
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.3, March 2021

304

Manuscript received March 5, 2021
Manuscript revised March 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.3.39

Multi-Objective Pareto Optimization of Parallel Synthesis of
Embedded Computer Systems

Mieczysław Drabowski

Cracow University of Technology, Kraków, Warszawska 24, 31-945, Poland

Summary
The paper presents problems of optimization of the synthesis of
embedded systems, in particular Pareto optimization. The model
of such a system for its design for high-level of abstract is based
on the classic approach known from the theory of task scheduling,
but it is significantly extended, among others, by the
characteristics of tasks and resources as well as additional criteria
of optimal system in scope structure and operation. The
metaheuristic algorithm operating according to this model
introduces a new approach to system synthesis, in which
parallelism of task scheduling and resources partition is applied.
An algorithm based on a genetic approach with simulated
annealing and Boltzmann tournaments, avoids local minima and
generates optimized solutions. Such a synthesis is based on the
implementation of task scheduling, resources identification and
partition, allocation of tasks and resources and ultimately on the
optimization of the designed system in accordance with the
optimization criteria regarding cost of implementation, execution
speed of processes and energy consumption by the system during
operation. This paper presents examples and results for multi-
criteria optimization, based on calculations for specifying non-
dominated solutions and indicating a subset of Pareto solutions in
the space of all solutions.
Key words:
parallel synthesis, optimization, non-dominated solution,
optimal Pareto set of solutions.

1. Model of computer embedded systems for
their synthesis

Synthesis of complex and embedded systems is a multi-
criteria optimization problem. The model of such a system
for its high-level abstraction design and the algorithm
realizing such a synthesis were presented in [1] and in [2],
respectively. The starting point for constructing our
approach to the issues of hardware and software synthesis
is the deterministic theory of task scheduling [3], [4]. The
theory may serve as a methodological basis for
multiprocessor and multitasks system synthesis.
Accordingly, the decomposition of general task scheduling
model was suggested, adequate to the problems of computer
system synthesis. From the practical point of view such a
model should examine the tasks, which may be either
preemptable or non-preemptable. These characteristics are
defined according to the scheduling theory. Tasks are
preemptable when each task can be interrupted and restarted

later without incurring additional costs. In such cases the
schedules are called were preemptive. Similarly, if tasks
cannot be interrupted, their schedules are non-preemptive.
Such a feature as preemptive of tasks in our approach
cannot be a feature of the searched schedule – like occurs in
the current model for scheduling tasks. The schedule applies
to all the assigned tasks with individual attributes:
preemptive, and non-preemptive. According to the existing
system, the implementation of certain tasks must be no-
preemptive, the other may be preemptive (which, in turn,
influences significantly the selection of an appropriate
scheduling algorithm), but on the other hand many system
functions must be performed non-preemptive [5]. Moreover,
we wish to specify the model of task scheduling in a way
suitable for finding optimum control methods (in terms of
certain criteria) – as well as optimum assignment of tasks –
in terms of other criteria – all processors maybe universal
(general) or specialized (dedicated). This is an essential
change in relation to the approach in the allocation of tasks
and resources in the system.
Thus, we were examines the system, which is of set consist
three of subsets (Equation 1):

SYSTEM = {Resources, Tasks, Criteria} (1)

Resources set (hardware and software) consists of P general
processors P = {P1, P2,…, Pp} and the set of D additional,
dedicated processors D = {D1, D2,…, Dd} [6].
Set of tasks consists of n tasks which are to be processed on
a set of m processors and m = p + d. Each task is defined by
a set of parameters: resource requirements, execution time,
ready time and deadline, an attribute – preemptable or
nonpreemptable. The set may contain defined precedence
constraints represented by a digraph with nodes
representing tasks, and directed edges representing
precedence constraints. If there is at least one precedence
constraint in a task set, we shall refer it to as a set of
dependent tasks; otherwise we call it a set of independent
tasks. The set of tasks form all the system functions, both
outer applications and inner operating, diagnostic and also
transmission processes. A feasible schedule is optimal, if its
length is minimal. As for the optimality criteria for the
system to be designed, we shall assume its maximum
operating speed, minimum cost and minimum power

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.3, March 2021

305

consumption [7]. We will apply multi-criteria optimization
in sense of Pareto. The solution is optimized in sense of
Pareto if it is not possible to find a better solution, regarding
at least one criterion without deterioration in accordance to
other criteria. The solution dominates other ones if all its
features are better. Pareto ranking of the solutions is the
number of solutions in a pool which do not dominate it.
 The process of synthesis will produce a certain number
of non-dominated solutions. Although non-dominated
solutions do not guarantee that they are an optimal Pareto
set of solutions; nevertheless, in case of a set of suboptimal
solutions, they constitute form of higher order optimal set
in sense of Pareto and they give access to the shape of set
of these solutions [8].
For example solution W can be improved both against
criterion C1 and C2 – Fig. 1. For P and Q solutions, this
possibility does not exist - an improvement on one criterion
causes deterioration due to the second - they belong to the
set of optimal solutions in the Pareto sense. Let’s assume
for example, that we want to optimize a solution of two
contradictory requirements: the Cost and Power
consumption – Fig. 2.

Fig. 1. Solutions for two criterions

It is possible to choose the wrong solution without knowing
the shape of the curve of Pareto-optimal solutions (non-
dominated solutions).
For example – Fig. 2.: The best solution is for Energy = 20
and Cost = 160. Designer - without knowledge of this curve
- can choose the solution for Energy = 17 and Cost = 265),
and yet there is a solution for Energy greater just by 1, and
Cost less by as much as 100. Designer - without knowing
the set of Pareto-optimal solutions - can also choose a
solution with a Cost = 140 and with Energy = 29.
While using a traditional way with one optimization
function, it is necessary to contain multi optimal criteria in
one value. To do that, it is advisable to select properly the
scales for the criteria; if the scales are selected wrongly, the

obtained solution will not be optimal. The chart in the
illustration shows where, using linearly weighed sum of
criteria, we will receive the solution which may be
optimizes in terms of all criteria.
The optimization of cost, power consumption and speed in
the problem of synthesis is, undoubtedly, the problem
where the potential number of solutions in sense of Pareto
may be enormous. In order to bring multi-criteria
optimization to a single criterion optimization one may use,
for example, the method of weighted criteria; a substitute
criterion equal to the sum of the weighted criteria (Equation
2):

MIN (X) = (wi • Ci(X)); where: 0 ≤ wi ≤ 1,
where “i” is criterions number (2)

Then, the solution is the point of intersection of the set of
permissible solutions with line, dependent on the values of
weights of the interior criteria. To balance the impact of
individual criteria, can make their normalization [10].

Fig. 2. The curve of optimal-Pareto solutions

Graphically, the solution can be presented as the point of
intersection of the set of permissible solutions with line L
(with the point X), depending on the values of the criteria
weights (Fig. 2. for two criterions). Due to the balanced
impact of individual criteria, criteria may be standardized.
The problem is to choose a priori values of criteria weights,
which can lead to different solutions.
The suggested model may be used for defining various
synthesis problems for optimum computer systems. The our
model of a system in this approach, typical for the theory of
task scheduling, consists of a set of requirements and
existing relationships between them (related to their order,
required resources, time, readiness and completion

X

P

W

a set of acceptable
solutions

a set of Pareto

C1
C2P

i

C2

Q

L

C1P

Power
consumption

 Solution

Preferred
solution

35

30

25

20

15

10

Power = 29
Cost = 140

Power = 17
Cost = 265

Power = 20
Cost = 160

Cost 50 100 150 200 250 300 350

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.3, March 2021

306

deadlines, preemptive/non-preemptive, priority etc.). The
synthesis procedure contains the following phases:
identification of hardware and software resources for task
implementation, defining the processing time, defining the
conflict-free task schedule, defining the degree of
concurrency in the performance, allocating the tasks for the
recourses and indicating the operations which can be
executed concurrent [11].
The synthesis has to perform the task partitioning into
hardware and software resources. After performing the
partition, the system shall be implemented partially by
specialized hardware in the form of sub-assembles (most
frequently integrated circuits) readily available in the
resources pools or designed in accordance to the suggested
characteristics. Software modules of the system are
generated with the use of software engineering tools.
Appropriate processors shall be taken from the resource
consignment. Synthesis of a system may also provide a
system operating control, create an interface and provide
methods and components for synchronization and
communication between the tasks implemented by software
and hardware [12].
To sum up, the high-level synthesis of system, i.e. defining
constraints and requirements of system, identifying its
operations and resources, defining control should be
implemented in synergy and be subject to multi-criteria
optimization and verification during implementation.
The paper contains: presentation of a synergistic algorithm
for the synthesis of embedded systems and its multi-criteria
optimization in the sense of Pareto (Chapter 2) and the
example of the implementation of this algorithm (Chapter
3).

2. Algorithm of parallel synthesis of
embedded systems

Modeling the synergic – in our approach: of parallel –
search for the optimum task schedule and resource partition
of the designed system into hardware and software parts is
fully justified. We suggest the following schematic diagram
of a parallel process of synthesis computer systems [2] – Fig.
3. Simultaneous consideration of these problems may be
useful in implementing optimum solutions, e.g. the cheapest
hardware structures and shortest schedules. With such
approach, the optimum task distribution is possible on the
universal and specialized (dedicated) hardware and choice
of resources with maximum efficiency.
The suggested parallel synthesis consists of: specification
of requirements for the system to be designed and its
interactions with the environment, defining all functions the
system, search for the optimum task schedule and resource
partition of system into hardware and software parts.
This synthesis consists in detail of the following steps:

1. Defining the tasks which fulfill the performance of
system functions. Estimation of executing
parameters comprised in the task procedures upon
the available recourses (e.g. execution time or
requirements for the memory space and defining
the dependability of procedures) [13]. Defining
constraints and critical requirements regarding
accomplishment.

environment

Specification

system

Resources
database

Set of tasks
(requirements and constraints)

Initialization of synthesis

estimation
of parameters

System operation analysis

Time, Cost, Power
optimal

Resources set
modifications

Task
scheduling

Task and resource allocation
System performance analysis

Resource
partition

Resulting system

parallel

 Fig. 3. Parallel synthesis of computer system

2. Assuming the initial values of resource set and task

scheduling – the resource set and task schedule
should be available (from the pool of resources and
schedules and from the historical data base
remembered due to the synthesis of systems
similar to them in the past); i.e. they should meet
all the requirements, though at this stage of the
algorithm, maybe in a non-optimum way.

3. Task scheduling, resource partitioning and task
and recourses allocation – all tasks of specification,
resources currently selected and assigned to
certain tasks.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.3, March 2021

307

4. Evaluating the operating speed, power
consumption and system cost, etc., multi-objective
optimization.

5. The every evaluation should be followed by a
modification of the resource set and compute new
schedule of tasks, as a result of a new system
partitioning into hardware and software parts and
the pursuit of achievement of a satisfying result.

Iterative calculations are executed till satisfactory design
results are obtained – i.e. closer and closer to the optimal of
system structure and schedule. The designed system should
be fast, cheap, with low power consumption and dependable
[14].

3. Results of multi-objective optimization for
synthesis of computer embedded systems

We consider such example.
Tasks (system functions) used during the tests are generated
as direction graphs and they are received as graphs STG
http://www.kasahara.elec.waseda.ac.jp/schedule/

These generators have been worked out in order to
standardize random tests for research into common task
scheduling and allocating problems, especially for system
synthesis and for such applications which need pseudo-
random generating acyclic directed graphs. In generators,
the sort of graph, number of source and sink nodes, the
length of maximal track, the node and edge weight, degree
of graph, probability of predecessors and successors’
number etc. should be determined. For example, time of
tasks might be generated as follows: the average time value
for the task (e.g. = 5 units) and time of tasks determined by
uniform distribution or regular distribution with a fixed
standard deviation (e.g. = 1).
For the tests, maximum number of tasks have been
determined = 100 (independent tasks) and 50 (dependent
tasks), which is the sufficient number for the presentations
of all algorithm features, and their comparisons as well (also
to other algorithms) and is also the right number of
operations for realistic system synthesis; obviously, system
functions in its specification are given on the suitable level
of granulation.
Resources applied in tests are shown in the following table
(Table 1):
Tests were conducted into dependent, non-preemptive tasks.
Parameters of constraints are: the maximum number of
processors – 5, maximum cost – 3, maximum time – 25.
Optimization criteria: cost, time and power consumption.
As a result, a set of optimum solutions was received in sense
of Pareto [15].
The following table shows a set of solutions in sense of
Pareto, obtained as a result of algorithm performance for the

problem: 15 dependent tasks, not considering the cost of
operating memory.

Table 1. Resources applied in tests (ToP - Type of Processor,
G-general processor, D-dedicated processor, MM-Memory

module)

No. ToP ID Speed Cost Power
consumption

1 G P1 1 1.00 0.01
2 G P2 2 1.60 0.02
3 G P5 5 2.20 0.05
4 G P10 10 3.70 0.1
5 D ASIC1 1 0.50 0.01

 6 D ASIC2 2 0.75 0.02
7 D ASIC3 3 1.00 0.03
8 D ASIC4 4 1.25 0.04
9 D ASIC5 5 1.50 0.05

10 D ASIC10 10 2.75 0.11
11 MM PAO 1 0.2 0.001

The following table shows a set of solutions in sense of
Pareto, obtained as a result of algorithm performance for the
problem: 15 dependent tasks, not considering the cost of
operating memory.

Table 2. Example solutions in sense of Pareto
(NoS - Number of solution)

NoS Cost Time Power
consumption

1 2,75 4,2
minimum

77,69
maximum

2 1,5 minimum 8,4 54,42
3 2,95

maximum
18,5
maximum

20,9
minimum

4 2,55 19 23,9
5 2,95 15,5 24,01
6 2,75 18 22,96
7
COM-

2,95
-PRO-

17
-MI-

21,38
-SE

8 2,75 17,5 26,39

The solutions are in the Table 2:

 The best, regarding the whole cost (solution 2).
 The best, regarding the entire time of all tasks

execution (solution 1).
 The best, regarding the entire power consumption

(solution The compromise, balancing the values
of optimizing criteria (solution 7).

if will be accepted Equation 3:

Compromise = minimum

ቀ ௦௧ ௦௧

௫௦௧
 ் ்

௫்
 ௪ ௪

௫௪
 ቁ (3)

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.3, March 2021

308

3.1 Minimum of cost and Minimum of time

Each of the tables – Table 3 and Table 4 – shows
subsequently the best solutions (in Pareto set) regarding
cost, time and power consumption. Additionally there is a
table which comprises the solutions of balanced costs
(compromising solutions) [16].

Table 3. Example for parallel synthesis of Minimum cost and
Minimum time (NoT – Number of Tasks)

NoT Parallel synthesis
Minimum of cost

Parallel synthesis
Minimum of time

 Cost Time Power Cost Time Power
5 0.5 17 6.47 1.75 4.25 9.56
10 0.75 15.5 15.6 3 3.6 35.47
15 1.5 8.4 54.42 2.75 4.2 77.69
20 1 19 42.64 1.75 12.33 37.23
25 2 15.75 48.51 2 12.25 52.24
30 2.25 18.4 70.51 2.25 14.9 92.18
35 1.5 20.8 114.05 2.75 10.4 173.83
40 2.75 17.75 104.68 2.75 12.6 203.57
45 2.25 24.67 102.02 2.75 14.8 230.11
50 2.25 24.25 108.48 2.75 16.3 242.29
55 2.5 25 164.58 2.75 18 268.59

3.2 Minimum of power consumption and Compromising
Solution

The above presented tables – Tab. 3, Tab. 4 show multi-
criteria optimization for parallel synthesis of computer
systems. As a result of algorithm performance the designer
receives a set of optimal solutions in sense of Pareto. The
designer has to decide which resources and schedules best
fulfills the requirements of the solution. Depending on the
system requirements, it is possible to rely on one of the
obtained results.

Table 4. Example for parallel synthesis of Minimum power
consumption and Compromising solutions (NoT – Number of

Tasks)

NoT Parallel synthesis
Minimum of power

Parallel synthesis
Compromising solutions

 Cost Time Power Cost Time Power
5 1.75 4.25 9.56 1.75 6.75 9.26
10 3 3.6 35.47 1.5 6.2 35.47
15 2.75 4.2 77.69 2.95 15.5 24.01
20 1.75 12.33 37.21 1.75 12.83 35.45
25 2 12.25 52.24 2 14.5 51.25
30 2.25 14.9 92.18 2.75 16.9 63.58
35 2.75 10.4 173.83 2 18 78.3
40 2.75 12.6 203.57 2.75 17.75 104.68
45 2.75 14.8 230.11 2.25 21.75 99.5
50 2.75 16.3 242.29 2.25 23.88 113.26
55 2.75 18 268.59 2.5 25 164.9

To learn the specification of the solution space for the given
problem instance, it is important to provide a sufficiently
long list generated of the best solutions [17], 19].
Charts 5, 6 and 7 show the shapes of curves dependent on
the number of tasks, presenting compromise solutions
against the background of curves dependent on tasks,
presenting optimal solutions for minimizing cost, time
(speed) and power consumption, respectively.

4. Conclusions

In order to eliminate solution convergence in genetic
algorithms [18], [19], we use data structures which ensure
locality preservation of features occurring in chromosomes
and represented by a value vector. Locality is interpreted as
the inverse of the distance between vectors in an n-
dimension hyper-sphere.

Fig. 5. Chart of compare cost in relation with number of tasks

Fig. 6. Chart of compare time in relation with number of tasks

0

1
2
3
4

5 10 15 20 25 30 35 40 45 50 55

C
os

t

Number of tasks

Multi-objective optimization

minimum of cost

minimum of time

minimum of power consumption

compromissing solution

0

10

20

30

5 10 15 20 25 30 35 40 45 50 55

T
im

e

Number of tasks

Multi-objective optimization

minimum of cost
minimum of time
minimum of power consumption
compromissing solution

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.3, March 2021

309

Fig. 7. Chart of compare power consumption in relation with
number of tasks

Then, crossing and mutation operators are data exchange
operations not between one-dimensional vectors but
between fragments of hyper-spheres. Thanks to such an
approach, small changes in a chromosome correspond to
small changes in the solutions defined by the chromosome.
The presented solution features two hyper-spheres: task
hypersphere and resource hypersphere. The solutions
sharing the same allocations form the clusters together. The
introduction of solution clusters separates solutions with
different allocations from one another. Such solutions
evolve separately, which protects the crossing operation
from generating defective solutions. There are no situations
in which a task is being allocated to a non-allocated
resource. Solution clusters define the structures of the
system under construction (in the form of resources for task
allocation). Solutions are the mapping of tasks allocated to
resources and task scheduling. During evolution, two types
of genetic operations (crossing and mutation) take place on
two different levels (clusters and solutions). A population is
created whose parameters are: the number of clusters, the
number of solutions in the clusters, the task graph and
resource library. For the synthesis purposes, the following
criteria and values are defined: optimization criteria and
algorithm iteration annealing criterion if the solution
improvement has not taken place, maximum number of
generations of evolving within clusters solutions, as well as
the limitations – possibly the biggest number of resources,
their overall cost, total time for the realization of all tasks,
power consumption of the designed system and, optionally,
the size of the list of the best and non-dominated individuals.
In genetic algorithm with simulated annealing it is also
important to define slow cooling of the algorithm
(parameters “temperature step” and “cooling coefficient” –

depending on the numbers of tasks in the system). Thanks
to this, we prevent the population from too big convergence.
Algorithm for the lower temperature searches a bigger area
in the space of solutions. It has also been noticed that a
bigger probability of mutation helps to look for a better
system structure, whereas a bigger probability of crossing
improves optimization for time criterion.
The problems non-dominated solutions and Pareto
optimization of solution spaces for other meta-heuristic
algorithms will be studied.

References

[1] Drabowski, M.: Modification of concurrent design of
hardware and software for embedded systems – a synergistic
approach. In: Grzech, A., Świątek, J., Wilimowska, Z.,
Borzemski, L. (eds.), Information Systems Architecture and
Technology: proceedings of 37th International Conference on
Information Systems Architecture and Technology – ISAT
2016, vol. 522, pp. 3-13, Springer, Heidelberg, (2017).

[2] Drabowski, M., Kiełkowicz, K.: A hybrid genetic
algorithm for hardware–software synthesis of heterogeneous
parallel embedded systems. In: Świątek, J., Borzemski, L.,
Wilimowska, Z. (eds.), Information Systems Architecture and
Technology: proceedings of 38th International Conference on
Information Systems Architecture and Technology – ISAT
2017, vol. 656, pp. 331-343, Springer, Heidelberg, (2018).

[3] Błażewicz J., Ecker K., Pesch E., Schmidt G., Sterna M.,
Weglarz J., Handbook on Scheduling. From A Theory to
Practice, Springer Verlag, Berlin, New York, 2019.

[4] Błażewicz J., Ecker K., Plateau B., Trystram D.,
Handbook on Parallel and Distributed Processing, Springer-
Verlag Berlin, Heidelberg, (2000).

[5] Błażewicz J., Drabowski M., Węglarz J.: Scheduling
independent 2-processor tasks to minimize schedule length,
Inform. Process. Lett. 18, 267-273, 1984.

[6] Błażewicz J., Drabowski M., Węglarz J.: Scheduling
multiprocessor tasks to minimize schedule length, IEEE
Transactions on Computers, 35(5), 389-393, (1986).

[7] Lee C.Y.: Machine scheduling with availably
constraints. In Leung J.Y.T. Handbook of Scheduling, CRC
Press, 22.1-22.13, (2004).

[8] Elburi A., Azizi N., Zolfaghri S., A comparative study
of a new heuristic based on adaptive memory programming
and simulated annealing: The case of job shop scheduling,
European J. Oper. Res. 177, 1894-1910, (2007).

[9] Saha D., Mitra R.S., Basu A.: Hardware Software
Partitioning using Genetic Algorithm, Proc. of the Int.
Conference on VLSI Design, 155-160, (1997).

[10] Dick R. P., Jha N. K.: MOGAC: A Multiobjective
Genetic Algorithm for the Cosynthesis of Hardware-Software
Embedded Systems, Proc. of the Int. Conference on
Computer Aided Design, 522-529, (1997).

[11] Dick R. P., Jha N. K.: MOGAC: A Multiobjective
Genetic Algorithm for Hardware-Software Cosynthesis of
Hierarchical Heterogeneous Distributed Embedded Systems,
IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 17, no. 10, 920 – 935, (1998).

[12] Ziegenbein D., Richter K., Ernst R., Thiele L.: Teich J.,
SPI – A System Model for Heterogeneously Specified

0

50

100

150

200

250

300

5 10 15 20 25 30 35 40 45 50 55

P
ow

er
 c

on
su

m
pt

io
n

Number of tasks

Multi-objective optimization

minimum of cost
minimum of time
minimum of power consumption
compromissing solution

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.3, March 2021

310

Embedded Systems, IEEE Trans. on VLSI Systems, Vol. 10,
No. 4, 379-389, (2002).

[13] Yhang Z., Dick R. Chakrabarty A.: Energy-aware
deterministic fault tolerance in distributed real-time
embedded systems, 41st Proc. Design Automation Conf.,
Anaheim, California, 550-555, (2004).

[14] Schmitz M.T., Al.-Hashimi B.M., Eles P.: Energy-
Efficient Mapping and Scheduling for DVS Enabled
Distributed Embedded Systems, Proc. of the Design
Automation and Test in Europe Conference, 514-521, (2002).

[15] Pricopi, M., Mitra, T.: Task scheduling on adaptive
multi-core. IEEE Transactions on Computers C-59, pp. 167-
173, (2014).

[16] Agraval, T.K., Sahu, A., Ghose, M., Sharma, R.:
Scheduling chained multiprocessor tasks onto large
multiprocessor system. Computing, 99 (10), pp. 1007-1028,
(2017).

[17] http://www.kasahara.elec.waseda.ac.jp/schedule/.
[18] Montgomery J., Fayad C., Petrovic S., Solution

representation for job shop scheduling problems in ant colony
optimization, LNCS 4150, 484-491, (2006).

[19] Drabowski, M.: Boltzmann Tournaments in
Evolutionary Algorithm for CAD of Complex Systems with
Higher Degree of Dependability, In: Zamojski Wojciech,
Mazurkiewicz Jacek, Sugier Jarosław, Walkowiak Tomasz,
Kacprzyk Janusz (eds.), Advances in Intelligent Systems and
Computing, Theory and Engineering of Complex Systems
and Dependability: Proceedings of the Tenth International
Conference on Dependability and Complex Systems DepCos-
RELCOMEX- 2015, vol. 365, pp. 141-152, Springer,
Heidelberg, (2015).

Mieczyslaw Drabowski, Professor
at Cracow University of
Technology (CUT), works at
Faculty of Electrical and Computer
Engineering. He received the M. Sc.
degree in electrical engineering,
specialty: automatic control and
communication, from AGH
University of Science and
Technology, graduated mathematic

from Jagiellonian University,
received the Ph. D. degree (with
distinction) in computing science
from Poznan University of
Technology and Sc. D. degree in
computing science from West

Pomeranian University of Technology. He has eighteen years of
industrial experience and implementations in software engineering,
testing of computer electronic circuits, in micro diagnostics for
computer systems, in designing of disks storages and their
controllers and in designing personal computers and their network.
He is the member of several editorial boards, among
others Scientific Journals International, Journal Software: Practice
and Experience, International Journal of Electronics and
Telecommunications, Technical Transactions (Computer Science
and Information Systems), International Conference on
Dependability and Complex Systems. His research interests
include operating systems, software engineering, task scheduling
in computer systems, synthesis of computer systems, allocation

for tasks and resources in parallel and distributed multiprocessors
systems, dependable and fault tolerant systems, computational
intelligence and computer system performance evaluation. He is
author and co-author of 3 monographs and over 100 papers in
major professional journals and conference. He lectures at the
Cracow University of Technology, teaching engineering, master's
and doctoral studies, supervising diploma theses. Lately, he was
the deputy dean and head of Department of Theoretical Electrical
Engineering and Computing Science in Faculty of Electrical and
Computer Engineering, Cracow University of Technology.

