
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

103

Manuscript received April 5, 2021
Manuscript revised April 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.4.15

Model Multiplicity (UML) Versus Model Singularity in System
Requirements and Design

Sabah Al-Fedaghi

Computer Engineering Department, Kuwait University, Kuwait

Summary
A conceptual model can be used to manage complexity in both the
design and implementation phases of the system development life
cycle. Such a model requires a firm grasp of the abstract principles
on which a system is based, as well as an understanding of the
high-level nature of the representation of entities and processes. In
this context, models can have distinct architectural characteristics.
This paper discusses model multiplicity (e.g., unified modeling
language [UML]), model singularity (e.g., object-process
methodology [OPM], thinging machine [TM]), and a
heterogeneous model that involves multiplicity and singularity.
The basic idea of model multiplicity is that it is not possible to
present all views in a single representation, so a number of models
are used, with each model representing a different view. The
model singularity approach uses only a single unified model that
assimilates its subsystems into one system. This paper is
concerned with current approaches, especially in software
engineering texts, where multimodal UML is introduced as the
general-purpose modeling language (i.e., UML is modeling). In
such a situation, we suggest raising the issue of multiplicity versus
singularity in modeling. This would foster a basic appreciation of
the UML advantages and difficulties that may be faced during
modeling, especially in the educational setting. Furthermore, we
advocate the claim that a multiplicity of views does not necessitate
a multiplicity of models. The model singularity approach can
represent multiple views (static, behavior) without resorting to a
collection of multiple models with various notations. We present
an example of such a model where the static representation is
developed first. Then, the dynamic view and behavioral
representations are built by incorporating a decomposition strategy
interleaved with the notion of time.
Key words:
Requirements elicitation; conceptual modeling; model
multiplicity; model singularity; static model; dynamic model;
behavioral model

.1. Introduction

A conceptual model is a way of conceptualizing
(depicting or imitating) how entities and processes in a
certain part of the world (e.g., physical, social) work. For
the model to be developed, the original world phenomenon
must be projected (counterparts developed) in the abstract
domain to match these entities and processes on the basis of
common or theoretical conceptualization. Here, a
phenomenon refers to the stable and general features of a
system of interest, where a system is “a collection of

elements, related to one another, exhibiting a collective
behavior” [1]. Conceptual models are used to support the
design of software, business processes, enterprise
documentation, etc. [2]. In this context, modeling requires
grasping the abstract principles on which the system is
based, as well as understanding the high-level nature of the
representation of entities and processes.
In the requirements elicitation phase of development, a
conceptual model involves collecting information for the
purpose of building a representation of the targeted system.
According to [3], “No other part of the conceptual work is
as difficult as establishing the detailed technical
requirements… No other part of the work so cripples the
resulting system if done wrong. No other part is as difficult
to rectify later.” A requirements engineering-based
conceptualization [4] can be applied to manage this
involved complexity [5].

Requirements engineering begins with interaction among
stakeholders (e.g., managers, customers, software engineers,
and end users) and continues during the modeling process,
where needs are specified, scenarios are described,
functions and features are delineated, and project
constraints are identified [6]. The first task in such a process
is the requirements inception (gathering), which is
concerned with the objectives for the system, what is to be
accomplished, and how the system is to be used on a day-
to-day basis [6].

1.1 Styles of Modeling

To understand the process of creating conceptual models,
one must understand that several styles of modeling exist:

 Model multiplicity (e.g., unified modeling
language [UML]),

 Model singularity (e.g., object-process
methodology [OPM], thinging machine [TM]), or

 Heterogeneous model [12]
The basic idea of model multiplicity is that it is not possible
to present all views in a single representation, so a number
of models are used, with each model representing an
alternative view. The model singularity approach uses only
one integrated model. Each of these styles of modeling has
its own strengths and weaknesses.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

104

1.2 UML as the Standard Modeling Language

In our computer engineering department, the classical text
Software Engineering: A Practitioner’s Approach by
Pressman and Maxim [6] is used in the Introduction to
Software Engineering course. The book focuses on a case
study called SafeHome to teach how to conduct such an
initial phase of development using UML. The modeling
concentrates solely on UML and its 14 diagrams in
accomplishing such a task, as UML is the go-to option for
explaining software design models [7]. According to Oliver
[7], “What makes UML well-suited to and much-needed for
software development is its flexibility. UML is a rich and
extensive language that can be used to model not just
object-oriented software engineering, but application
structure, behavior, and business processes too.” Sharma et
al. [5] observed that a UML conceptual model underlines
three major elements: building blocks (e.g., things,
relationships, and diagrams), rules (e.g., names, scopes, and
execution), and common mechanisms (e.g., specifications,
stereo types, and tagged values).

However, UML has grown in complexity, which makes
many people feel as though they are better off without it [7].
Complexity is the number-one problem in the software
industry [8]. It is common for students to have difficulty
with absorbing UML due to the involved complications [9].
Often, students think that UML diagrams are useless and
serve only as documentation that no one reads [10]. These
difficulties in UML originate from the multiplicity of the
model paradigm used in existing object-oriented system
analysis methods for specifying various system aspects [11].

1.3. Problem of Concern

When it comes to teaching an introductory course in
software engineering modeling, almost all current texts treat
the multimodal UML methodology as general-purpose
modeling, which gives students the impression that UML is
modeling and that modeling is UML. This one-sided picture
completely ignores the difficulty of multiplicity, as well as
alternative modeling methodologies that include singularity
or mixture models. In the educational environment, both
modeling as a separate topic and various modeling styles
should at least be mentioned before UML is adopted as the
selected modeling language.

To illustrate the types of claims involved, we consider the
following statements, which are common in textbooks: “just
as building architects create blueprints for a construction
company to use, software architects create UML diagrams
to help software developers to build software” [6], and “if
you understand UML, you can much more easily

understand and specify a system and explain the design of
that system to others” [6].

In this paper, we propose introducing modeling and
highlighting the issue of model multiplicity versus model
singularity before concentrating exclusively on UML. This
would give students a basic understanding of the UML
advantages and difficulties that they may face during their
modeling exercises.

The next section provides further explanation about
multiplicity versus singularity in modeling. For the sake of
making this paper self-contained, section 3 summarizes our
main tool for analyzing modeling, a TM. Section 4
introduces the foundation of modeling in a TM.

2. Multiplicity vs. Singularity

A conceptual view is a representation of a system from the
perspective of a related concern (e.g., structural aspect,
behavioral aspect, functional aspect, logical aspect,
organizational aspect, infrastructural aspect). It is a piece of
the model that is still small enough to be comprehended and
that also contains relevant information about a particular
concern [13]. According to the Institute of Electrical and
Electronics Engineers 1471 [14] standard for architecture
modeling, a view is a depiction of a whole system from the
perspective of related concerns. Whittle et al. [15] stated
that an aspect of model composition is the special case of
the more general problem of the fusion of models in one
model, or the presence of a crosscut base model. Kruchten
[16] defined “4+1” views as those representing different
viewpoints: the logical view, process view, physical view,
development architecture view, and use case view. The last
view is a holistic view that reflects the process associated
with a set of system requirements. Tension in the
singularity/multiplicity modeling framework provides an
approach for dealing with the inherent complexity of
systems.

According to [12], the model multiplicity approach utilizes
a distinct model for each view. A model is the union of all
its representations—or a union of all its views [13].
Comprehending a system requires concurrent references to
the various models, as well as the creation of abstract
associations that link them together. According to Egyed
[13], n views need n(n-1)/2 (i.e., O(n2) complexity) ways of
integration to be fully integrated. Rather than building the
model into an integrating method containing all
representations, the alternative is to place this responsibility
on the shoulders of the developers.

The model singularity approach produces a single model
that enables system specification that assimilates the

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

105

subsystems into a whole. By contrast, UML unified
standards, processes, and views as mostly a segregated
collection of subsystems. UML does not determine the
semantic integrity needed for necessary qualities such as
consistency and completeness.

For example, when one thinks about processes in parallel
with objects, the OPM delineates a model singularity
framework that avoids the source of this complexity
problem through a single integrated model [12]. The origin
of the model singularity approach is related to the notion of
holistic modeling involving a unified specification that
captures the structural, behavioral, and dynamic aspects of
the system of interest. Peleg and Dori [11] questioned
whether multiplicity/singularity alternative approaches
yield a specification that is easier to comprehend.

Some attempts at achieving a heterogeneous style of
modeling have been made. For example, Keng-Pei Lin et al.
[12] proposed “an approach to enrich UML from model
multiplicity to model singularity by creating its kernel
model with the structure-behavior coalescence process
algebra… Both the UML structure models and behavior
models can be derived from this kernel model.” Wang [17]
proposed the integration and combinational usage of
existing modeling languages (i.e., the OPM, UML).

3. TM Modeling

The TM model involves a single diagrammatic
representation. It articulates the ontology of the world in
terms of an entity that is simultaneously a thing and a
machine, called a “thimac” [18-27]. A thimac is like a
double-sided coin. One side of the coin exhibits the
characterizations that the thimac assumes, whereas on the
other side, operational processes emerge that provide
dynamics. A thing is subjected to doing, and a machine
does. We claim that just as the object in object-oriented
models is the smallest stand-alone component [13], the
thimac is the smallest stand-alone component in TM.
However, for simplicity’s sake, the thimac is represented in
terms of its machine.

The TM notion of a thing is much wider than the notion of
an object in object-oriented modeling. The object is
originally contrasted with the term “subject.” A subject is
an actor, and an object is a thing that receives the act. In
philosophy, an “object” may be considered to be just “a
name for stuff of any kind at any scale” [28]. This is a thing
in TM. For example, “John is happy” is about two things:
John and happiness. Happiness flows into John. Thimacs
are a way for generic constructs to be applied in conceptual
modeling to describe the structure/behavior of a world of
systems (thimacs). The generic actions in the machine (see
Fig. 1) can be described as follows:

Arrive: A thing moves toward a machine.
Accept: A thing enters the machine. For simplification,

we assume that all arriving things are accepted;
hence, we can combine the arrive and accept
stages into one stage: the receive stage.

Release: A thing is ready for transfer outside of the
machine.

Process: A thing is changed, but no new thing results.
Create: A new thing is born in the machine.
Transfer: A thing is input into or output from a machine.

Having a five-action TM machine, or seven when transfer
includes input and output and receive includes arrival and
acceptance, can greatly reduce the complexity of modeling.
After all, the human mind can usually only handle seven
distinct things (plus or minus two) at the same time [13].
The underlying cause of complexity is not the number of
details “but the number of details of which we have to be
aware at the same time” [29]. Additionally, the TM model
includes storage and triggering (denoted by a dashed arrow
in this study’s figures), which initiates a flow from one
machine to another. Multiple machines can interact with
one another through the movement of things or through
triggering. Triggering is a transformation from one series
of movements to another.

4. A Foundation for Modeling

In this paper, we claim that it is possible to present all views
using a single model. We present an example of a model
where a static view is developed first, followed by a
dynamic view, which is then followed by a behavioral view.
The last two views are built upon the static model by using
decomposition and inserting the timing element. In this
context, a conceptual model is seen as the projection of
diverse aspects of concern in the world into a coherent
whole that serves as a complete framework for both entire
and local aspects. The coherent whole is constituted by
means of TMs that include generic things and actions
(thimacs) representing components of features of the world.

Accordingly, here, the concern is with definitional features
that define the system’s internality, which include structural
and behavioral aspects. The involved features are
fundamental for any system and form a single explanation
in the singular model of a coherent system. The singular
model is regarded as a coded system that is part of the
ontology of the world. Here, “coded” means to be put in a
tangible representation, especially symbolic, linguistic, and
diagrammatic representation. “Uncoded” means not having
to be put in such a representation. In this situation, we can
view the model as a coded system. We can say that a “part-
of-reality” uncoded system exhibits a structure and
behavior, but it has not been recognized as an independent
whole. Even in social systems, we find such a phenomenon

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

106

when we do not recognize some encompassing system that
engulfs the existing structure and behavior.

Fig. 1. The thinging machine.

For example, the second author of [27], a network engineer
working in an actual environment, was surprised to see that
the extent of her job included multiple switches, routers,
servers, security elements, users, a client computer,
protocols, and many other processes when entities and
processes were explicitly placed in one unified TM packet,
as shown in Fig. 2. Even though she had been practicing her
work for years and the “real” uncoded system was right in
front of her, she never explicitly thought of it as an
independent thing.

The system/model thesis can be related to the Platonic form.
In this context, the form is the thing’s configuration, in
contradistinction to the matter of the thing of which it is
composed (Encyclopedia Britannica). The forms are
typically described as perfect archetypes of which objects
in the everyday world are imperfect copies. This means that
forms have “beings” as aspects of things in reality. Whether
these forms are perfect or imperfect is not an issue in this
context. All reality is capable of being expressed as a
complex system coded as forms (i.e., their models). Thus,
“conceptual models” refer to the coding forms of real
systems. “Conceptual” is used because no other creature
performs this phenomenon except for a human being who
creates, processes, releases, transfers, and receives concepts
in a coded visible shape. In a TM, we develop forms of
systems as thimacs, which include static (thing) and
dynamic (machine) features in agreement with the Hegelian
notion that “being” (a real system) is not a static concept. In
a TM, a thimac is static and dynamic simultaneously.

Simply stated, models of the world or parts of the world are
representations of uncoded systems in the world. Any
“existence” (e.g., phenomenon) in reality is accompanied
by its system with a structure (e.g., boundary) and behavior.
Some models precede their reality (fictitious systems—not
of concern here), and some do not. Uncoded subsystems are
similarly uncoded parts of reality; nevertheless, they cannot
completely replace the whole uncoded system.

A model multiplicity should be accompanied by a model
singularity because that is how systems work in reality. The
singularity gives an underlying unity to the multiplicity of
the parts. In terms of software engineering, such a claim

leads to the conclusion that UML requires a 15th model that
represents the totality of the uncoded system in such a way
that the other 14 models align with this 15th model.
Currently, the necessary wholeness is represented, partially
and disjointedly, by such diagrams as the class diagram
(staticity) and the state diagram (behavior). The state
diagram, which is restricted to a single class only, is
inaccurately claimed to model behavior. However, one
wonders about such a method that represents a behavior
without incorporating time explicitly. Here, there is a mix
between logical order of actions (or a set of actions) and
chronology of events in time. This is applied to activity
diagrams, which are a generalization of state diagrams in
that

Fig. 2 Undocumented (and not separately recognized) unified
episode of a portion of the job of a network engineer (Adopted
from [27]).

The model singularity approach solves the alignment
problem by constructing a view-independent representation
of the whole model with views to be derived from such a
model. We could define a consistency and completeness
rule based on this view-independent representation [13].
According to Egyed 13], “all consistency and completeness
rules needed only to be represented in one type of style
(language, etc.) and not in a view-dependent form.” This
approach implies that the model is more than the sum of its
views [13]. The stakeholders can then derive views from
that model, reconcile the changes with the model, and “all
information about a software system is captured with as
little redundancy as possible in the model even though the
views, which are derived from that model, may repeatedly
use the same information and, thus, have redundancy” [13].

Can a TM become the 15th UML diagram? In this situation,
some, if not many, UM diagrams (e.g., activity, sequence,
and maybe state diagrams) become obsolete. In this case, a
view model is developed (coded) from the whole model.
Accordingly, this facilitates a focus on how to consider
unity and multiplicity within the same modeling system and,
more precisely, how to align multiplicity within a singular

Receive

Transfer

 Accept Arrive

Output Input
Create

Process

Release

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

107

model. We could suggest that such required unification can
be found in the TM and in its generic action that forms
generic events. The solution might involve “a community
of models” within a whole that are ontologically correlated
to one another while being distinct from one another in
terms of their purposes. In this case, the multiplicity is
subordinate to wholeness. Generally, the modeling is to be
understood as a single phenomenon represented by a single
holistic model and multiple views.

5. Modeling Project

Pressman and Maxim [6] presented a project called the
SafeHome project, a home security project that would
protect against and/or recognize a variety of undesirable
“situations,” such as illegal entry, fire, flooding, carbon
monoxide levels, and others. It uses wireless sensors to
detect each situation, and the homeowner can program it. In
addition, it will automatically telephone a monitoring
agency when a situation is detected. The purpose is to learn
about the principles, concepts, and methods that are used to
create requirements and design models. In the preparation
process for modeling the required system, lists for the
following things are prepared:
 Objects that are part of the environment, produced by

the system, and used by the system to perform its
functions

 Services (processes or functions) that manipulate or
interact with the objects

 Constraints (e.g., cost, size, business rules) and
performance criteria (e.g., speed, accuracy).

Ideally, each listed entry should be capable of being
manipulated separately. Then, a combined list is created by
eliminating redundant entries and adding any new entries
that crop up. A mini-spec for the SafeHome object control
panel is developed (see Fig. 3). Nonfunctional concerns
(e.g., accuracy, data accessibility, security) are registered as
nonfunctional requirements. Accordingly, a set of scenarios
identify a thread of usage for the system to be constructed,
according to Pressman and Maxim [6]. The basic use case
(see Fig. 4) for system activation is as follows [6]:

1. The homeowner observes the SafeHome control panel

to determine if the system is ready for input. If the
system is not ready, a not-ready message is displayed
on the LCD display, and the homeowner must
physically close windows or doors so that the not-ready
message disappears. (A not-ready message implies that
a sensor is open, for example, that a door or window is
open.)

2. The homeowner uses the keypad to key in a four-digit
password. The password is compared with the valid
password stored in the system. If the password is
incorrect, the control panel will beep once and reset

itself for additional input. If the password is correct, the
control panel awaits further action.

3. The homeowner selects and keys in “stay” or “away”
(see Fig. 3 again) to activate the system. “Stay”
activates only perimeter sensors (inside motion-
detecting sensors are deactivated). “Away” activates all
sensors.

4. When activation occurs, a red alarm light can be
observed by the homeowner.

Then, Pressman and Maxim [6] talked about use cases (see
Fig. 4) with exceptions that are further elaborated to provide
considerably more detail about the interaction. According
to Pressman and Maxim [6], use cases for other homeowner
interactions would be developed in a similar manner. After
this, class-based elements are discussed, with the example
of a sensor class (Fig. 5). This is followed by discussing
behavioral elements using a state diagram for the software
embedded within the SafeHome control panel that is
responsible for reading user input. Note the peculiar
situation when trying to explain to the students, at this point
of modeling, the state diagram that models software. The
stream of diagrams continues, thus advocating the greater
use of a case diagram (Fig. 6), a collaboration diagram, a
sequence diagram, and DFD data models.

 Fig. 3 Control panel (Rearranged, from [6]).

Fig. 4 Use cases (Incomplete, from [6]).

Fig. 5 State diagram for the software embedded within the
SafeHome control panel that is responsible for reading user input
(Incomplete, from [6]).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

108

Fig. 6 Preliminary use case diagram for the SafeHome system
(Incomplete, from Pressman and Maxim [6]).

The UML swimlane diagram (activity diagram; see Fig.

7) is presented to facilitate the accessing of camera
surveillance via the Internet-display camera view function.
More diagrams are presented, including a class diagram for
the system class, a class diagram for a floor plan, a
composite aggregate class diagram, a physical multiplicity
diagram (e.g., wall, door, window), a dependency diagram
(e.g., camera to display), a package diagram, a state diagram
for the control panel class, a sequence diagram (partial) for
the SafeHome security function, a sequence diagram for the
ActuatorSensor pattern, a class diagram for the
ActuatorSensor pattern, etc.

6. TM Modeling

A TM focuses on a single (possible multilevel) diagram
with in-zooming and out-zooming, if needed, to model the
SafeHome. With additional details, the SafeHome model
will keep growing as additional parts of the TM diagram are
gradually constructed to increasingly extend the model.
Pressman and Maxim’s [6] UML model would provide
more and more details about the SafeHome project to
expand the initial TM modeling. We start with the scenario
of a homeowner using the keypad mentioned in the previous
section.

TM modeling involves two levels: staticity and dynamics.
The static model involves spatiality and actionality (generic
actions). Spatiality involves recognizing the top thimac
areas that partition the model. To draw considerations, we
take into account the connections (flows and triggering)
among these areas, as shown in Fig. 8. Fig. 8 shows the
spatiality of the SafeHome as what must be done first in TM
modeling.

Fig. 7 Activity diagram for accessing camera surveillance via the
Internet-display camera view function (Incomplete, from [6]).

Fig. 8 Spatiality in the scenario of the homeowner using the

keypad.

Fig. 9 The second version of modeling that introduces flows and triggering.

109

Manuscript received April 5, 2021
Manuscript revised April 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.4.15

Finally, Fig. 10 shows the static TM model of the scenario
of the homeowner using the control panel. In Fig. 10, the
homeowner observes the SafeHome control panel to
determine if the system is ready for input (circles 1 and 2 in
the lower-right corner of the figure).

“Ready” and “not ready” are triggered by data coming from
perimeter and non-perimeter areas (3 and 4). If the
condition of a perimeter region (door, window) or a non-
perimeter region is not closed or ready, then such data are
sent (7 and 8) to where they are processed to trigger “ready”
or “not ready” on the screen (1 and 2). The homeowner uses
the keypad (9) to key in a four-digit password that flows to
the screen (10) to be displayed (11, 12, 13, and 14).

Additionally, the digits flow to a procedure (15) so that they
are converted (16) into a number that is compared (17) with
a stored number (18). If the password is incorrect (20), the
control panel will beep once (21) and reset the digits with
zeros (22). If the password is correct, the control panel
awaits further action. The homeowner selects and keys in
“stay” (23), which makes the state of the control panel “on”
(24). This triggers the activation of only perimeter sensors;
inside motion-detecting sensors are deactivated (25). The
control panel beeps twice (26), and a stay light is lit (27). If
the homeowner selects and keys in “away,” then this makes
the state of the control panel “on” (28). This triggers the
activation of all sensors (25 and 29). The control panel
beeps three times (30), and the homeowner can observe a
red alarm light (31).

Fig. 10 The static TM model of the scenario of the homeowner using the control panel.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

110

7. Dynamic Model

The static model represents only the steady (static) whole,
so it is necessary to analyze the underlying decompositions,
called regions, where behavior can happen (the potentiality
of dynamism). The TM model fuses space and time into a
single dynamic model. The static description is projected
as the spatiality/actionality (region). In fact, a region is a
subdiagram of the static model that includes spatial
boundaries and actions.

A union of this TM spatiality/actionality with time

defines events where an event blends such a
spatiality/actionality thimac with time. Fig. 11 shows the
event triggering (the homeowner pushes a number key) the
generation of one digit.

The static model, S, represents only the steady (static)
whole, so it is necessary to analyze the underlying
decompositions, called regions, where behavior can happen
(the potentiality of dynamism). Representing events by their
regions, Fig. 12 shows the events in the scenario of the
homeowner using the control panel.

 Nine

One

Create

…

Zero TransferRelease

Keypad

Release Process Transfer ReceiveTransfer
Time

One
digit

Fig. 11 The event triggering the keypad to generate one digit.

Region of
event

Ready

Number

Stored number

 Peep

Screen
Digit 1

 Away

Regions of sensors

 Nine

 One

 Create

…

Zero Transfe

T
ransfer

R
eceive

P
rocess

C
reate

R
elease

T
ransfer

Digit 2 Digit 3 Digit 4

T
ransfer

Process

Same

Not
same

Release

Create

R
eceive

Receiv
ReceivReceivReceiv

Create Transfe

Release

Transfe TransfeTransfeTransfe

State

Light

 State
Create

Create Create
Create Create Create

Perimeter area Non-perimeter area

State
ON Create

Sensor

Window or door

State

Condition

State
Create

Sensor

Region

State

Create
READY/NOT

Condition

Release
Release

Process

else

Transfe

Create
OPEN/NO

Transfe

Receiv

Create ON State

 Red light

State
Create

State
Create

Not ready

 State
Create

Stay Keypad

Transfer

if (only
perimeter
closed) or
(everything is
closed or ready)

… …

Fig. 12 The static TM model of the scenario of the homeowner using the control panel.

E1

E2

E3

E4

E5

E6

E7

E8

E9 E10
E11

E12
E13

E14

E15

E16

E17

E18

E19

E20

E21

E22

E23 E24 E25E26 E27

E28

E29 E32

E30

111

Manuscript received April 5, 2021
Manuscript revised April 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.4.15

Accordingly, we select the following events.
Event 1 (E1): The homeowner triggers the creation of a

first digit.
Event 2 (E2): The first digit is displayed on the screen.
Event 3 (E3): The homeowner triggers the creation of a

second digit.
Event 4 (E4): The second digit is displayed on the screen.
Event 5 (E5): The homeowner triggers the creation of a

third digit.
Event 6 (E6): The third digit is displayed on the screen.
Event 7 (E7): The homeowner triggers the creation a

fourth digit.
Event 8 (E8): The four digits are displayed on the screen.
Event 9 (E9): The four digits are converted into a number.
Event 10 (E10): The number is compared with the stored

password.
Event 11 (E11): The two numbers are equal.
Event 12 (E12): The two numbers are not equal.
Event 13 (E13): Zeros flow to all digits on the screen.
Event 14 (E14): Beeping once

Event 15 (E15): “Stay” is selected.
Event 16 (E16): The “stay” light is on.
Event 17 (E17): Beeping twice
Event 18 (E18): All sensors in the perimeter are set.
Event 19 (E19): “Away” is selected.
Event 20 (E20): Beeping three times
Event 21 (E21): The red light is on.
Event 22 (E22): All sensors are set.
Event 23 (E23): Some doors or windows are open.
Event 24 (E24): All doors and windows are closed.
Event 26 (E26): All sensors in the non-perimeter area are
ready.
Event (E27): Data on the conditions of all sensor areas are

processed.

Event 28 (E28): All sensors are okay; the perimeter
sensors are okay (no open doors or windows, or
sensors not ready).

Event 29 (E29): Ready state
Event 30 (E30): Sensors in the perimeter area are not okay

(e.g., a door or window is open).
Event 31 (E31): Not-ready state

Fig. 13 shows the behavioral model of this part of the
SafeHome project.

9. Expanding While Preserving Model Singularity

Then, Pressman and Maxim [6] introduced the class
diagram, tying it to scenarios where objects (classes) are
manipulated as
an actor interacts with the system. They provided a sensor
class (Fig. 14) for the SafeHome security function. A sensor
is described in terms of attributes and operations.

Our method of contrasting a TM and UML is to apply the
UML modeling step to the corresponding TM. Fig. 15
shows this expanding TM static model. Accordingly, the
attributes of the sensor are simply added (e.g., name and
location as shown in the orange [shaded] subdiagram and
labeled with a capital “A” in Fig. 15 [circle 1]).

 Fig. 13 The behavioral model.

Fig. 14 Class diagram (Partial, from [6]).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

112

113

Manuscript received April 5, 2021
Manuscript revised April 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.4.15

Additionally, the operation of a sensor can be incorporated
into the TM diagram in the usual way. For example, in the
same area of “A,” the record of a sensor flows (2) to the
screen to be displayed (3). The class diagram follows the
class diagram in Pressman and Maxim’s [6] book. They
mentioned that the requirements model must provide
modeling elements that depict behavior; hence, a state
diagram for “software embedded within the SafeHome
control panel that is responsible for reading user input” is
introduced. The state diagram is called reading commands
and includes state variables.

Note that such a diagram is for “embedded software,”
which would completely baffle students when trying to
follow the development of the SafeHome project.
Accordingly, we ignore this state diagram because the
issue of behavior in a TM comes after the development of
the static model.

Then, Pressman and Maxim’s [6] book highlights an
additional piece of the SafeHome project in terms of another
scenario:

1. The homeowner logs onto the SafeHome Products
website.

2. The homeowner enters his or her user ID.
3. The homeowner enters a password (modified).
4. The system displays all major function buttons.
5. The homeowner selects “surveillance” from the major

function buttons.
6. The homeowner selects “pick a camera.”
7. The system displays the floor plan of the house.
Etc....

This can easily be incorporated into the TM diagrams
because all pieces of the SafeHome project complement one
another, just like the puzzle pieces of pictures and images.
UML is a stovepipe system to generate separate pieces,
whereas a TM is a way to provide the total picture.

Fig. 15 also shows this additional scenario in the beige-
colored subdiagram labeled “B.” For simplicity’s sake, we
use the four digits discussed previously as the password.
Thus, when the input number and the stored number (circle
4) are the same (5), this triggers the sending of the main
functions (6) to be displayed on the screen (7). If the
homeowner selects “emergency,” this triggers the
displaying of the emergency menu (9 and 10). If the
homeowner selects “camera,” then this triggers displaying
the floor plan (11 and 12). If the homeowner selects a
certain camera icon, this triggers the displaying of the
available option for the camera (15 and 16). Based on the
homeowner’s choice, the camera is turned on (17, 18, 19,
and 20—in the door and window area). This would send the
view to the screen to be displayed (21 and 22).

The expanding of the static model, as mentioned above,
will continue as additional information and requirements
are presented.

10. Conclusion

This paper contributes to establishing a broad
understanding of conceptual modeling instead of presenting
it as an object-oriented venture using UML. The direct goal
was to provide a better modeling foundation for soft
engineering students. The contrast between model
multiplicity and model sincerity, even as an introductory
topic to UML (one chapter) in current software engineering
texts, will establish a greater appreciation of the advantages
and limitations of UML itself.

Of course, TM has its own advantages. It provides enough
precision but is still easy enough for all stakeholders to use.
Its complexity is apparent with TM’s five generic actions
and the repeatability of applying modeling in terms of these
actions. Similarly, the difference between static
representation and behavior is applied at different levels of
modeling.

One benefit of the paper is the apparent suitability of the
TM diagrammatic method for expressing difficult notions,
such as time. Future work will involve applying the
methods for other philosophical approaches to time. Many
techniques can be utilized, such as “zoom in” and “zoom
out.” Future research could examine the degree of students’
improvement (e.g., learning UML) when they are taught
using the proposed approach.

References

[1] Tolk, A., Diallo, S., Padilla, J., Herencia-Zapana,

H.: Reference Modelling in Support of M&S—Foundations
and Applications. J Simulation 7, 69–82 (2013).
https://doi.org/10.1057/jos.2013.3

[2] Guarino, N., Guizzardi, G., Mylopoulos, J.: On the
Philosophical Foundations of Conceptual Models. In: 29th
EJC International Conference on Information Modelling and
Knowledge Bases (EJC). Lappeenranta, Finland (2019)

[3] Brooks, F.: No Silver Bullet: Essence and Accidents of
Software Engineering. Computer Volume, IEEE Computer
20 (4), 10–19 (1987)

[4] Insfran, E., Pastor, O., Wieringa, R.: Requirements
Engineering-Based Conceptual Modeling. Requirements
Engineering 7(2), 61–72 (2002)

[5] Sharma, R., Sharma, S., Singh, S.: Future Challenges and
Opportunities of Systems and Software Engineering
Processes. International Journal of Computer Science and
Information Technologies 2(5), 2176–2179 (2011)

[6] Pressman, R.S., Maxim, B.R.: Software Engineering: A
Practitioner’s Approach, Eighth Edition. McGraw-Hill
Education, New York, NY (2015)

[7] Oliver, R.: Why the Software Industry Has a Love-Hate
Relationship with UML Diagrams. 19 October 2017.
Accessed 12 January 2021.
https://creately.com/blog/diagrams/advantages-and-
disadvantages-of-uml/

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

114

[8] Fairbanks, G.: Losing the Battle with Complexity. 28
February 2016. Accessed 12 January 2021.
https://www.georgefairbanks.com/blog/losing-the-
complexity-battle/

[9] Chren, S., Buhnova, B., Macak, M., Daubner, L., Rossi, B.:
Mistakes in UML Diagrams: Analysis of Student Projects in
a Software Engineering Course. In: Mistakes in UML
Diagrams (2019). DOI: 10.1109/ICSE-SEET.2019.00019

[10] Boberic-Krsticev, D., Tesendic, D.: Experience in Teaching
OOAD to Various Students. Informatics in Education 12(1),
43–58 (2013)

[11] Peleg, M., Dori, D.: The Model Multiplicity Problem:
Experimenting with Real-Time Specification Methods. IEEE
Transactions on Software Engineering 26(8), 742–759 (2000)

[12] Lin, K., Shen, C., Chao, W.: Enriching UML from Model
Multiplicity to Model Singularity with Structure-Behavior
Coalescence. In: 2018 IEEE International Conference on
Systems, Man, and Cybernetics (SMC). Miyazaki, Japan
(2018). DOI: 10.1109/SMC.2018.00340

[13] Egyed, A.: Integrating Architectural Views in UML,
Technical Report USC/CSE-99-TR-514, University of
Southern California, Center for Software Engineering, March
10, 1999.

[14] IEEE: Recommended Practice for Architectural Description
for Software-Intensive Systems. IEEE, New York, NY (Oct.
2000)

[15] Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A.,
Araújo, J.: MATA: A Unified Approach for Composing UML
Aspect Models Based on Graph Transformation. In: Katz, S.,
Ossher, H., France, R., Jézéquel J.M. (eds.) Transactions on
Aspect-Oriented Software Development VI. Lecture Notes in
Computer Science, vol. 5560, pp. 191–237. Springer, Berlin,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-
03764-1_6, 191-237

[16] Kruchten, P.: Architectural Blueprints. The “4+1” View
Model of Software Architecture. IEEE Software 12(6), 42–50
(1995)

[17] Wang, R.: Search-Based System Architecture Development
Using a Holistic Elopment Using a Holistic Modeling
Approach. Missouri University of Science and Technology.
Doctoral Dissertations 2256, Fall 2012.

[18] Al-Fedaghi, S.: Modeling in Systems Engineering:
Conceptual Time Representation. International Journal of
Computer Science and Network Security, 21(3), 153–164
(2021). doi.org/10.22937/IJCSNS.2021.21.3.21

[19] Al-Fedaghi, S.: UML Modeling to TM Modeling and Back.
International Journal of Computer Science and Network
Security 21(1), 84–96 (2021).
doi.org/10.22937/IJCSNS.2021.21.1.13

[20] Al-Fedaghi, S.: Advancing Behavior Engineering: Toward
Integrated Events Modeling. International Journal of
Computer Science and Network Security 20(12), 95–107
(2020). doi.org/10.22937/IJCSNS.2020.20.12.10

[21] Al-Fedaghi, S., BehBehani, M.: Thinging Machine Applied
to Information Leakage. International Journal of Advanced
Computer Science and Applications 9(9), 101–110, (2018).
DOI: 10.14569/IJACSA.2018.090914

[22] Al-Fedaghi, S., Alrashed, A.: Threat Risk Modeling. In:
Second International Conference on Communication
Software and Networks, pp. 405–411, Singapore, 26-28 Feb,
(2010). doi.org/10.1109/ICCSN.2010.29

[23] Al-Fedaghi, S., Fiedler, G., Thalheim, B.: Privacy Enhanced
Information Systems. In: The 15th European-Japanese
Conference on Information Modeling and Knowledge.
Frontiers in Artificial Intelligence and Applications, Tallinn,
Estonia, May 16-20, 2005. In: Kiyoki, Y., Lastname, X. (eds.)
Information Modeling and Knowledge Bases XVII. Book,

vol. 136, pp. 94–111. IOS Press, (2006). ISBN 978-1-58603-
591-4

[24] Al-Fedaghi, S.: Conceptual Temporal Modeling Applied to
Databases. International Journal of Advanced Computer
Science and Applications (IJACSA), 12(1), 524–534 (2021).
DOI: 10.14569/IJACSA.2021.0120161

[25] Al-Fedaghi, S.: UML Modeling to TM Modeling and Back.
IJCSNS International Journal of Computer Science and
Network Security 21(1), 84–96 (2021). DOI:
10.22937/IJCSNS.2021.21.1.13

[26] Al-Fedaghi, S.: Conceptual Software Engineering Applied to
Movie Scripts and Stories. Journal of Computer Science,
16(12), 1718–1730 (2020). DOI:
10.3844/jcssp.2020.1718.1730

[27] Al-Fedaghi, A., Alahmad, H.: Process Description, Behavior,
and Control. International Journal of Computer Science and
Information Security 15(7), 124–133 (2017)

[28] Bogost, I.: Unit Operations: An Approach to Videogame
Criticism. The MIT Press, Cambridge, MA (2008)

[29] Siegfried, S.: Understanding Object-Oriented Software
Engineering. IEEE Press, New York (1996).

Sabah S. Al-Fedaghi is an associate
 professor in the Department of Computer
 Engineering at Kuwait University. He
holds an MS and a PhD from the
Department of Electrical Engineering and
Computer Science, Northwestern
University, Evanston, Illinois, and a HS

from Arizona State University. He has published more than
350 journal articles and papers in conferences on software
engineering, database systems, information ethics, privacy,
and security. He headed the Electrical and Computer
Engineering Department (1991–1994) and the Computer
Engineering Department (2000–2007). He previously
worked as a programmer at the Kuwait Oil Company.

