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Abstract 
Tasks scheduling have been gaining attention in both industry and 
research. The scheduling that ensures independent task execution 
is critical in real-time systems. While task scheduling has gained 
a lot of attention in recent years, there have been few works that 
have been implemented into real-time architecture. The efficiency 
of the classical scheduling strategy in real-time systems, in 
particular, is still understudied. To reduce total waiting time, we 
apply three scheduling approaches in this paper: First In/First Out 
(FIFO), Shortest Execution Time (SET), and Shortest-Longest 
Execution Time (SLET). Experimental results have demonstrated 
the efficacy of the SLET in comparison with the others in most 
cases in a wide range of configurations. 
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.1. Introduction 

In general, the scheduling problem is a problem in 
which the aim is to properly assign available resources to 
tasks in order to maximize a specific objective, such as the 
makespan [1, 2], total completion time [3, 4], tardiness [5], 
overall lateness [6], total throughput time [7], and so on. In 
this paper, we are interested in real-time scheduling. We 
begin firstly with the definition of “Real-Time System” 
which can be defined as: “A real-time system is one in 
which the correctness of a result not only depends on the 
logical correctness of the calculation but also upon the time 
at which the result is made available” [8].  

 
A real-time task is a task that has a critical deadline, i.e. 

one that must be executed within a certain amount of time 
[9, 10]. This concept reinforces the idea that time is one of 
the most critical elements of the system, and that tasks have 
timing constraints. These tasks usually include the control 
or reaction to events occurring in the external world in "real 
time". A hard real-time task is one that must respect the 
deadline because in case of failure to do so will result in 
disagreeable effects [11]. However, a soft real-time task is 
one in which respecting the deadline is looked-for but not 
necessary [12]. In this paper, we are interested more in soft 
real-time task. Besides, we consider that the tasks are pre-
emptible then the scheduler is pre-emptive. In this case, if a 
task is considered more important or urgent, it may take 

control of the processor instead of another task, whose 
execution is stopped and resumed later.  

The characteristics of the system on which scheduling 
algorithms are applied are generally used to classify them 
based on the following features: 

The scheduling may be uniprocessor or multiprocessor. 
Uniprocessor scheduling is used when all tasks are done on 
a single processor [13]. If is not the case (i.e. there are many 
processors), we say "multiprocessor scheduling" which 
means multicore processor platform [14]. In this paper, we 
consider only uniprocessor scheduling. 

There are two types of scheduling: static and dynamic 
scheduling. The static scheduling necessitates full details 
about the tasks to be scheduled (such as deadlines, priorities, 
times, etc.) [15, 16]. These details must be known a priori 
to propose a scheduling for the tasks before executing it. 

The schedule is said to be dynamic if the feasibility can 
be evaluated at run time and updates in the configuration 
can be generated. Static schedules must be prepared offline 
at all times. 

Dynamic schedules may be constructed either off-line 
or on-line [17]. The dynamic scheduling is considered off-
line if the whole scheduling problem is known a priori but 
the execution is modified at run time [18]. The dynamic 
scheduling is considered on-line if the future is 
unpredictable or unspecified [19]. We are interested in this 
paper with off-line dynamic scheduling which has the 
advantage of determinism. 

In this paper, we consider Real-Time Control System 
composed of intelligent robot ensuring the control of the 
production system in real-time. To do so, we propose a 
hierarchical control framework for real-time control.  At a 
higher level, the main components are: the intelligent robot 
controlling the real-time system. Designing a generic 
architecture to incorporate an intelligent robot for 
controlling a production system in real time entails dealing 
with a few common problems such as how to choose the 
task to be executed and the scheduling strategy to be applied.  
The basic architecture can be defined in one of two ways: 
(1) Specialized modules can be created to ensure specific 
functions, or (2) A general procedure can be used to 
implement all of the processing functions. Based on our 
study, we choose the second solution to propose a generic 
architecture for real-time control system. 
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Many tasks are assigned to the intelligent robot in 
order to be executed. These tasks must be scheduled locally 
on the robot. The intelligent robot may have a range of tasks 
from which to choose dynamically, but some may be 
impractical due to resource and time constraints. Therefore, 
we present three approaches for increasing feasibility: First 
In/First Out strategy (FIFO), Shortest Execution Time 
strategy (SET) and Shortest-Longest Execution Time 
strategy (SLET). All of them take into account the total 
waiting time. These scheduling approaches do not 
guarantee the generation of an optimal schedule, but they 
are capable of generating an acceptable schedule to 
minimize the waiting time for the overall tasks. We study 
these approaches on three datasets and we compare the 
results to determine the best solution to be applied. 

The main contributions of this paper are: (1) a 
hierarchical control framework that combines model-based 
methods for dynamic scheduling of real-time tasks; (2) a set 
of three scheduling approaches: First In/First Out strategy 
(FIFO), Shortest Execution Time strategy (SET) and 
Shortest-Longest Execution Time strategy (SLET) to 
minimize the total waiting time. 

 The paper has been organised in the following way. 
The section 2 presents the conceptual model of real-time 
control system. The section 3 analyses the scheduling 
problem by introducing three different scheduling policies: 
FIFO, SET and SLET. We present and discuss the results 
and decide which one leads to optimal results.  

 

 

2. Conceptual Model of Real-Time Control System 
 

Current Task
Queue

Criterion

...
...

Input Event

Scheduler

Internal View

Information about 
Task

List of events

Execute()

Next_Task()

A

Conveyor C1

ABConveyor C
3

B

Conveyor C2

Position p1

Position p2

Position p3 Position p4

Posi
tio

n p
5

Posi
tio

n p
6

Robot r

Processing unit 
M

Percepts

Sensor

Actions

Actuator

Production SystemReal-Time Control Robot
 

Figure 1. Real-Time Control System 
 
A Real-Time Control System is composed of two main 

components which are: Real-Time Control Robot and the 
Production System (Figure 1). In this paper, we are 
interested more in the Real-Time Control Robot component 
that’s why we define it in more details. Designing a modular 
architecture to incorporate an intelligent robot for 
controlling a production system in real time entails dealing 
with a few common issues. Some functions, such as how to 
choose the task to be performed and the scheduling strategy 
to be applied by the intelligent robot, must be implemented, 
making it difficult to design them to work with great 
flexibility, while other functions involving high 

computational load can be carried out in one of two ways: 
(1) Specialized modules can be created to ensure specific 
functions like robot motion, and perception function, for 
example. (2) A general procedure can be used to implement 
all of the processing functions. If the number of processing 
functions must be held to a minimum, the former method is 
more effective, while the latter solution provides more 
flexibility and requires more design effort to be generic. The 
basic architecture that has been used as a guideline in this 
study is based on the second solution. We develop an 
intelligent control robot as shown in figure 2. We propose 
according to the well-known UML language the concepts 
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of RealTimeSystem, ControlRobot, Behavior, Scheduler, 
Queue and Tasks. 
 
 RealTimeSystem: is characterized by several robots that 

can control the system. The System is dynamic which 
permits to add (resp. remove) any Control Robot at any 
time with the method addRobot() (resp. removeRobot()).  

 ControlRobot: represents different behaviors that can be 
applied by a Control robot. The Control Robot behavior 
is flexible thanks to methods addBehavior() and 
removeBehavior() which facilitates to change the robot 
behavior without having the need to stop the whole 
system. 

 Behavior: represents the solution to be applied. The 
Behavior is composed of a list of tasks with precedence 
constraints to be executed. 

 Scheduler: The task scheduler is one of the Control 
Robot's most important components, since it determines 
which of the ready tasks should be executed. If no ready 
tasks are available at a given time, no task can be 
executed, and the Control Robot will remain idle until a 
task becomes available. 

 
 

 

 
Figure 2. The general conception of a Real-Time Control System based on Tasks 

 
As there are many tasks in competition with other tasks 

to be executed. The scheduler is expected to meet explicitly 
response-time constraints by enabling a scheduling policy 
that ensures timely completion of critical tasks. A scheduler 
related to a real-time Control Robot is characterized by: 

 

 readyTask: a queue that holds a collection of tasks in 
ready state. 

 runningTask: a queue that keeps track of the tasks that 
are currently running. 
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 timeSlice: the threshold of preempting a task (the 
quantity of time assigned to a task before its preemption). 

 
It is common in the scheduling domain to model task state 
by specifying a limited collection of machine modes, such 
as "on," "off," and "stand-by." The scheduler associates a 
finite state machine used to describe the transitions to 
switch from one state to another. The task may be in one of 
the following possible states: Create, Wait, Run, Suspend or 
Terminate. Every task is in one state at any given time: 

 
 Wait: The scheduler puts a task in waiting state to be 

allocated in the future. Based on a set of parameters, the 
scheduler defines which ready task will be performed 
next (for example priority criterion i.e. the task having 
the highest priority will be assigned to the processor). 
Since it is not the highest priority, the scheduler switches 
the task state from Suspend to Wait (The link number 1 
in the figure 3). 

 Suspend: The scheduler suspends a task (there are many 
reasons such that waiting for an event or a simple delay). 
The scheduler alters the task state from Run to Suspend 
because it does not have the resource (The link number 
3 in the figure 3). 

 Run: The scheduler runs a task, so that its instructions 
can be executed. At any given time, only one task can be 
in this state, while all other tasks can be in different states 
at the same time. The scheduler updates the task state 
from Suspend to Run because it becomes unblocked and 
has the highest priority (The link number 2 in the figure 
3). The scheduler changes the task state from Wait to Run 
because it becomes having the highest priority (The link 
number 6 in the figure 3).  

 Terminate: The scheduler terminates the task execution, 
the task allocator deletes it and releases the resources it 
was using. The scheduler alters the task state from Run 
to Terminate because it finishes its execution (The link 
number 4 in the figure 3). The scheduler updates the task 
state from Suspend to Terminate because it eliminates 
this task (The link number 4 in the figure 3). The 
scheduler changes the task state from Wait to Terminate 
because it eliminates this task (The link number 8 in the 
figure 3).  

 

 
            Figure 3. Diagram of Task states. 

 
 Queue:  Several tasks can be ready or blocked at the 

same time. As a result, the system keeps a queue for 
blocked tasks and another for ready tasks. The latter is 
organized in a priority order, with the most important 
priority at the top of the list. When a task in the ready 
state is allocated a processor, it shifts from the ready state 
to the running state. This processor role is known as 
dispatching, and it is carried out by the dispatcher, which 
is a component of the scheduler. 

 Task: may be composed of several sub-tasks and each 
Task may have precedence constraints. Each task allow 
controls of devices by reading and interpreting data from 
sensors, before reacting and activating the appropriate 
actuators.  

 
3. Scheduling Problem in a Real-Time Control System 

 
The scheduling problem in multi-robot system includes: 
- A set of intelligent robots (either Faulty Robots or 

Helping Robots) 
- A collection of tasks that need to be carried out 
- A set of constraints which determines the execution 

order of the tasks. 
 

If the intelligent robot is free and has enough time 
(which means the intelligent robot studies its current list of 
tasks already scheduled to be executed and specifies if there 
is time for the new task to be done before its deadline), then 
it accepts to execute this task.  

 
3.1. Scheduling Problem: Definition  
 

The intelligent robot tries to find an idle time slot or 
window (time frame) in which the requested task can be 
carried out. The idle time slot is defined by the start time 
and deadline time for the requested task. In this idle time 
slot, some tasks have been already scheduled to be executed. 
It is possible that the idle time slot is filled with other tasks. 
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Figure 4 depicts the scheduling problem. In fact, the robot 
has three tasks to execute A, B and C. the task A (B, C 
respectively) has 10 (20, 15 respectively) time units to be 
executed. The task A is released at 0. The deadline for these 
3 tasks is 100 time units. The robot tasks are scheduled to 

run in the first 45 time units of the time window. While 
carrying out the task A, the robot receives a task request at 
5 time units and the deadline is 70. 

 

 

 
Figure 4. Scheduling problem 

 
 

 
Figure 5. A completed scheduling 

 
Since Task D has 30 time units and the time window is 70, 
it is possible to rearrange the tasks between (B, C) and D to 
find a solution to this problem (see Figure 5). 

 
If the schedule exists, the robot should inform the other 

corresponding robot that it accepts to schedule within its 
own tasks. If there is no solution, then the robot sends a 
negative answer to the other part. 
 
The intelligent robot can apply several policies such as: 

 First In/First Out strategy (FIFO): the intelligent robot 

uses the First In/First Out criteria to organize requested 

tasks based on the time arrival; 

 Shortest execution time strategy (SET): the intelligent 

robot selects the requested tasks having the smallest 

execution time; 

 Shortest-Longest execution time strategy (SLET): the 

intelligent robot uses the same queue as above but it 

divides into two queues based on the median value: the 

first one is used for short requested tasks and the second 

one is used to long requested tasks. After that, the 

intelligent robot chooses firstly two requested tasks 

having the smallest execution time and secondly one 

requested task having the longest execution time. 
The agent finds a solution in running time of O (n*m) where 
n is the number of tasks scheduled and m is the number of 
requested task to be scheduled. Indeed, every existing task 
is compared to the requested task which leads to a nested 
loop. In the worst case, it will be Max (O(n2), O(m2)). 

 
3.2. Formalization  
 
A : Set of all available robot aA. Each robot a is 

indexed numerically but also may have a unique name 
associated with it. 
T  Set of all tasks i T that must be completed to 
achieve an objective. Each task i is indexed numerically but 
may have a unique name that describes the service needed 
to complete it. 
For each task, we have 
 ri = release date of task i  
 di = due date of task i 
 Ci = the completion time  
 Fi = Ci - ri, the flowtime  
 Li = Ci - di, lateness of task i  
 Ti = max{0, Li}, tardiness of task i  
 Ei = max{0, -Li}, earliness of task 
Cmax = maxi=1..n{Ci} makespan 
Lmax = maxi=1..n{Li} maximum lateness  



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 

 

24

 

Tmax = maxi=1..n{Ti} maximum tardiness   
The helping robot has some important data to handle 

which are: 
 QueueAgent represents a queue associated to a 

different kinds of requested tasks coming 
from faulty robots. Each requested task 
contains data about: 

 Executing_time: amount of time to execute the 
requested task. 

 Arrival_time: the time at which the requested task is 
arrived to the intelligent robot 

 Free: Boolean data to indicate if the 
intelligent robot is available 

 Available_time: data to indicate the amount of time that 
the intelligent robot is still free. 

 N represents the number of requested tasks 
saved in the queue related to an Intelligent 
Robot. 

 Task_time: the time at which the intelligent robot 
begins to handle the requested task  

 WT: the waiting time for a requested task till it is 
treated by the intelligent robot 

 AWT represents the average waiting time for 
the different requested tasks in a queue 
related to an Intelligent Robot. 

For the sake of simplicity, we present here only the 
main steps of the algorithm applied to the different 
requested tasks related to an Intelligent Robot. Let 
Request_i be a requested task related to the QueueAgent such 
that 1 ≤ i ≤ N. We assume that the Intelligent Robot 
computes the waiting time of each requested task Request_i 
denoted by WT_i. The waiting time is a measure of the total 
time that a requested task waits in a queue. It corresponds 
to the duration between the arrival time of the requested task 
(denoted by Arrival_time) and the initiation of its treatment 
by the Intelligent Robot (denoted by Task_time). 

WT_i = Task_time – Arrival_time  
We denote in addition by AWT the average waiting 

time of all the requested tasks belonging to QueueAgent. It is 
equal to the sum of the different waiting times of different 
requested tasks WT_i divided by their number where 1 ≤ i 
≤ N. 

 

AWT = 
∑ 𝑊𝑇_𝑖

ୀଵ
Nൗ  

 
The intelligent robot treats the requested task 

periodically where the Intelligent Robot checks if it is free, 
selects a requested task according to a specific riterion, 
calculates the waiting time associated to this requested task 
and then deletes it from the corresponding queue as follows: 

 
N ← 0 
For each period Δ 

If (Free = true) then 
  While  QueueAgent.length() > 0 do  

Request ← Choose_request() 
If (Available_time > Request. 

Executing_time) then 
Task_time ←  currentTime() 
QueueAgent .remove(Request); 
WT_i  ← Task_time – Request. 

Arrival_time 
AWT ←  AWT + WT_i 
N ← N + 1 
AWT ← AWT / N 

 End if 
  End while 

End if 
End for 

 
3.3. Simulation 
 
In this paper, we consider and compare several 

alternatives to choose a requested task. We present a 
comparative study between well-known re-scheduling 
strategies (FIFO, SET, and SLET). We propose to evaluate 
the performance by applying these strategies so that we 
determine the best policy that the Intelligent Robot should 
take. 
These results were performed using SimMRS (Simulator 
Multi-Robot System tool) which is a software tool that we 
have developed for simulation.  To evaluate the different 
strategies in our experiment, we use our simulator: 
SimMRS that enables us to conduct experiments through 
generating random tasks. The optimization objective is to 
minimize the average waiting time over all tasks in the 
different queues. 

Three different datasets were utilized through testing 
the proposed algorithm against three different re-scheduling 
algorithms: First In/First Out strategy (FIFO), Shortest 
Execution Time strategy (SET) and Shortest-Longest 
Execution Time strategy (SLET). Each dataset consists of 
randomly generated ten tasks as it is illustrated in Table 1. 

 
Comparison Metrics 

Three performance metrics are applied to the 
schedules generated by the three re-scheduling policies 
(FIFO, SET, and SLET).The comparison metrics to 
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evaluate performance are the Average Waiting Time (AWT) 
and the unscheduled tasks number (UTN).  

 The average waiting time (AWT) is a 
measure of the total time that all requests wait 
in a queue. It is equal as predefined in the 
previous section: 

AWT = 
∑ 𝑊𝑇_𝑖

ୀଵ
Nൗ  

Where WT_i = Service_time – Arrival_time 
 The unscheduled tasks number (UTN) 

represents the number of requested tasks that 
an intelligent robot cannot schedule. 

 
Table 1: Datasets 

 

Tasks 

 

Dataset 1  Dataset 2 Dataset 3 

Burst time  Arrival time  Burst time  Arrival time  Burst time  Arrival time 

T1  30  0  170  0  35  0 

T2  80  1  130  1  180  1 

T3  120  2  110  2  70  2 

T4  160  3  250  3  110  3 

T5  200  4  30  4  10  4 

T6  220  4  60 5 90 5 

T7  180  4  220  3  30  6 

T8  50  5  100  3  70  7 

T9  70  3  50  4  20  3 

T10  60  6  120  6  60  8 

 
Figure 6. First Experimentation Results using Dataset1, on (2, 3, 4) Robots 

 
         Figure 7. Second Experimentation Results using Dataset2, on (2, 3, 4) Robots 
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      Figure 8. Third Experimentation Results using Dataset3, on (2, 3, 4) Robots 

 
3.4. Interpretation 
 
To give a closely look at the overall performance of 

the approaches, the figures 6, 7, and 8 present the Average 
Waiting Time (AWT) as well as the number of unscheduled 
tasks for each strategy. If we focus on the first criterion 
(AWT), as seen from the curves in Figures 6, 7, and 8, we 
conclude that the best solution to be applied by the 
Intelligent Robot is SLET approach. Whenever the SET 
policy is applied, the tasks having long burst time will suffer 
from starvation. Results have shown that scheduling based 
on FIFO policy is quite inadequate the tasks coming late 
also will suffer from starvation. In the SLET policy, we 
tried to reduce the average waiting time (measured in 
seconds) to ensure fairness in picking out tasks for 
execution based on the balance between the short tasks from 
the first queue and the long tasks from the second one. Thus, 
the SLET policy can be applied to provide better 
performance for the intelligent robot. This result may be 
expected because the FIFO or SET approach can lead to 
starvation. Nevertheless, the FIFO approach generates a 
huge values of AWT so it is considered as the worst 
approach. This degradation of AWT is due to that the 
Intelligent Robot gives priority to only requests coming first 
whereas the other queues are neglected which leads to 
heavy AWT. By considering all these interpretations, we 
recommend to apply the SLET policy. 

If we consider the second criterion, we notice that the 
SLET policy provides the best results in comparison to 
FIFO and SET policies. Based on these two criterion, it is 
highly recommended to deploy SLET policy in scheduling 
as it presents optimal results. Most of the previous 
scheduling studies have focalized on only one criterion to 
compare.  

4.  Conclusion 
 

This paper addresses the scheduling problem in real-
time system. To do so, we present firstly the conceptual 
modelling of real-time system. Secondly, we study the 
scheduling through three approaches reducing the total 
waiting time: First In/First Out strategy (FIFO), Shortest 
Execution Time strategy (SET) and Shortest-Longest 
Execution Time strategy (SLET). Empirical results show 
that SLET approach outperformed the others in most cases.  
These scheduling approaches do not guarantee the 
generation of an optimal schedule, but they are capable of 
generating an acceptable schedule to reduce the waiting 
time for the overall tasks. In the future, we are planning to 
generate optimal scheduling in our solution. 

We will also show how our methodology can be 
applied to real-world situations involving robot teams, and 
how feasibility analysis can be used to predict the solution's 
scalability to large robot teams. As future work, we can 
simulate the results on Xenomai which is a real-time 
embedded Linux. 
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