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Summary 
A conceptual model can be used to manage complexity in both the 
design and implementation phases of the system development life 
cycle. Such a model requires a firm grasp of the abstract principles 
on which a system is based, as well as an understanding of the 
high-level nature of the representation of entities and processes. In 
this context, models can have distinct architectural characteristics. 
This paper discusses model multiplicity (e.g., unified modeling 
language [UML]), model singularity (e.g., object-process 
methodology [OPM], thinging machine [TM]), and a 
heterogeneous model that involves multiplicity and singularity. 
The basic idea of model multiplicity is that it is not possible to 
present all views in a single representation, so a number of models 
are used, with each model representing a different view. The 
model singularity approach uses only a single unified model that 
assimilates its subsystems into one system. This paper is 
concerned with current approaches, especially in software 
engineering texts, where multimodal UML is introduced as the 
general-purpose modeling language (i.e., UML is modeling). In 
such a situation, we suggest raising the issue of multiplicity versus 
singularity in modeling. This would foster a basic appreciation of 
the UML advantages and difficulties that may be faced during 
modeling, especially in the educational setting. Furthermore, we 
advocate the claim that a multiplicity of views does not necessitate 
a multiplicity of models. The model singularity approach can 
represent multiple views (static, behavior) without resorting to a 
collection of multiple models with various notations. We present 
an example of such a model where the static representation is 
developed first. Then, the dynamic view and behavioral 
representations are built by incorporating a decomposition strategy 
interleaved with the notion of time. 
Key words: 
Requirements elicitation; conceptual modeling; model 
multiplicity; model singularity; static model; dynamic model; 
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.1. Introduction 

A conceptual model is a way of conceptualizing 
(depicting or imitating) how entities and processes in a 
certain part of the world (e.g., physical, social) work. For 
the model to be developed, the original world phenomenon 
must be projected (counterparts developed) in the abstract 
domain to match these entities and processes on the basis of 
common or theoretical conceptualization. Here, a 
phenomenon refers to the stable and general features of a 
system of interest, where a system is “a collection of 

elements, related to one another, exhibiting a collective 
behavior” [1]. Conceptual models are used to support the 
design of software, business processes, enterprise 
documentation, etc. [2]. In this context, modeling requires 
grasping the abstract principles on which the system is 
based, as well as understanding the high-level nature of the 
representation of entities and processes. 
In the requirements elicitation phase of development, a 
conceptual model involves collecting information for the 
purpose of building a representation of the targeted system. 
According to [3], “No other part of the conceptual work is 
as difficult as establishing the detailed technical 
requirements… No other part of the work so cripples the 
resulting system if done wrong. No other part is as difficult 
to rectify later.” A requirements engineering-based 
conceptualization [4] can be applied to manage this 
involved complexity [5].  

Requirements engineering begins with interaction among 
stakeholders (e.g., managers, customers, software engineers, 
and end users) and continues during the modeling process, 
where needs are specified, scenarios are described, 
functions and features are delineated, and project 
constraints are identified [6]. The first task in such a process 
is the requirements inception (gathering), which is 
concerned with the objectives for the system, what is to be 
accomplished, and how the system is to be used on a day-
to-day basis [6]. 

1.1 Styles of Modeling 

To understand the process of creating conceptual models, 
one must understand that several styles of modeling exist:  

 Model multiplicity (e.g., unified modeling 
language [UML]),  

 Model singularity (e.g., object-process 
methodology [OPM], thinging machine [TM]), or  

 Heterogeneous model [12] 
The basic idea of model multiplicity is that it is not possible 
to present all views in a single representation, so a number 
of models are used, with each model representing an 
alternative view. The model singularity approach uses only 
one integrated model. Each of these styles of modeling has 
its own strengths and weaknesses. 
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1.2 UML as the Standard Modeling Language 

In our computer engineering department, the classical text 
Software Engineering: A Practitioner’s Approach by 
Pressman and Maxim [6] is used in the Introduction to 
Software Engineering course. The book focuses on a case 
study called SafeHome to teach how to conduct such an 
initial phase of development using UML. The modeling 
concentrates solely on UML and its 14 diagrams in 
accomplishing such a task, as UML is the go-to option for 
explaining software design models [7]. According to Oliver 
[7], “What makes UML well-suited to and much-needed for 
software development is its flexibility. UML is a rich and 
extensive language that can be used to model not just 
object-oriented software engineering, but application 
structure, behavior, and business processes too.” Sharma et 
al. [5] observed that a UML conceptual model underlines 
three major elements: building blocks (e.g., things, 
relationships, and diagrams), rules (e.g., names, scopes, and 
execution), and common mechanisms (e.g., specifications, 
stereo types, and tagged values).  

However, UML has grown in complexity, which makes 
many people feel as though they are better off without it [7]. 
Complexity is the number-one problem in the software 
industry [8]. It is common for students to have difficulty 
with absorbing UML due to the involved complications [9]. 
Often, students think that UML diagrams are useless and 
serve only as documentation that no one reads [10]. These 
difficulties in UML originate from the multiplicity of the 
model paradigm used in existing object-oriented system 
analysis methods for specifying various system aspects [11]. 

1.3. Problem of Concern 

When it comes to teaching an introductory course in 
software engineering modeling, almost all current texts treat 
the multimodal UML methodology as general-purpose 
modeling, which gives students the impression that UML is 
modeling and that modeling is UML. This one-sided picture 
completely ignores the difficulty of multiplicity, as well as 
alternative modeling methodologies that include singularity 
or mixture models. In the educational environment, both 
modeling as a separate topic and various modeling styles 
should at least be mentioned before UML is adopted as the 
selected modeling language.  

To illustrate the types of claims involved, we consider the 
following statements, which are common in textbooks: “just 
as building architects create blueprints for a construction 
company to use, software architects create UML diagrams 
to help software developers to build software” [6], and “if 
you understand UML, you can much more easily 

understand and specify a system and explain the design of 
that system to others” [6].  
 
In this paper, we propose introducing modeling and 
highlighting the issue of model multiplicity versus model 
singularity before concentrating exclusively on UML. This 
would give students a basic understanding of the UML 
advantages and difficulties that they may face during their 
modeling exercises. 
 
The next section provides further explanation about 
multiplicity versus singularity in modeling. For the sake of 
making this paper self-contained, section 3 summarizes our 
main tool for analyzing modeling, a TM. Section 4 
introduces the foundation of modeling in a TM.  

 

2. Multiplicity vs. Singularity 
 

A conceptual view is a representation of a system from the 
perspective of a related concern (e.g., structural aspect, 
behavioral aspect, functional aspect, logical aspect, 
organizational aspect, infrastructural aspect). It is a piece of 
the model that is still small enough to be comprehended and 
that also contains relevant information about a particular 
concern [13]. According to the Institute of Electrical and 
Electronics Engineers 1471 [14] standard for architecture 
modeling, a view is a depiction of a whole system from the 
perspective of related concerns. Whittle et al. [15] stated 
that an aspect of model composition is the special case of 
the more general problem of the fusion of models in one 
model, or the presence of a crosscut base model. Kruchten 
[16] defined “4+1” views as those representing different 
viewpoints: the logical view, process view, physical view, 
development architecture view, and use case view. The last 
view is a holistic view that reflects the process associated 
with a set of system requirements. Tension in the 
singularity/multiplicity modeling framework provides an 
approach for dealing with the inherent complexity of 
systems. 

According to [12], the model multiplicity approach utilizes 
a distinct model for each view. A model is the union of all 
its representations—or a union of all its views [13]. 
Comprehending a system requires concurrent references to 
the various models, as well as the creation of abstract 
associations that link them together. According to Egyed 
[13], n views need n(n-1)/2 (i.e., O(n2) complexity) ways of 
integration to be fully integrated. Rather than building the 
model into an integrating method containing all 
representations, the alternative is to place this responsibility 
on the shoulders of the developers. 

The model singularity approach produces a single model 
that enables system specification that assimilates the 
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subsystems into a whole. By contrast, UML unified 
standards, processes, and views as mostly a segregated 
collection of subsystems. UML does not determine the 
semantic integrity needed for necessary qualities such as 
consistency and completeness. 

For example, when one thinks about processes in parallel 
with objects, the OPM delineates a model singularity 
framework that avoids the source of this complexity 
problem through a single integrated model [12]. The origin 
of the model singularity approach is related to the notion of 
holistic modeling involving a unified specification that 
captures the structural, behavioral, and dynamic aspects of 
the system of interest. Peleg and Dori [11] questioned 
whether multiplicity/singularity alternative approaches 
yield a specification that is easier to comprehend.  

Some attempts at achieving a heterogeneous style of 
modeling have been made. For example, Keng-Pei Lin et al. 
[12] proposed “an approach to enrich UML from model 
multiplicity to model singularity by creating its kernel 
model with the structure-behavior coalescence process 
algebra… Both the UML structure models and behavior 
models can be derived from this kernel model.” Wang [17] 
proposed the integration and combinational usage of 
existing modeling languages (i.e., the OPM, UML). 

3. TM Modeling 

The TM model involves a single diagrammatic 
representation. It articulates the ontology of the world in 
terms of an entity that is simultaneously a thing and a 
machine, called a “thimac” [18-27]. A thimac is like a 
double-sided coin. One side of the coin exhibits the 
characterizations that the thimac assumes, whereas on the 
other side, operational processes emerge that provide 
dynamics. A thing is subjected to doing, and a machine 
does. We claim that just as the object in object-oriented 
models is the smallest stand-alone component [13], the 
thimac is the smallest stand-alone component in TM. 
However, for simplicity’s sake, the thimac is represented in 
terms of its machine. 

The TM notion of a thing is much wider than the notion of 
an object in object-oriented modeling. The object is 
originally contrasted with the term “subject.” A subject is 
an actor, and an object is a thing that receives the act. In 
philosophy, an “object” may be considered to be just “a 
name for stuff of any kind at any scale” [28]. This is a thing 
in TM. For example, “John is happy” is about two things: 
John and happiness. Happiness flows into John. Thimacs 
are a way for generic constructs to be applied in conceptual 
modeling to describe the structure/behavior of a world of 
systems (thimacs). The generic actions in the machine (see 
Fig. 1) can be described as follows: 

Arrive: A thing moves toward a machine. 
Accept: A thing enters the machine. For simplification, 

we assume that all arriving things are accepted; 
hence, we can combine the arrive and accept 
stages into one stage: the receive stage. 

Release: A thing is ready for transfer outside of the 
machine. 

Process: A thing is changed, but no new thing results. 
Create: A new thing is born in the machine. 
Transfer: A thing is input into or output from a machine. 

Having a five-action TM machine, or seven when transfer 
includes input and output and receive includes arrival and 
acceptance, can greatly reduce the complexity of modeling. 
After all, the human mind can usually only handle seven 
distinct things (plus or minus two) at the same time [13]. 
The underlying cause of complexity is not the number of 
details “but the number of details of which we have to be 
aware at the same time” [29]. Additionally, the TM model 
includes storage and triggering (denoted by a dashed arrow 
in this study’s figures), which initiates a flow from one 
machine to another. Multiple machines can interact with 
one another through the movement of things or through 
triggering. Triggering is a transformation from one series 
of movements to another. 

 
4. A Foundation for Modeling 

 
In this paper, we claim that it is possible to present all views 
using a single model. We present an example of a model 
where a static view is developed first, followed by a 
dynamic view, which is then followed by a behavioral view. 
The last two views are built upon the static model by using 
decomposition and inserting the timing element. In this 
context, a conceptual model is seen as the projection of 
diverse aspects of concern in the world into a coherent 
whole that serves as a complete framework for both entire 
and local aspects. The coherent whole is constituted by 
means of TMs that include generic things and actions 
(thimacs) representing components of features of the world.  

Accordingly, here, the concern is with definitional features 
that define the system’s internality, which include structural 
and behavioral aspects. The involved features are 
fundamental for any system and form a single explanation 
in the singular model of a coherent system. The singular 
model is regarded as a coded system that is part of the 
ontology of the world. Here, “coded” means to be put in a 
tangible representation, especially symbolic, linguistic, and 
diagrammatic representation. “Uncoded” means not having 
to be put in such a representation. In this situation, we can 
view the model as a coded system. We can say that a “part-
of-reality” uncoded system exhibits a structure and 
behavior, but it has not been recognized as an independent 
whole. Even in social systems, we find such a phenomenon 
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when we do not recognize some encompassing system that 
engulfs the existing structure and behavior. 

 
Fig. 1. The thinging machine. 

 
For example, the second author of [27], a network engineer 
working in an actual environment, was surprised to see that 
the extent of her job included multiple switches, routers, 
servers, security elements, users, a client computer, 
protocols, and many other processes when entities and 
processes were explicitly placed in one unified TM packet, 
as shown in Fig. 2. Even though she had been practicing her 
work for years and the “real” uncoded system was right in 
front of her, she never explicitly thought of it as an 
independent thing.  

 
The system/model thesis can be related to the Platonic form. 
In this context, the form is the thing’s configuration, in 
contradistinction to the matter of the thing of which it is 
composed (Encyclopedia Britannica). The forms are 
typically described as perfect archetypes of which objects 
in the everyday world are imperfect copies. This means that 
forms have “beings” as aspects of things in reality. Whether 
these forms are perfect or imperfect is not an issue in this 
context. All reality is capable of being expressed as a 
complex system coded as forms (i.e., their models). Thus, 
“conceptual models” refer to the coding forms of real 
systems. “Conceptual” is used because no other creature 
performs this phenomenon except for a human being who 
creates, processes, releases, transfers, and receives concepts 
in a coded visible shape. In a TM, we develop forms of 
systems as thimacs, which include static (thing) and 
dynamic (machine) features in agreement with the Hegelian 
notion that “being” (a real system) is not a static concept. In 
a TM, a thimac is static and dynamic simultaneously.  

 
Simply stated, models of the world or parts of the world are 
representations of uncoded systems in the world. Any 
“existence” (e.g., phenomenon) in reality is accompanied 
by its system with a structure (e.g., boundary) and behavior. 
Some models precede their reality (fictitious systems—not 
of concern here), and some do not. Uncoded subsystems are 
similarly uncoded parts of reality; nevertheless, they cannot 
completely replace the whole uncoded system.  
 
A model multiplicity should be accompanied by a model 
singularity because that is how systems work in reality. The 
singularity gives an underlying unity to the multiplicity of 
the parts. In terms of software engineering, such a claim 

leads to the conclusion that UML requires a 15th model that 
represents the totality of the uncoded system in such a way 
that the other 14 models align with this 15th model. 
Currently, the necessary wholeness is represented, partially 
and disjointedly, by such diagrams as the class diagram 
(staticity) and the state diagram (behavior). The state 
diagram, which is restricted to a single class only, is 
inaccurately claimed to model behavior. However, one 
wonders about such a method that represents a behavior 
without incorporating time explicitly. Here, there is a mix 
between logical order of actions (or a set of actions) and 
chronology of events in time. This is applied to activity 
diagrams, which are a generalization of state diagrams in 
that 

 
Fig. 2 Undocumented (and not separately recognized) unified 
episode of a portion of the job of a network engineer (Adopted 
from [27]). 

 
The model singularity approach solves the alignment 
problem by constructing a view-independent representation 
of the whole model with views to be derived from such a 
model. We could define a consistency and completeness 
rule based on this view-independent representation [13]. 
According to Egyed 13], “all consistency and completeness 
rules needed only to be represented in one type of style 
(language, etc.) and not in a view-dependent form.” This 
approach implies that the model is more than the sum of its 
views [13]. The stakeholders can then derive views from 
that model, reconcile the changes with the model, and “all 
information about a software system is captured with as 
little redundancy as possible in the model even though the 
views, which are derived from that model, may repeatedly 
use the same information and, thus, have redundancy” [13]. 

 
Can a TM become the 15th UML diagram? In this situation, 
some, if not many, UM diagrams (e.g., activity, sequence, 
and maybe state diagrams) become obsolete. In this case, a 
view model is developed (coded) from the whole model. 
Accordingly, this facilitates a focus on how to consider 
unity and multiplicity within the same modeling system and, 
more precisely, how to align multiplicity within a singular 
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model. We could suggest that such required unification can 
be found in the TM and in its generic action that forms 
generic events. The solution might involve “a community 
of models” within a whole that are ontologically correlated 
to one another while being distinct from one another in 
terms of their purposes. In this case, the multiplicity is 
subordinate to wholeness. Generally, the modeling is to be 
understood as a single phenomenon represented by a single 
holistic model and multiple views. 

 
5. Modeling Project 

 
Pressman and Maxim [6] presented a project called the 
SafeHome project, a home security project that would 
protect against and/or recognize a variety of undesirable 
“situations,” such as illegal entry, fire, flooding, carbon 
monoxide levels, and others. It uses wireless sensors to 
detect each situation, and the homeowner can program it. In 
addition, it will automatically telephone a monitoring 
agency when a situation is detected. The purpose is to learn 
about the principles, concepts, and methods that are used to 
create requirements and design models. In the preparation 
process for modeling the required system, lists for the 
following things are prepared: 
 Objects that are part of the environment, produced by 

the system, and used by the system to perform its 
functions  

 Services (processes or functions) that manipulate or 
interact with the objects 

 Constraints (e.g., cost, size, business rules) and 
performance criteria (e.g., speed, accuracy).  

Ideally, each listed entry should be capable of being 
manipulated separately. Then, a combined list is created by 
eliminating redundant entries and adding any new entries 
that crop up. A mini-spec for the SafeHome object control 
panel is developed (see Fig. 3). Nonfunctional concerns 
(e.g., accuracy, data accessibility, security) are registered as 
nonfunctional requirements. Accordingly, a set of scenarios 
identify a thread of usage for the system to be constructed, 
according to Pressman and Maxim [6]. The basic use case 
(see Fig. 4) for system activation is as follows [6]: 

 
1. The homeowner observes the SafeHome control panel 

to determine if the system is ready for input. If the 
system is not ready, a not-ready message is displayed 
on the LCD display, and the homeowner must 
physically close windows or doors so that the not-ready 
message disappears. (A not-ready message implies that 
a sensor is open, for example, that a door or window is 
open.) 

2. The homeowner uses the keypad to key in a four-digit 
password. The password is compared with the valid 
password stored in the system. If the password is 
incorrect, the control panel will beep once and reset 

itself for additional input. If the password is correct, the 
control panel awaits further action. 

3. The homeowner selects and keys in “stay” or “away” 
(see Fig. 3 again) to activate the system. “Stay” 
activates only perimeter sensors (inside motion-
detecting sensors are deactivated). “Away” activates all 
sensors.  

4. When activation occurs, a red alarm light can be 
observed by the homeowner. 

Then, Pressman and Maxim [6] talked about use cases (see 
Fig. 4) with exceptions that are further elaborated to provide 
considerably more detail about the interaction. According 
to Pressman and Maxim [6], use cases for other homeowner 
interactions would be developed in a similar manner. After 
this, class-based elements are discussed, with the example 
of a sensor class (Fig. 5). This is followed by discussing 
behavioral elements using a state diagram for the software 
embedded within the SafeHome control panel that is 
responsible for reading user input. Note the peculiar 
situation when trying to explain to the students, at this point 
of modeling, the state diagram that models software. The 
stream of diagrams continues, thus advocating the greater 
use of a case diagram (Fig. 6), a collaboration diagram, a 
sequence diagram, and DFD data models. 
 
 
 
 
 
 

 
 

 
     Fig. 3 Control panel (Rearranged, from [6]). 

 
 
 
 
 
 
 
 

Fig. 4 Use cases (Incomplete, from [6]). 
 
 
 
 
 
 
 
 

Fig. 5 State diagram for the software embedded within the 
SafeHome control panel that is responsible for reading user input 
(Incomplete, from [6]). 
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Fig. 6 Preliminary use case diagram for the SafeHome system 
(Incomplete, from Pressman and Maxim [6]). 

 
The UML swimlane diagram (activity diagram; see Fig. 

7) is presented to facilitate the accessing of camera 
surveillance via the Internet-display camera view function. 
More diagrams are presented, including a class diagram for 
the system class, a class diagram for a floor plan, a 
composite aggregate class diagram, a physical multiplicity 
diagram (e.g., wall, door, window), a dependency diagram 
(e.g., camera to display), a package diagram, a state diagram 
for the control panel class, a sequence diagram (partial) for 
the SafeHome security function, a sequence diagram for the 
ActuatorSensor pattern, a class diagram for the 
ActuatorSensor pattern, etc. 

 
6. TM Modeling 

 
A TM focuses on a single (possible multilevel) diagram 
with in-zooming and out-zooming, if needed, to model the 
SafeHome. With additional details, the SafeHome model 
will keep growing as additional parts of the TM diagram are 
gradually constructed to increasingly extend the model. 
Pressman and Maxim’s [6] UML model would provide 
more and more details about the SafeHome project to 
expand the initial TM modeling. We start with the scenario 
of a homeowner using the keypad mentioned in the previous 
section. 

 
TM modeling involves two levels: staticity and dynamics. 
The static model involves spatiality and actionality (generic 
actions). Spatiality involves recognizing the top thimac 
areas that partition the model. To draw considerations, we 
take into account the connections (flows and triggering) 
among these areas, as shown in Fig. 8. Fig. 8 shows the 
spatiality of the SafeHome as what must be done first in TM 
modeling. 

 
 
 
 
 
 
 
 

 
Fig. 7 Activity diagram for accessing camera surveillance via the 
Internet-display camera view function (Incomplete, from [6]). 

 
Fig. 8 Spatiality in the scenario of the homeowner using the 

keypad. 
 

 

 
Fig. 9 The second version of modeling that introduces flows and triggering. 
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Finally, Fig. 10 shows the static TM model of the scenario 
of the homeowner using the control panel. In Fig. 10, the 
homeowner observes the SafeHome control panel to 
determine if the system is ready for input (circles 1 and 2 in 
the lower-right corner of the figure).  

“Ready” and “not ready” are triggered by data coming from 
perimeter and non-perimeter areas (3 and 4). If the 
condition of a perimeter region (door, window) or a non-
perimeter region is not closed or ready, then such data are 
sent (7 and 8) to where they are processed to trigger “ready” 
or “not ready” on the screen (1 and 2). The homeowner uses 
the keypad (9) to key in a four-digit password that flows to 
the screen (10) to be displayed (11, 12, 13, and 14).  

 

Additionally, the digits flow to a procedure (15) so that they 
are converted (16) into a number that is compared (17) with 
a stored number (18). If the password is incorrect (20), the 
control panel will beep once (21) and reset the digits with 
zeros (22). If the password is correct, the control panel 
awaits further action. The homeowner selects and keys in 
“stay” (23), which makes the state of the control panel “on” 
(24). This triggers the activation of only perimeter sensors; 
inside motion-detecting sensors are deactivated (25). The 
control panel beeps twice (26), and a stay light is lit (27). If 
the homeowner selects and keys in “away,” then this makes 
the state of the control panel “on” (28). This triggers the 
activation of all sensors (25 and 29). The control panel 
beeps three times (30), and the homeowner can observe a 
red alarm light (31).  

 
 

 
Fig. 10 The static TM model of the scenario of the homeowner using the control panel. 
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7. Dynamic Model 
 

The static model represents only the steady (static) whole, 
so it is necessary to analyze the underlying decompositions, 
called regions, where behavior can happen (the potentiality 
of dynamism). The TM model fuses space and time into a 
single dynamic model. The static description is projected 
as the spatiality/actionality (region). In fact, a region is a 
subdiagram of the static model that includes spatial 
boundaries and actions. 

 
A union of this TM spatiality/actionality with time 

defines events where an event blends such a 
spatiality/actionality thimac with time. Fig. 11 shows the 
event triggering (the homeowner pushes a number key) the 
generation of one digit. 

 

The static model, S, represents only the steady (static) 
whole, so it is necessary to analyze the underlying 
decompositions, called regions, where behavior can happen 
(the potentiality of dynamism). Representing events by their 
regions, Fig. 12 shows the events in the scenario of the 
homeowner using the control panel.  
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Fig. 11 The event triggering the keypad to generate one digit.  
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Accordingly, we select the following events. 
Event 1 (E1): The homeowner triggers the creation of a 

first digit. 
Event 2 (E2): The first digit is displayed on the screen. 
Event 3 (E3): The homeowner triggers the creation of a 

second digit. 
Event 4 (E4): The second digit is displayed on the screen.  
Event 5 (E5): The homeowner triggers the creation of a 

third digit. 
Event 6 (E6): The third digit is displayed on the screen.  
Event 7 (E7): The homeowner triggers the creation a 

fourth digit. 
Event 8 (E8): The four digits are displayed on the screen. 
Event 9 (E9): The four digits are converted into a number. 
Event 10 (E10): The number is compared with the stored 

password. 
Event 11 (E11): The two numbers are equal. 
Event 12 (E12): The two numbers are not equal. 
Event 13 (E13): Zeros flow to all digits on the screen. 
Event 14 (E14): Beeping once 

Event 15 (E15): “Stay” is selected. 
Event 16 (E16): The “stay” light is on. 
Event 17 (E17): Beeping twice 
Event 18 (E18): All sensors in the perimeter are set.  
Event 19 (E19): “Away” is selected. 
Event 20 (E20): Beeping three times 
Event 21 (E21): The red light is on. 
Event 22 (E22): All sensors are set. 
Event 23 (E23): Some doors or windows are open. 
Event 24 (E24): All doors and windows are closed. 
Event 26 (E26): All sensors in the non-perimeter area are 
ready. 
Event (E27): Data on the conditions of all sensor areas are 

processed. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Event 28 (E28): All sensors are okay; the perimeter 
sensors are okay (no open doors or windows, or 
sensors not ready).  

Event 29 (E29): Ready state 
Event 30 (E30): Sensors in the perimeter area are not okay 

(e.g., a door or window is open).  
Event 31 (E31): Not-ready state  

Fig. 13 shows the behavioral model of this part of the 
SafeHome project. 

 
9. Expanding While Preserving Model Singularity 

 
Then, Pressman and Maxim [6] introduced the class 
diagram, tying it to scenarios where objects (classes) are 
manipulated as  
an actor interacts with the system. They provided a sensor 
class (Fig. 14) for the SafeHome security function. A sensor 
is described in terms of attributes and operations.  
 
Our method of contrasting a TM and UML is to apply the 
UML modeling step to the corresponding TM. Fig. 15 
shows this expanding TM static model. Accordingly, the 
attributes of the sensor are simply added (e.g., name and 
location as shown in the orange [shaded] subdiagram and 
labeled with a capital “A” in Fig. 15 [circle 1]). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Fig. 13 The behavioral model. 

Fig. 14 Class diagram (Partial, from [6]). 
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Additionally, the operation of a sensor can be incorporated 
into the TM diagram in the usual way. For example, in the 
same area of “A,” the record of a sensor flows (2) to the 
screen to be displayed (3). The class diagram follows the 
class diagram in Pressman and Maxim’s [6] book. They 
mentioned that the requirements model must provide 
modeling elements that depict behavior; hence, a state 
diagram for “software embedded within the SafeHome 
control panel that is responsible for reading user input” is 
introduced. The state diagram is called reading commands 
and includes state variables. 

Note that such a diagram is for “embedded software,” 
which would completely baffle students when trying to 
follow the development of the SafeHome project. 
Accordingly, we ignore this state diagram because the 
issue of behavior in a TM comes after the development of 
the static model. 

 
Then, Pressman and Maxim’s [6] book highlights an 
additional piece of the SafeHome project in terms of another 
scenario: 

1. The homeowner logs onto the SafeHome Products 
website. 

2. The homeowner enters his or her user ID. 
3. The homeowner enters a password (modified). 
4. The system displays all major function buttons. 
5. The homeowner selects “surveillance” from the major 

function buttons. 
6. The homeowner selects “pick a camera.” 
7. The system displays the floor plan of the house. 
Etc.... 

This can easily be incorporated into the TM diagrams 
because all pieces of the SafeHome project complement one 
another, just like the puzzle pieces of pictures and images. 
UML is a stovepipe system to generate separate pieces, 
whereas a TM is a way to provide the total picture.  

Fig. 15 also shows this additional scenario in the beige-
colored subdiagram labeled “B.” For simplicity’s sake, we 
use the four digits discussed previously as the password. 
Thus, when the input number and the stored number (circle 
4) are the same (5), this triggers the sending of the main 
functions (6) to be displayed on the screen (7). If the 
homeowner selects “emergency,” this triggers the 
displaying of the emergency menu (9 and 10). If the 
homeowner selects “camera,” then this triggers displaying 
the floor plan (11 and 12). If the homeowner selects a 
certain camera icon, this triggers the displaying of the 
available option for the camera (15 and 16). Based on the 
homeowner’s choice, the camera is turned on (17, 18, 19, 
and 20—in the door and window area). This would send the 
view to the screen to be displayed (21 and 22). 

The expanding of the static model, as mentioned above, 
will continue as additional information and requirements 
are presented. 

 
10. Conclusion 

This paper contributes to establishing a broad 
understanding of conceptual modeling instead of presenting 
it as an object-oriented venture using UML. The direct goal 
was to provide a better modeling foundation for soft 
engineering students. The contrast between model 
multiplicity and model sincerity, even as an introductory 
topic to UML (one chapter) in current software engineering 
texts, will establish a greater appreciation of the advantages 
and limitations of UML itself.  

Of course, TM has its own advantages. It provides enough 
precision but is still easy enough for all stakeholders to use. 
Its complexity is apparent with TM’s five generic actions 
and the repeatability of applying modeling in terms of these 
actions. Similarly, the difference between static 
representation and behavior is applied at different levels of 
modeling.  

One benefit of the paper is the apparent suitability of the 
TM diagrammatic method for expressing difficult notions, 
such as time. Future work will involve applying the 
methods for other philosophical approaches to time. Many 
techniques can be utilized, such as “zoom in” and “zoom 
out.” Future research could examine the degree of students’ 
improvement (e.g., learning UML) when they are taught 
using the proposed approach.  
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