
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

19

Manuscript received April 5, 2021
Manuscript revised April 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.4.3

Real-Time Control System

Atef Gharbi 1, 2

1Faculty of Computing and Information Technology;

Northern Border University; KSA
2Université de Carthage, Institut National des Sciences Appliquées et de Technologie (INSAT),

LISI, Tunisia

Abstract
Tasks scheduling have been gaining attention in both industry and
research. The scheduling that ensures independent task execution
is critical in real-time systems. While task scheduling has gained
a lot of attention in recent years, there have been few works that
have been implemented into real-time architecture. The efficiency
of the classical scheduling strategy in real-time systems, in
particular, is still understudied. To reduce total waiting time, we
apply three scheduling approaches in this paper: First In/First Out
(FIFO), Shortest Execution Time (SET), and Shortest-Longest
Execution Time (SLET). Experimental results have demonstrated
the efficacy of the SLET in comparison with the others in most
cases in a wide range of configurations.

Keywords: Task, Real-Time System, Architecture, Scheduling.

.1. Introduction

In general, the scheduling problem is a problem in
which the aim is to properly assign available resources to
tasks in order to maximize a specific objective, such as the
makespan [1, 2], total completion time [3, 4], tardiness [5],
overall lateness [6], total throughput time [7], and so on. In
this paper, we are interested in real-time scheduling. We
begin firstly with the definition of “Real-Time System”
which can be defined as: “A real-time system is one in
which the correctness of a result not only depends on the
logical correctness of the calculation but also upon the time
at which the result is made available” [8].

A real-time task is a task that has a critical deadline, i.e.

one that must be executed within a certain amount of time
[9, 10]. This concept reinforces the idea that time is one of
the most critical elements of the system, and that tasks have
timing constraints. These tasks usually include the control
or reaction to events occurring in the external world in "real
time". A hard real-time task is one that must respect the
deadline because in case of failure to do so will result in
disagreeable effects [11]. However, a soft real-time task is
one in which respecting the deadline is looked-for but not
necessary [12]. In this paper, we are interested more in soft
real-time task. Besides, we consider that the tasks are pre-
emptible then the scheduler is pre-emptive. In this case, if a
task is considered more important or urgent, it may take

control of the processor instead of another task, whose
execution is stopped and resumed later.

The characteristics of the system on which scheduling
algorithms are applied are generally used to classify them
based on the following features:

The scheduling may be uniprocessor or multiprocessor.
Uniprocessor scheduling is used when all tasks are done on
a single processor [13]. If is not the case (i.e. there are many
processors), we say "multiprocessor scheduling" which
means multicore processor platform [14]. In this paper, we
consider only uniprocessor scheduling.

There are two types of scheduling: static and dynamic
scheduling. The static scheduling necessitates full details
about the tasks to be scheduled (such as deadlines, priorities,
times, etc.) [15, 16]. These details must be known a priori
to propose a scheduling for the tasks before executing it.

The schedule is said to be dynamic if the feasibility can
be evaluated at run time and updates in the configuration
can be generated. Static schedules must be prepared offline
at all times.

Dynamic schedules may be constructed either off-line
or on-line [17]. The dynamic scheduling is considered off-
line if the whole scheduling problem is known a priori but
the execution is modified at run time [18]. The dynamic
scheduling is considered on-line if the future is
unpredictable or unspecified [19]. We are interested in this
paper with off-line dynamic scheduling which has the
advantage of determinism.

In this paper, we consider Real-Time Control System
composed of intelligent robot ensuring the control of the
production system in real-time. To do so, we propose a
hierarchical control framework for real-time control. At a
higher level, the main components are: the intelligent robot
controlling the real-time system. Designing a generic
architecture to incorporate an intelligent robot for
controlling a production system in real time entails dealing
with a few common problems such as how to choose the
task to be executed and the scheduling strategy to be applied.
The basic architecture can be defined in one of two ways:
(1) Specialized modules can be created to ensure specific
functions, or (2) A general procedure can be used to
implement all of the processing functions. Based on our
study, we choose the second solution to propose a generic
architecture for real-time control system.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

20

Many tasks are assigned to the intelligent robot in
order to be executed. These tasks must be scheduled locally
on the robot. The intelligent robot may have a range of tasks
from which to choose dynamically, but some may be
impractical due to resource and time constraints. Therefore,
we present three approaches for increasing feasibility: First
In/First Out strategy (FIFO), Shortest Execution Time
strategy (SET) and Shortest-Longest Execution Time
strategy (SLET). All of them take into account the total
waiting time. These scheduling approaches do not
guarantee the generation of an optimal schedule, but they
are capable of generating an acceptable schedule to
minimize the waiting time for the overall tasks. We study
these approaches on three datasets and we compare the
results to determine the best solution to be applied.

The main contributions of this paper are: (1) a
hierarchical control framework that combines model-based
methods for dynamic scheduling of real-time tasks; (2) a set
of three scheduling approaches: First In/First Out strategy
(FIFO), Shortest Execution Time strategy (SET) and
Shortest-Longest Execution Time strategy (SLET) to
minimize the total waiting time.

 The paper has been organised in the following way.
The section 2 presents the conceptual model of real-time
control system. The section 3 analyses the scheduling
problem by introducing three different scheduling policies:
FIFO, SET and SLET. We present and discuss the results
and decide which one leads to optimal results.

2. Conceptual Model of Real-Time Control System

Current Task
Queue

Criterion

...
...

Input Event

Scheduler

Internal View

Information about
Task

List of events

Execute()

Next_Task()

A

Conveyor C1

ABConveyor C
3

B

Conveyor C2

Position p1

Position p2

Position p3 Position p4

Posi
tio

n p
5

Posi
tio

n p
6

Robot r

Processing unit
M

Percepts

Sensor

Actions

Actuator

Production SystemReal-Time Control Robot

Figure 1. Real-Time Control System

A Real-Time Control System is composed of two main

components which are: Real-Time Control Robot and the
Production System (Figure 1). In this paper, we are
interested more in the Real-Time Control Robot component
that’s why we define it in more details. Designing a modular
architecture to incorporate an intelligent robot for
controlling a production system in real time entails dealing
with a few common issues. Some functions, such as how to
choose the task to be performed and the scheduling strategy
to be applied by the intelligent robot, must be implemented,
making it difficult to design them to work with great
flexibility, while other functions involving high

computational load can be carried out in one of two ways:
(1) Specialized modules can be created to ensure specific
functions like robot motion, and perception function, for
example. (2) A general procedure can be used to implement
all of the processing functions. If the number of processing
functions must be held to a minimum, the former method is
more effective, while the latter solution provides more
flexibility and requires more design effort to be generic. The
basic architecture that has been used as a guideline in this
study is based on the second solution. We develop an
intelligent control robot as shown in figure 2. We propose
according to the well-known UML language the concepts

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

21

of RealTimeSystem, ControlRobot, Behavior, Scheduler,
Queue and Tasks.

 RealTimeSystem: is characterized by several robots that

can control the system. The System is dynamic which
permits to add (resp. remove) any Control Robot at any
time with the method addRobot() (resp. removeRobot()).

 ControlRobot: represents different behaviors that can be
applied by a Control robot. The Control Robot behavior
is flexible thanks to methods addBehavior() and
removeBehavior() which facilitates to change the robot
behavior without having the need to stop the whole
system.

 Behavior: represents the solution to be applied. The
Behavior is composed of a list of tasks with precedence
constraints to be executed.

 Scheduler: The task scheduler is one of the Control
Robot's most important components, since it determines
which of the ready tasks should be executed. If no ready
tasks are available at a given time, no task can be
executed, and the Control Robot will remain idle until a
task becomes available.

Figure 2. The general conception of a Real-Time Control System based on Tasks

As there are many tasks in competition with other tasks

to be executed. The scheduler is expected to meet explicitly
response-time constraints by enabling a scheduling policy
that ensures timely completion of critical tasks. A scheduler
related to a real-time Control Robot is characterized by:

 readyTask: a queue that holds a collection of tasks in
ready state.

 runningTask: a queue that keeps track of the tasks that
are currently running.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

22

 timeSlice: the threshold of preempting a task (the
quantity of time assigned to a task before its preemption).

It is common in the scheduling domain to model task state
by specifying a limited collection of machine modes, such
as "on," "off," and "stand-by." The scheduler associates a
finite state machine used to describe the transitions to
switch from one state to another. The task may be in one of
the following possible states: Create, Wait, Run, Suspend or
Terminate. Every task is in one state at any given time:

 Wait: The scheduler puts a task in waiting state to be

allocated in the future. Based on a set of parameters, the
scheduler defines which ready task will be performed
next (for example priority criterion i.e. the task having
the highest priority will be assigned to the processor).
Since it is not the highest priority, the scheduler switches
the task state from Suspend to Wait (The link number 1
in the figure 3).

 Suspend: The scheduler suspends a task (there are many
reasons such that waiting for an event or a simple delay).
The scheduler alters the task state from Run to Suspend
because it does not have the resource (The link number
3 in the figure 3).

 Run: The scheduler runs a task, so that its instructions
can be executed. At any given time, only one task can be
in this state, while all other tasks can be in different states
at the same time. The scheduler updates the task state
from Suspend to Run because it becomes unblocked and
has the highest priority (The link number 2 in the figure
3). The scheduler changes the task state from Wait to Run
because it becomes having the highest priority (The link
number 6 in the figure 3).

 Terminate: The scheduler terminates the task execution,
the task allocator deletes it and releases the resources it
was using. The scheduler alters the task state from Run
to Terminate because it finishes its execution (The link
number 4 in the figure 3). The scheduler updates the task
state from Suspend to Terminate because it eliminates
this task (The link number 4 in the figure 3). The
scheduler changes the task state from Wait to Terminate
because it eliminates this task (The link number 8 in the
figure 3).

 Figure 3. Diagram of Task states.

 Queue: Several tasks can be ready or blocked at the

same time. As a result, the system keeps a queue for
blocked tasks and another for ready tasks. The latter is
organized in a priority order, with the most important
priority at the top of the list. When a task in the ready
state is allocated a processor, it shifts from the ready state
to the running state. This processor role is known as
dispatching, and it is carried out by the dispatcher, which
is a component of the scheduler.

 Task: may be composed of several sub-tasks and each
Task may have precedence constraints. Each task allow
controls of devices by reading and interpreting data from
sensors, before reacting and activating the appropriate
actuators.

3. Scheduling Problem in a Real-Time Control System

The scheduling problem in multi-robot system includes:
- A set of intelligent robots (either Faulty Robots or

Helping Robots)
- A collection of tasks that need to be carried out
- A set of constraints which determines the execution

order of the tasks.

If the intelligent robot is free and has enough time
(which means the intelligent robot studies its current list of
tasks already scheduled to be executed and specifies if there
is time for the new task to be done before its deadline), then
it accepts to execute this task.

3.1. Scheduling Problem: Definition

The intelligent robot tries to find an idle time slot or
window (time frame) in which the requested task can be
carried out. The idle time slot is defined by the start time
and deadline time for the requested task. In this idle time
slot, some tasks have been already scheduled to be executed.
It is possible that the idle time slot is filled with other tasks.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

23

Figure 4 depicts the scheduling problem. In fact, the robot
has three tasks to execute A, B and C. the task A (B, C
respectively) has 10 (20, 15 respectively) time units to be
executed. The task A is released at 0. The deadline for these
3 tasks is 100 time units. The robot tasks are scheduled to

run in the first 45 time units of the time window. While
carrying out the task A, the robot receives a task request at
5 time units and the deadline is 70.

Figure 4. Scheduling problem

Figure 5. A completed scheduling

Since Task D has 30 time units and the time window is 70,
it is possible to rearrange the tasks between (B, C) and D to
find a solution to this problem (see Figure 5).

If the schedule exists, the robot should inform the other

corresponding robot that it accepts to schedule within its
own tasks. If there is no solution, then the robot sends a
negative answer to the other part.

The intelligent robot can apply several policies such as:

 First In/First Out strategy (FIFO): the intelligent robot

uses the First In/First Out criteria to organize requested

tasks based on the time arrival;

 Shortest execution time strategy (SET): the intelligent

robot selects the requested tasks having the smallest

execution time;

 Shortest-Longest execution time strategy (SLET): the

intelligent robot uses the same queue as above but it

divides into two queues based on the median value: the

first one is used for short requested tasks and the second

one is used to long requested tasks. After that, the

intelligent robot chooses firstly two requested tasks

having the smallest execution time and secondly one

requested task having the longest execution time.
The agent finds a solution in running time of O (n*m) where
n is the number of tasks scheduled and m is the number of
requested task to be scheduled. Indeed, every existing task
is compared to the requested task which leads to a nested
loop. In the worst case, it will be Max (O(n2), O(m2)).

3.2. Formalization

A : Set of all available robot aA. Each robot a is

indexed numerically but also may have a unique name
associated with it.
T Set of all tasks i T that must be completed to
achieve an objective. Each task i is indexed numerically but
may have a unique name that describes the service needed
to complete it.
For each task, we have
 ri = release date of task i
 di = due date of task i
 Ci = the completion time
 Fi = Ci - ri, the flowtime
 Li = Ci - di, lateness of task i
 Ti = max{0, Li}, tardiness of task i
 Ei = max{0, -Li}, earliness of task
Cmax = maxi=1..n{Ci} makespan
Lmax = maxi=1..n{Li} maximum lateness

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

24

Tmax = maxi=1..n{Ti} maximum tardiness
The helping robot has some important data to handle

which are:
 QueueAgent represents a queue associated to a

different kinds of requested tasks coming
from faulty robots. Each requested task
contains data about:

 Executing_time: amount of time to execute the
requested task.

 Arrival_time: the time at which the requested task is
arrived to the intelligent robot

 Free: Boolean data to indicate if the
intelligent robot is available

 Available_time: data to indicate the amount of time that
the intelligent robot is still free.

 N represents the number of requested tasks
saved in the queue related to an Intelligent
Robot.

 Task_time: the time at which the intelligent robot
begins to handle the requested task

 WT: the waiting time for a requested task till it is
treated by the intelligent robot

 AWT represents the average waiting time for
the different requested tasks in a queue
related to an Intelligent Robot.

For the sake of simplicity, we present here only the
main steps of the algorithm applied to the different
requested tasks related to an Intelligent Robot. Let
Request_i be a requested task related to the QueueAgent such
that 1 ≤ i ≤ N. We assume that the Intelligent Robot
computes the waiting time of each requested task Request_i
denoted by WT_i. The waiting time is a measure of the total
time that a requested task waits in a queue. It corresponds
to the duration between the arrival time of the requested task
(denoted by Arrival_time) and the initiation of its treatment
by the Intelligent Robot (denoted by Task_time).

WT_i = Task_time – Arrival_time
We denote in addition by AWT the average waiting

time of all the requested tasks belonging to QueueAgent. It is
equal to the sum of the different waiting times of different
requested tasks WT_i divided by their number where 1 ≤ i
≤ N.

AWT =
∑ 𝑊𝑇_𝑖

ୀଵ
Nൗ

The intelligent robot treats the requested task

periodically where the Intelligent Robot checks if it is free,
selects a requested task according to a specific riterion,
calculates the waiting time associated to this requested task
and then deletes it from the corresponding queue as follows:

N ← 0
For each period Δ

If (Free = true) then
 While QueueAgent.length() > 0 do

Request ← Choose_request()
If (Available_time > Request.

Executing_time) then
Task_time ← currentTime()
QueueAgent .remove(Request);
WT_i ← Task_time – Request.

Arrival_time
AWT ← AWT + WT_i
N ← N + 1
AWT ← AWT / N

 End if
 End while

End if
End for

3.3. Simulation

In this paper, we consider and compare several

alternatives to choose a requested task. We present a
comparative study between well-known re-scheduling
strategies (FIFO, SET, and SLET). We propose to evaluate
the performance by applying these strategies so that we
determine the best policy that the Intelligent Robot should
take.
These results were performed using SimMRS (Simulator
Multi-Robot System tool) which is a software tool that we
have developed for simulation. To evaluate the different
strategies in our experiment, we use our simulator:
SimMRS that enables us to conduct experiments through
generating random tasks. The optimization objective is to
minimize the average waiting time over all tasks in the
different queues.

Three different datasets were utilized through testing
the proposed algorithm against three different re-scheduling
algorithms: First In/First Out strategy (FIFO), Shortest
Execution Time strategy (SET) and Shortest-Longest
Execution Time strategy (SLET). Each dataset consists of
randomly generated ten tasks as it is illustrated in Table 1.

Comparison Metrics

Three performance metrics are applied to the
schedules generated by the three re-scheduling policies
(FIFO, SET, and SLET).The comparison metrics to

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

25

evaluate performance are the Average Waiting Time (AWT)
and the unscheduled tasks number (UTN).

 The average waiting time (AWT) is a
measure of the total time that all requests wait
in a queue. It is equal as predefined in the
previous section:

AWT =
∑ 𝑊𝑇_𝑖

ୀଵ
Nൗ

Where WT_i = Service_time – Arrival_time
 The unscheduled tasks number (UTN)

represents the number of requested tasks that
an intelligent robot cannot schedule.

Table 1: Datasets

Tasks

Dataset 1 Dataset 2 Dataset 3

Burst time Arrival time Burst time Arrival time Burst time Arrival time

T1 30 0 170 0 35 0

T2 80 1 130 1 180 1

T3 120 2 110 2 70 2

T4 160 3 250 3 110 3

T5 200 4 30 4 10 4

T6 220 4 60 5 90 5

T7 180 4 220 3 30 6

T8 50 5 100 3 70 7

T9 70 3 50 4 20 3

T10 60 6 120 6 60 8

Figure 6. First Experimentation Results using Dataset1, on (2, 3, 4) Robots

 Figure 7. Second Experimentation Results using Dataset2, on (2, 3, 4) Robots

0

20

40

60

80

100

120

140

AWT Unscheduled
tasks

AWT Unscheduled
tasks

AWT Unscheduled
tasks

2 Robots 3 Robots 4 Robots

FIFO SET SLET

0
10
20
30
40
50
60
70

AWT Unscheduled
tasks

AWT Unscheduled
tasks

AWT Unscheduled
tasks

2 Robots 3 Robots 4 Robots

FIFO SET SLET

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

26

 Figure 8. Third Experimentation Results using Dataset3, on (2, 3, 4) Robots

3.4. Interpretation

To give a closely look at the overall performance of

the approaches, the figures 6, 7, and 8 present the Average
Waiting Time (AWT) as well as the number of unscheduled
tasks for each strategy. If we focus on the first criterion
(AWT), as seen from the curves in Figures 6, 7, and 8, we
conclude that the best solution to be applied by the
Intelligent Robot is SLET approach. Whenever the SET
policy is applied, the tasks having long burst time will suffer
from starvation. Results have shown that scheduling based
on FIFO policy is quite inadequate the tasks coming late
also will suffer from starvation. In the SLET policy, we
tried to reduce the average waiting time (measured in
seconds) to ensure fairness in picking out tasks for
execution based on the balance between the short tasks from
the first queue and the long tasks from the second one. Thus,
the SLET policy can be applied to provide better
performance for the intelligent robot. This result may be
expected because the FIFO or SET approach can lead to
starvation. Nevertheless, the FIFO approach generates a
huge values of AWT so it is considered as the worst
approach. This degradation of AWT is due to that the
Intelligent Robot gives priority to only requests coming first
whereas the other queues are neglected which leads to
heavy AWT. By considering all these interpretations, we
recommend to apply the SLET policy.

If we consider the second criterion, we notice that the
SLET policy provides the best results in comparison to
FIFO and SET policies. Based on these two criterion, it is
highly recommended to deploy SLET policy in scheduling
as it presents optimal results. Most of the previous
scheduling studies have focalized on only one criterion to
compare.

4. Conclusion

This paper addresses the scheduling problem in real-
time system. To do so, we present firstly the conceptual
modelling of real-time system. Secondly, we study the
scheduling through three approaches reducing the total
waiting time: First In/First Out strategy (FIFO), Shortest
Execution Time strategy (SET) and Shortest-Longest
Execution Time strategy (SLET). Empirical results show
that SLET approach outperformed the others in most cases.
These scheduling approaches do not guarantee the
generation of an optimal schedule, but they are capable of
generating an acceptable schedule to reduce the waiting
time for the overall tasks. In the future, we are planning to
generate optimal scheduling in our solution.

We will also show how our methodology can be
applied to real-world situations involving robot teams, and
how feasibility analysis can be used to predict the solution's
scalability to large robot teams. As future work, we can
simulate the results on Xenomai which is a real-time
embedded Linux.

Acknowledgments:

The authors gratefully acknowledge the approval and
the support of this research study by the grant no-7494-CIT-
2017-1-8-F- from the Deanship of Scientific Research at
Northern Border University, Arar, K.S.A.

References

[1] Mohammad Mahdi Ahmadian, Mostafa Khatami, Amir

Salehipour, T.C.E. Cheng, Four decades of research on the

open-shop scheduling problem to minimize the makespan,

European Journal of Operational Research, 2021, ISSN 0377-

2217, https://doi.org/10.1016/j.ejor.2021.03.026.

0
10
20
30
40
50
60
70
80
90

AWT Unscheduled
tasks

AWT Unscheduled
tasks

AWT Unscheduled
tasks

2 Robots 3 Robots 4 Robots

FIFO SET SLET

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

27

[2] Golshan Madraki, Robert.P. Judd, Accelerating the calculation

of makespan used in scheduling improvement heuristics,

Computers & Operations Research, Volume 130, 2021,

105233, ISSN 0305-0548,

https://doi.org/10.1016/j.cor.2021.105233.

[3] Rubing Chen, Jinjiang Yuan, C.T. Ng, T.C.E. Cheng, Single-

machine hierarchical scheduling with release dates and

preemption to minimize the total completion time and a regular

criterion, European Journal of Operational Research, Volume

293, Issue 1, 2021, Pages 79-92, ISSN 0377-2217,

https://doi.org/10.1016/j.ejor.2020.12.006.

[4] Long Wan, Jiajie Mei, Jiangze Du, Two-agent scheduling of

unit processing time jobs to minimize total weighted

completion time and total weighted number of tardy jobs,

European Journal of Operational Research, Volume 290, Issue

1, 2021, Pages 26-35, ISSN 0377-2217,

https://doi.org/10.1016/j.ejor.2020.07.064.

[5] Shijin Wang, Wenli Cui, Feng Chu, Jianbo Yu, Jatinder N.D.

Gupta, Robust (min–max regret) single machine scheduling

with interval processing times and total tardiness criterion,

Computers & Industrial Engineering, Volume 149, 2020,

106838, ISSN 0360-8352,

https://doi.org/10.1016/j.cie.2020.106838.

[6] Gur Mosheiov, Daniel Oron, A note on scheduling a rate

modifying activity to minimize total late work, Computers &

Industrial Engineering, Volume 154, 2021, 107138, ISSN

0360-8352, https://doi.org/10.1016/j.cie.2021.107138.

[7] E Mayer, J Raisch, Time-optimal scheduling for high

throughput screening processes using cyclic discrete event

models, Mathematics and Computers in Simulation, Volume

66, Issues 2–3, 2004, Pages 181-191, ISSN 0378-4754,

https://doi.org/10.1016/j.matcom.2003.11.004.

[8] Gambier, Adrian. "Real-time control systems: a tutorial." 2004

5th Asian Control Conference (IEEE Cat. No. 04EX904). Vol.

2. IEEE, 2004.

[9] Kun Cao, Guo Xu, Junlong Zhou, Mingsong Chen, Tongquan

Wei, Keqin Li, Lifetime-aware real-time task scheduling on

fault-tolerant mixed-criticality embedded systems, Future

Generation Computer Systems, Volume 100, 2019, Pages 165-

175, ISSN 0167-739X,

https://doi.org/10.1016/j.future.2019.05.022.

[10] Ehsan Ghadaksaz, Saeed Safari, Storage capacity for EDF–

ASAP algorithm in energy-harvesting systems with periodic

implicit deadline hard real-time tasks, Journal of Systems

Architecture, Volume 89, 2018, Pages 10-17, ISSN 1383-7621,

https://doi.org/10.1016/j.sysarc.2018.03.005.

[11] Yi-wen Zhang, Cheng Wang, Chang-long Lin, Energy-aware

sporadic tasks scheduling with shared resources in hard real-

time systems, Sustainable Computing: Informatics and

Systems, Volume 15, 2017, Pages 52-62, ISSN 2210-5379,

https://doi.org/10.1016/j.suscom.2017.06.002.

[12] Guowei Wu, Zichuan Xu, Temperature-aware task

scheduling algorithm for soft real-time multi-core systems,

Journal of Systems and Software, Volume 83, Issue 12, 2010,

Pages 2579-2590, ISSN 0164-1212,

https://doi.org/10.1016/j.jss.2010.08.017.

[13] Arnoldo Díaz-Ramírez, Pedro Mejía-Alvarez, Luis E. Leyva-

del-Foyo, Comprehensive Comparison of Schedulability Tests

for Uniprocessor Rate-Monotonic Scheduling, Journal of

Applied Research and Technology, Volume 11, Issue 3, 2013,

Pages 408-436, ISSN 1665-6423,

https://doi.org/10.1016/S1665-6423(13)71551-7.

[14] Golnaz Taheri, Ahmad Khonsari, Reza Entezari-Maleki,

Leonel Sousa, A hybrid algorithm for task scheduling on

heterogeneous multiprocessor embedded systems, Applied

Soft Computing, Volume 91, 2020, 106202, ISSN 1568-4946,

https://doi.org/10.1016/j.asoc.2020.106202.

[15] Sandra Catalán, José R. Herrero, Enrique S. Quintana-Ortí,

Rafael Rodríguez-Sánchez, Static scheduling of the LU

factorization with look-ahead on asymmetric multicore

processors, Parallel Computing, Volume 76, 2018, Pages 18-

27, ISSN 0167-8191,

https://doi.org/10.1016/j.parco.2018.04.006.

[16] Joel Matějka, Björn Forsberg, Michal Sojka, Přemysl Šůcha,

Luca Benini, Andrea Marongiu, Zdeněk Hanzálek, Combining

PREM compilation and static scheduling for high-

performance and predictable MPSoC execution, Parallel

Computing, Volume 85, 2019, Pages 27-44, ISSN 0167-8191,

https://doi.org/10.1016/j.parco.2018.11.002.

[17] Libing Wang, Xin Hu, Yin Wang, Sujie Xu, Shijun Ma, Kexin

Yang, Zhijun Liu, Weidong Wang, Dynamic job-shop

scheduling in smart manufacturing using deep reinforcement

learning, Computer Networks, Volume 190, 2021, 107969,

ISSN 1389-1286,

https://doi.org/10.1016/j.comnet.2021.107969.

[18] Danyu Bai, Lixin Tang, Open shop scheduling problem to

minimize makespan with release dates, Applied Mathematical

Modelling, Volume 37, Issue 4, 2013, Pages 2008-2015, ISSN

0307-904X, https://doi.org/10.1016/j.apm.2012.04.037.

[19] Adeline T.H. Ang, Appa Iyer Sivakumar, Chao Qi, Criteria

selection and analysis for single machine dynamic on-line

scheduling with multiple objectives and sequence-dependent

setups, Computers & Industrial Engineering, Volume 56, Issue

4, 2009, Pages 1223-1231, ISSN 0360-8352,

https://doi.org/10.1016/j.cie.2008.07.018.

