed the
original Round Robin algorithm. Table 2 shows the
experiments that we are simulating in this section.

Table 2. Simulation experiments

5.2.1 Experiment 1 (RRH)
In this experiment, we used Round Robing

Allocation with Host Sorting (RRH). The load distribution
is performed using Round Robin. Then the VM utilization
is calculated. Then the VM’s CPU utilization is calculated
by summing all the amount of CPU utilized by each task
on that VM, if the amount of utilized resources is bigger
than the threshold (75% of VM’s CPU) then it is
considered overloaded, and if the VM utilization is less
than (25% of VM’s CPU) then the VM is considered under
loaded. In case, of overload, the tasks will be migrated to
another VM, either on the same or different host, and the
hosts are sorted in ascending order according to their
utilization. Table 3 and figure 5 show the results of this
experiment.

Table 3. RRH Results in term of makespan and average
execution time

Simulation Parameters

Parameter Value Range

Number of
tasks

(60, 100, 1000) (25 to 8000 KB)

Number of
VMs

(5,10,15) (600 to 1000
MIPS)

Bandwidth 1000 MBPS

Number of
CPU per

VM

1

RAM per
VM

512

Experi
ment

Allocation
Mechanism

Threshold
Value

Host
Sorting

1 Round Robin VM CPU
Utilization

Y
es

2 Round Robin VM CPU
Utilization

N
o

3 Random VM CPU
Utilization

Y
es

4 Random VM CPU
Utilization

N
o

5 Random VM’s
Allocation
Count

Y
es

6 Random VM’s
Allocation
Count

N
o

7 Least
Connection
Mechanism

- -

8 Original Round
Robin

- -

 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

164

Figure 5. Representation of RRH Results in term of makespan
and average execution time

5.2.2 Experiment 2 (RRV)

In this experiment, we used Round Robing
Allocation to VMs (RRV). The load distribution is
performed using Round Robin. Then The VM’s CPU
utilization is calculated by summing all the amount of
CPU utilized by each task on that VM, if the amount of
utilized resources is bigger than the threshold (75% of
VM’s CPU) then it is considered overloaded, and if the
VM utilization is less than (25% of VM’s CPU) then the
VM is considered underloaded. In case, of overload, the
tasks will be migrated to another VM either on the same or
different host. In this experiment, the tasks will be
allocated to any Idle VM without host sorting. Table 4 and
figure 6 show the results of this experiment.

Table 4. RRV Results in term of makespan and average execution time

Figure 6. Representation of RRV results in term of makespan

and average execution time

5.2.3 Experiment 3 (RAH)
In this experiment, we used Random Allocation

with Host Sorting (RAH). The load distribution is
performed by using Random Allocation. Then The VM’s
CPU utilization is calculated by summing all the amount
of CPU utilized by each task on that VM, if the amount of
utilized resources is bigger than the threshold (75% of
VM’s CPU) then it is considered overloaded, and if the
VM utilization is less than (25% of VM’s CPU) then the
VM is considered underloaded. In case, of overload, the
tasks will be migrated to another VM either on the same or
different host, and the hosts are sorted in ascending order
according to their utilization. Table 5 and figure 7 show
the results of this experiment.

Table 5. RAH Results in term of makespan and average execution time

Figure 7. Representation of RAH Results in term of makespan and
average execution time

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

165

5.2.4 Experiment 4 (RAV)
In this experiment, we used Random Allocation

to VMs (RAV). The load distribution is performed by
using Random Allocation. Then The VM’s CPU utilization
is calculated by summing all the amount of CPU utilized
by each task on that VM, if the amount of utilized
resources is bigger than the threshold (75% of VM’s CPU)
then it is considered overloaded, and if the VM utilization
is less than (25% of VM’s CPU) then the VM is
considered underloaded. In case, of overload, the tasks will
be migrated to another VM either on the same or different
host, in this experiment, the tasks will be allocated to any
Idle VM without host sorting. Table 6 and figure 8 show
the results of this experiment.

Table 6: RAV Results in term of makespan and average

execution time

Figure 8. Representation of RAV results in term of makespan
and average execution time

5.2.5 Experiment 5 (RCH)
In this experiment, we used Random Allocation

and Count with Host Sorting (RCH). Table 7 and figure 9
show the results of this experiment. The load distribution
is performed by using Random Allocation. This
mechanism uses the count of allocations on each VM to
define the threshold, if the allocation count is bigger than
75% of the average allocations to all VMs, then the VM is
overloaded, if it is less than 25% then it is underloaded.

Table 7. RCH Results in term of makespan and average
execution time

Figure 9. Representation of RCH Results in term of makespan
and average execution time

It uses the number of allocations counts on each VM and
assign the new tasks to the VM that has the least number
of requests. In case, of overload, the tasks will be migrated
to another VM either on the same or different host, and the
hosts are sorted in ascending order according to their
utilization.

5.2.6 Experiment 6 (RCV)
In this experiment, we used Random Allocation and Count
to VMs (RCV). The load distribution is performed by
using Random Allocation. This mechanism uses the count
of allocations on each VM to define the theshold, if the
allocation count is bigger than 75% of the average
allocations to all VMs, then the VM is overloaded, if it is
less than 25% then it is underloaded. it uses the number of
allocations counts on each VM and assign the new tasks to
the VM that has the least number of requests. In case, of
overload, the tasks will be migrated to another VM either
on the same or different host, in this experiment, the tasks
will be allocated to any Idle VM without host sorting.
Table 8 and figure 10 show the results of this experiment.

Table 8: RCV Results in term of makespan and average
execution time

Figure 10. Representation of RCV Results in term of makespan

 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

166

and average execution time

5.2.7 Experiment 7 (LCM)

In this experiment, we used Least Connection
Mechanism (LCM). which is an algorithm for load
balancing that is considered as a dynamic scheduling
algorithm. It has to calculate the number of connections
(allocation count) to each VM dynamically then the
allocation count number of every VM is recorded by the
load balancer. The allocation count number grows when a
new task is transmitted to the VM and is decreased when
the task finishes its execution. Multiple simulation runs
were performed with different values of tasks and VMs. In
each run we input different number of tasks (60 -100 -
1000) tasks with different number of VMs (5 VMs, 10
VMs, 15 VMs) consecutively, in order to measure the
makespan and the average execution time. Table 9 and
figure 11 show the results of this experiment.

Table 9. Least Connection Results in term of makespan and

average execution time

Figure 11. Representation of LCM eesults in term of
makespan and average execution time

5.2.8 Experiment 8 (RR)

In this experiment, we used the Original Round
Robin (RR), which is a simple scheduling algorithm, it
distributes the load evenly among the existing VMs in a
round robin style, multiple simulation runs were
performed with different values of tasks and VMs. In each
run we input different number of tasks (60 -100 - 1000)
tasks with different number of VMs (5 VMs, 10 VMs, 15
VMs) consecutively, in order to measure the makespan and
the average execution time in Round Robin case. Table 10
shows the results of this experiment. Figure 12 represents
the RR results mentioned in the Table 10.

Table 10. RR Results in term of makespan and average
execution time

Figure 12. Representation of RR Results in term of makespan
and average execution time

5.3. Comparison between the results of all experiments

We performed the eight experiments using
different values of tasks and VMs. We run simulations for
each experiment using (60, 100, 1000) of tasks that have
random complexities, with (5 VMs, 10 VMs and 15 VMs),
and these VMs have different processing power in term of
CPU (600 to 1000 MIPS).

1) 5 VMs
Table 11 shows the results of the eight

experiments that were performed on 5 VMs. These results
are compared in term of Makespan. The algorithm
provided a quite good performance compared to Round
Robin which provided a close performance to other
algorithms when the number of tasks was little (60 - 100),
However the performance of RR changed dramatically
when we executed 1000 tasks, which indicates that Round
robin can be adequate in small systems and when all VMs
have the same resource configurations. Random allocation
to VM (RAV) provided the best performance in term of
makespan. This algorithm starts with distributing the load
across VMs randomly, Then The VM’s CPU utilization is
calculated and used as threshold (25% -75% of VM’s
CPU) to maintain the balance on the VMs, this algorithms
does not sort the host according to their idle state, it
migrate the tasks to any underloaded VM, for which we
assume it provided the best makespan when performed on
5 VMs.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

167

Table 11: Makespan time in seconds comparison between all
experiments using 5 VMs

For better understanding of the differences, figure 13
shows the results of the eight experiments that were
performed on 5 VMs.

Figure 13. Makespan time in seconds comparison using 5 VMs

Table 12 and figure 14 show the results of the eight
experiments that were performed on 5 VMs. These results
were compared in terms of average execution time in
milliseconds.

Table 12. Comparison using 5 VMs of average execution time in

milliseconds

In these results we realized that the Least Connection
Mechanism (LCM) has provided the best performance in
terms of average execution time when

Figure 14. Comparison of average execution time in
milliseconds using 5 VMs

the number of tasks were 60. However, when the number
of tasks increased to 1000, the performance became the
worst among others. LCM calculates the number of
connections (allocation count) to each VM and allocate
tasks to the VM that has the least number of connections
(tasks). LCM does not take into consideration the different
processing power between VMs, it only considers the
number of allocations, and that why tasks were taking
longer execution time in LCM. Least connection algorithm
can be a perfect choice for small systems that cares more
about the execution time that has a number of tasks
between 60-100. However, for systems that needs to
execute up to 1000 tasks, RCV would provide the best
performance in terms of average execution time as shown
in figure 14.

2) 10 VMs

Table 13 and figure 15 show the results of the
eight experiments that were performed on 10 VMs. These
results were compared in terms of average execution time.

Table 13. Comparison of average execution time in milliseconds

using 10 VMs

We realized that the algorithms that start with random
allocation has the least execution time, RAV and RCH
provided the best performance in terms of average
execution time when the number of tasks are between 60 –
100, and RAH and RCV outperform when the number of
tasks are more that 100 up to 1000 tasks. LCM provided
better performance in terms of average execution time
when the number of VMs increased from 5 – 10. Figure 15
shows the comparison of average execution time using 10
VMs.

Figure 15. Comparison of average execution time in
milliseconds using 10 VMs

 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

168

Table 14 and figure 16 show the results of the
eight experiments that were performed on 10 VMs. These
results are compared in terms of Makespan. RCH is
providing the best performance in terms of makespan
when number of tasks are between 100 -1000 tasks.
However, Round Robin did not perform well in terms of
makspan when tasks are up to1000.

Table 14. Comparison of makespan time in seconds between

all experiments using 10 VMs

Figure 16. Comparison of makespan time in seconds using
10 VMs

3) 15 VMs
Table 15 and figure 17 show the results of the

eight experiments that were performed on 15 VMs. These
results are compared in term of Average execution time.

Table 15: Comparison of average execution time in milliseconds

between all experiments using 15 VMs

Figure 17. Comparison of average execution time in
milliseconds using 15 VMs

Table 16 and Figure 18 show the results of the
eight experiments that were performed on 15 VMs. These
results are compared in terms of Makespan.

Table 17. Comparison of Makespan time in seconds
between all experiments using 15 VMs

Figure 18 shows the performance of Round Robin

and the algorithms that are extended to Round Robin is
also outperformed by others, even though we have
increased the number VMs, yet the performance of RR and
its extensions did not improve.

Figure 18. Comparison of Makespan time in seconds using 15
VMs

5.4. Findings
In this section we performed many of simulations

in eight different algorithms. In the first and second
experiments (RRH) and (RRV), we used Round Robin
mechanism to allocate the tasks to VMs, and used the VM
utilization as a threshold with sorting the hosts in
ascending order according to their utilization in (RRH) and
without host sorting in (RRV). In the third and forth
experiments (RAH) and (RAV), we used Random
mechanism to allocate the tasks to VMs, and used the VM
utilization as a threshold , with sorting the hosts in
ascending order according to their utilization in (RAH)
and without host sorting in (RAV). In the fifth, and sixth
experiments (RCH) and (RCV), we used Random
mechanism to allocate the tasks to VMs, we used the count
of allocations on each VM to define the theshold which is
a percentage of the average allocations, with sorting the
hosts in ascending order according to their utilization in
(RCH) and without host sorting in (RCV). In the seventh
experiment we performed the basic LCM, and the last
experiment was the original Round Robin. The algorithms
that are extended to Random allocation provided better
performance than the algorithms that are extended to

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

169

Round Robin. (RAV) provided the best performance in
terms of makespan when there is a number of tasks up to
1000 tasks with all different numbers of VMs, and LCM
provided the best performance in terms of execution time
when the number of VMs is more than 10 for all number
of tasks between 60- 1000. Both RAV and LCM
outperform Round Robin in terms of Makespan and
average execution time.

6. CONCLUSION

Cloud Computing has become a real trend in
information technology, one of the most significant aspect
of cloud computing is the virtualization technology where
there is a several virtual machines that might run different
operating system on one physical host. Different tasks are
allocated to different physical machines then allocated to
different virtual machines on the respective physical
machine. The critical issue in cloud computing is the
balancing of loads across these VMs and achieving an
excellent utilization of resources.

The workload must be managed equally across all
VMs. There is a need for the development of a new
approach for load balancing that overcomes the existing
methods drawbacks. Scheduling is an aspect that should be
improved to obtain an efficient performance. The objective
of scheduling is mapping tasks to resources to optimize
one or several objectives. In cloud computing, scheduling
belongs to NP-hard problem category as a result of wide
solution space. There is no existence of an algorithm that
can find the optimal solution within polynomial time. It is
recommended to find a suboptimal solution technique for
achieving solutions within a reasonable time.

In this research, we proposed a new approach that
combines the advantages of different task allocation
algorithms like Round Robin algorithm, and Random
allocation with different threshold techniques like the VM
utilization and the number of allocation counts using least
connection mechanism. We performed extensive
simulations and experiments with the goal of augmenting
different scheduling policies to overcome the resource
utilization problem without compromising other
performance measures like makespan and execution time
of the tasks. To evaluate the proposed work, the results are
discussed in the context of makespan and average
execution time metrics. The proposed system provided
better results compared to the original round robin as it
takes into consideration the dynamic state of the system.
For future work, we intend to use more than one CPU for
each VM, also we will consider the priority of tasks and
execute the tasks with higher priority first without
preemption and predict the incoming tasks by utilizing a
prediction technique.

REFERENCES

 [1] M. Mishra, S. Kumar, B. Sahoo and P. P. Parida,
"Load balancing in cloud computing: A big
picture," Journal of King Saud
University-Computer and Information Sciences,
2018.

[2] M. H. Shirvani, A. M. Rahmani and A. Sahafi, "A
survey study on virtual machine migration and
server consolidation techniques in DVFS-enabled
cloud datacenter: taxonomy and challenges,"
Journal of King Saud University-Computer and
Information Sciences, 2018.

[3] Ray, S. and De Sarkar, A., 2012. Execution
analysis of load balancing algorithms in cloud
computing environment. International Journal on
Cloud Computing: Services and Architecture
(IJCCSA), 2(5), pp.1-13.

[4] K. Ramana and M. Ponnavaikko, "AWSQ: an
approximated web server queuing algorithm for
heterogeneous web server cluster," International
Journal of Electrical and Computer Engineering,
vol. 9, no. 3, p. 2083, 2019.

[5] D. L. Eager, E. D. Lazowska and J. Zahorjan, "A
comparison of receiver-initiated and
sender-initiated adaptive load sharing,"
Performance evaluation , vol. 6, no. 1, pp. 53-68 ,
1986.

[6] Z. M. Elngomi and K. Khanfar, "A Comparative
Study of Load Balancing Algorithms: A Review
Paper," International Journal of Computer
Science and Mobile Computing , vol. 5, no. 6, pp.
448-458, 2016.

[7] S. Sharma, A. K. Luhach and S. S. Abdhullah,
"An optimal load balancing technique for cloud
computing environment using bat algorithm,"
lndian Journal of Science and Technology, vol. 9,
no. 28, 2016.

[8] K. Li, G. Xu, G. Zhao, Y. Dong and D. Wang,
"Cloud task scheduling based on load balancing
ant colony optimization," In 2011 Sixth Annual
ChinaGrid Conference, pp. 3-9, 2011.

[9] U. Singhal and S. Jain, "A new fuzzy logic and
GSO based load balancing mechanism for public
cloud," International Journal of Grid and
Distributed Computing, vol. 7, no. 5, pp. 97-110,
2014.

[10] K. Maheshwari and V. K. Gupta, " Load
Balancing in VM in Cloud Computing Using
CloudSim.," Cloud Computing, 2019.

[11] M.-A. Vasile, F. Pop, R.-I. Tutueanu, V. Cristea
and J. Kołodziej, "Resource-aware hybrid
scheduling algorithm in heterogeneous distributed

 IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.2, February 2021

170

computing.," Future Generation Computer
Systems, p. 51, 2014.

Iehab Al-Rassan received his Ph.D. in Computer Science
from the George Washington University. He has more than
20 years of experience in the field of IT, held many
lectures and published many papers and articles in this
field. His research interests include coding theories,
information retrieval, string-matching algorithms, data
compression, Business Process Management (BPM),
Distributed Systems, Internet of Things, Cloud Computing
and Mobile Computing.

