
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

214

Manuscript received April 5, 2021
Manuscript revised April 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.4.26

AraProdMatch: A Machine Learning Approach for Product

Matching in E-Commerce

Aisha Alabdullatif and Monira Aloud

Department of Management Information Systems, College of Business Administration
 King Saud University

 Riyadh, KSA

Abstract
Recently, the growth of e-commerce in Saudi Arabia has been
exponential, bringing new remarkable challenges. A naive
approach for product matching and categorization is needed to
help consumers choose the right store to purchase a product. This
paper presents a machine learning approach for product matching
that combines deep learning techniques with standard artificial
neural networks (ANNs). Existing methods focused on product
matching, whereas our model compares products based on
unstructured descriptions. We evaluated our electronics dataset
model from three business-to-consumer (B2C) online stores by
putting the match products collectively in one dataset. The
performance evaluation based on k-mean classifier prediction
from three real-world online stores demonstrates that the proposed
algorithm outperforms the benchmarked approach by 80% on
average F1-measure.
Keywords: product matching; artificial neural network;
consumer decision-making; deep learning; e-commerce.

1. Introduction

Recently, e-commerce in the Saudi market has grown
significantly [1]. According to the Saudi Communication
and Information Technology Commission (CITC), the rapid
growth of online shopping has resulted in global business-
to-consumer (B2C) e-commerce spending exceeding $3.8
trillion [1]. The e-commerce industry in Saudi Arabia
reached $7.92b in 2016 and is expected to grow over the
next years [1]. Furthermore, the number of internet users in
Saudi Arabia is continuously growing, reaching 20.8
million users in 2017; 58% of them are online buyers [1].
The proliferation of the e-commerce market creates
challenges associated with buyer decision-making from
different online stores. Thus, consumers have the choice to
purchase the product from different online stores, which
made the purchasing decision of the products more complex.
Moreover, product descriptions and labels vary across
different stores, indicating a lack of standardization in their
schema. For example, when a consumer should buy a

specific product, they can navigate through different online
stores that sell the same product to decide where to buy that
product. This issue raised the need for a product-matching
scheme to effortlessly look for a product and find the most
reliable provider.

To improve consumer shopping experience, an
approach for matching e-commerce products based on their
description is required. If online stores adopted semantic
markup language to interpret the products, the product-
matching method can be efficient [2].

The problem of product matching is crucial for e-
commerce platforms, their users, and the e-commerce
industry in general. In the literature, the issue of e-
commerce product matching has been studied
systematically and draws a considerable number of
researchers. Several prior studies used the standard string
similarity method [3, 4]. More recent methods have focused
on machine learning techniques such as fuzzy matching,
which is based on extending standard token-based
similarity functions [5, 6]. Another study by [7] used an
unsupervised algorithm for matching products based on
their titles.

This paper provides a machine learning method for
matching e-commerce products in one platform. The aim is
to enhance product lookup and comparison.
Given that we are working with unstructured data, we use
unsupervised deep learning ANN techniques to locate
matched products. The method starts by detecting and
grouping similar products allocated on different online
stores based on their different textual descriptions and other
available product-specific properties.
The remainder of this paper is organized as follows: Section
2 covers the related works in the field. Section 3 presents
the product-matching approach. Section 4 presents the
results. We conclude with a discussion and directions for
future work in section 5.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 215

2. RELATED WORK

Several product-matching techniques find similar
products that different brands can produce, whereas others
find identical products of the same brand from various
online stores. Although finding duplicate products among
different online stores is not yet a mature framework, many
proposed algorithms in the literature aim to find duplicate
texts. Several algorithms for text duplicate detection can be
found in the literature for databases and information
networks.

Bakker et al. [8] present two methods for detecting
duplicated products on the web, specifically for pair-wise
matching. The core step in the two methods is to determine
whether the two products under consideration are duplicates
or not based on the product descriptions. The first approach
uses a model-words algorithm to find similar product names.
If the product matches, the distance measure is used to
determine the similarity of their attributes. The second
method is the extended model-words, where the model-
words algorithm is used to measure the similarity for
product names and their attributes simultaneously. The
performance measures used for evaluation are precision,
recall, and F1-measure with an average of 63.7%, 59.7%,
and a value of 0.607, respectively. The p-value was used to
compute the significance level when comparing the
extended method with each algorithm separately (once with
model-words algorithm and once with attribute distance
algorithm). Although the extended model-words approach
performed satisfactorily, it can be improved by applying
optimization and features extraction procedures to the
descriptions before the process of finding the duplicate
products.

A method for duplicate detection proposed by [9] used
hierarchical clustering based on K-Means (top-down
divisive approach and bottom-up agglomerative approach)
to start classifying the products [9]. Following that, the
multi-component similarity is used to find similar products
by calculating the q-gram string similarity measure and
determining whether the similarity was found within the
same store or on different online stores. The method by [9]
depends on the extracted attributes from product
descriptions for its method. The contribution of this
approach is noticed when using the diffBrand(i,j) python
function. The role of this function is to compare the
product's brand name. The evaluation datasets were
obtained from four online stores with an average of 29 key-

value pairs. The evaluation results were 0.475 F1-measure
values, the average precision value of 44.5%, and the
average recall of 51.2%.

Another matching method proposed in [10] is based on
unstructured product descriptions. The proposed matching
offers method aims to match identical product offers from
various online sources. The process starts by extracting
product features from the textual offers. The similarity is
then calculated using distance measures for the extracted
features suitable to match pair-wise of the product names.
The distance measures used are Levenshtein, the python-
based class called difflib.SequenceMatcher(), Sorensen, and
Jaccard distances. Following that, the suitable similarity is
chosen based on the mean of all distance measures for each
product. The next step is to measure the following similarity
values:

 Similarity of Strings.
 Intersection of Words.
 Similarity of Number Words.
 Maximum N-Gram Similarity.
 Average N-Gram Similarity.

Defining the optimal similarity value combination depends
on the online store scope. The datasets used in the
developing phase come from three categories, while
datasets of two categories were used in the evaluation phase.
The evaluation proves the matching other method’s
competence with an average precision of 78.5% and
average recall of 91%.

Ristoski et al. [2] used ANNs for matching and classifying
products. The attributes used in their work are the product's
short name and description. The product's features are
extracted using the following algorithms:

a. Dictionary-Based: a dictionary of the product
attributes and values presented in the structured
product descriptions.

b. Conditional Random Field (CRF): the CRF model
with a set of discrete features.

c. CRF with Text Embeddings: an improved CRF
model integrated with text embedding features and
is used to handle the different forms of a word, like
the synonyms, found in product descriptions.

d. Image Feature Extraction Model: In addition to the
textual features, the authors in [2] built an image
embedding model using convolutional neural
networks (CNNs).

The performance of matching products for the above four
models was measured using random forest, support vector
machines (SVM), Naïve Bayes, and logistic regression

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 216

models. An evaluation of electronics datasets showed
promising results. However, the approach proposed by [2]
can integrate unstructured product descriptions only if the
product name appears in the text.

The basic word2vec word embedding algorithm is
used to map each word in the text into a multi-dimensional
sequence of numbers. In a paper presented by Biswas et al.
[11], word embedding has been shown comprehensively to
accommodate the context of online product titles. This
paper presented the MRNet-Product2Vec approach to
achieve extreme performance for product embeddings.
Biswas et al. suggested developing a technique for learning
product embeddings directly from a training set rather than
using pre-trained word embeddings. The proposed
embeddings were evaluated qualitatively and quantitatively,
and the results were effective. The authors of this paper also
proposed a multi-mode encoder for comparing products
from different countries. Thus, the MRNet-Product2Vec
provides initial results using the various factors resulting
from different sources that offer products in different
languages. The evaluation of this approach provides the
flexibility to learn product embeddings with any other list
of features or perfectly tune the pre-learned embeddings
with additional features.

We focus on unstructured textual descriptions of the
products offered by online stores in this paper. We
demonstrate the generality of using the reported methods in
this section, despite the language of the product description.
We use deep learning algorithms to extract product features

from product descriptions using text vectors. Following that,
we used clustering algorithms on the features vectors to find
the matching product in relevant clusters -categories- rather
than matching the product to the entire datasets. This paper
is based on Arabic language detection, unlike other works,
which are based on the English language [2] [8] [10] [11].
We show the potential of applying the above-reported
approaches [2] [8] [10] [11] on product descriptions written
in Arabic.

3. ARAPRODMATCH: PRODUCT MATCHING

APROACH

This section presents our framework that
addresses the product-matching issues in e-commerce
that were described in the previous section. The
framework is called Arabic E-Commerce Products
Matching (AraProdMatch) and consists of three
phases:

 Data collection phase.
 Feature extraction phase.
 Product matching based on related clusters.

The AraProdMatch framework is depicted in Figure 1.
The workflow runs in two phases: training and testing.
The training phase launches through preprocessing the
unstructured product descriptions. In the application
phase, the model generates a set N of all feasible
candidate-matching product pairs, which guides a
more extensive set of candidates.

Fig. 1. AraProdMatch Framework Architecture.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021

217

Manuscript received April 5, 2021
Manuscript revised April 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.4.26

A. Data Collection

a)	Scrapy

Scrapy is an open-source and joint framework for
crawling websites and extracting data. It is a data
extraction framework that is fast, simple, and extendable.
It can be used for various useful applications, such as data
mining, information processing, and historical archival.

Scrapy is written in python, and it has a robust architecture,
as illustrated in Figure 2. The architecture of the framework
consists of seven components [12]:

 Scrapy Engine: it is responsible for controlling
the data flow between all its components.

 Scheduler: it receives requests from the engine
and places them in queues to feed the engine
when required.

 Downloader: it is responsible for capturing web
pages and feeding them to the engine, which in
turn feeds them to the spiders.

 Spiders: they are custom classes coded by the
developers to parse websites' responses and
extract data from them or get additional URLs
to parse.

 Item Pipeline: it is responsible for processing
items. In our case, items are the description,
price, image URL, and direct URL for each
product.

 Downloader: it is a middleware that sits
between the engine and downloader to process
requests and responses when they pass between
them.

The Scrapy components provide a convenient mechanism
to extend Scrapy functionality by plugging in customized
codes. For the spiders used in the AraProdMatch framework,
we update the settings of the original spiders as follows:

 FEED_EXPORT_ENCODING = 'utf-8', this
variable allows us to extract correctly encoded
Arabic texts.

 DOWNLOAD_DELAY = 3. This specifies the
time interval between each crawling step in
seconds.

Fig. 2. Scrapy Architecture [7].

b) Dataset

We choose three Saudi online stores to collect product
data. Since each online store has its HTML structure for
listing products, a spider for each store has been developed.
Spiders, also known as web crawlers or spider bots, are
internet bots that automatically visit websites and collect
data based on their HTML structure [13]. Spiders are
mainly used for web indexing, but they are also used for
automatically collecting massive data from the web.
Before developing the spiders, we manually navigate
through each online store to learn and collect data from the
webpage HTML structure. There are numerous ways to
access any HTML page content; one of them is using x-path
selectors. The x-path selector is a language used to select
elements of any XML or HTML files [14]. Learning the
HTML structure enables us to move to the next step, where
we use the same code of the spider with minor changes to
the four following variables: product description, original
price, image URL, and product URL. These four variables
hold the x-path to the four desired elements in the targeted
online store.
One of the most powerful web crawler framework libraries
is Scrapy. We used Scrapy to develop our spiders for each
store.

In our framework, we set four main constraints on the
variables that we collect (i) Product should contain textual
description. (ii) The description length should be more than
three words. (iii) The descriptions should be written in
Arabic. (iv) Each product should show the original price in

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 218

case the product is discounted. The pseudocode for data
extraction spiders is shown in Algorithm 1.

Algorithm 1: Data extraction spider
Require: Scrapy library
Require: start_urls: sets a list of all targeted urls
Require: custom_settings: sets the location of a.CSV
file to save the scraped results
Require: total_pages: to easily crawl over paginations
Require: parse: takes the current url to parse

1: titles = list of product titles in the current page
from given xPath

2: prices = list of product original prices in the
current page from given xPath

3: img_urls = list of product images in the current
page from given xPath

4: prod_url = list of product direct URL to the
products in the current page from given xPath

5: For all items in (titles, prices, img_urls,
prod_url) Do:

6: scraped_info = {
7: 'title': item[0],
8: 'price': item[1],
9: 'image_url': [item[2]],
10: 'prod_url': item[3]
11: }
12: End For
13: add scraped_info to CSV file
14: If visited_pages < total_pages Then:
15: next_page = visited_pages
16: visited_pages = visited_pages + 1
17: new page request (
18: url = next_page URL,
19: callback = self.parse)

Following the filtering process, the dataset contains

~10,000 product data from three online stores with different
sizes. The store is considered big or small based on the
count of its products. If the product count is less than 2000,
it is considered small; otherwise, the online store is
considered big.

The dataset is simple and consists of just electronic
products: computers, TVs, smartphones, wearables,
refrigerators, and washing machines. We divide the dataset
into two parts: training and the remaining data for the
product-matching approach.

c) Data Preparation

Preprocessing data starts by removing punctuation,
specific article characters, stop words, checking, and
converting letters that have different representations. We
followed the standard steps to preparing Arabic content for
deep learning, except removing Latin letters since we are
considering the product model number included in
descriptions. For example, the letter "Alef” can be
represented as follows:
 آ or ا، أ، إ
Table 1 shows an example of a product description as an
output from the data preparation phase.

TABLE I: A DEMONSTRATION OF A PRODUCT
DESCRIPTION PREPARATION PROCESS

Step Example Illustration of
descriptions in
English

Original text ،سماعة واي فاي
وبلوتوث من جيه بي

 للون رماديا–إل جو

Wi-fi headset, and
Bluetooth from
JBL the Color is
Gray

Remove
punctuations

سماعة واي فاي
وبلوتوث من جيه بي

 إل جو اللون رمادي

Wifi headset and
Bluetooth from
JBL the Color is
Gray

Remove
definite
article

فاي سماعة واي
وبلوتوث من جيه بي

 إل جو لون رمادي

Wifi headset and
Bluetooth from
JBL Color is Gray

Remove stop
words

سماعة واي فاي
وبلوتوث جيه بي إل

 جو لون رمادي

Wifi headset
Bluetooth JBL
Color Gray

Check and
convert letter
Alef

سماعة واي فاي
وبلوتوث جيه بي ال

 جو لون رمادي

Handle different
representation of
the Arabic alphabet
Alef

Check and
convert letter
Ha and closed
Ta’a

سماعه واي فاي
وبلوتوث جيه بي ال

 جو لون رمادي

Handle different
representation of
the Arabic alphabet
Ta'a

B. Feature Extraction

We use several extraction approaches to extract
features from product descriptions. These methods are

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 219

frequently used algorithms for extracting features designed
for unstructured descriptions [2] [8] [9] [10] [15].

a) Dictionary-Based Approach

To increase the speed of our framework, we prepared a
dictionary of available electronics brands in Saudi Arabia.
To generate a dictionary of brands; we extracted the list of
brand names used in the online stores. Since many brands
manufacture the product type, we set the product as a key
identifier and the brand name as values. The dictionary of
brands is used to cluster the dataset. Furthermore, we
matched the brands with all possible n-grams produced
from product descriptions in each online store product list.

b) Word Embeddings

We undertake to address the challenge that the product
descriptions in Arabic from online stores contain
combinations of numbers, Arabic and Latin alphabets.
Despite the characters' complexity in the Arabic product
description, we did not exclude the manufacturer model
number since it is considered a unique product feature.
In particular, we used ANNs to extract product embeddings
from unstructured product descriptions. We followed the
proposed product to vector approach (MRNet-Product2Vec)
in [11]. We roughly calculate the likelihood of a specific
sequence product to appear in the product lists. We assume
that the nearest product neighbors in the product vectors are
statistically dependent where different product-related
indications are explicitly inserted into their embeddings.
Afterward, we followed the rest of the approach from [2] to
implement the CRF with product embeddings. The only
difference is that we replaced the simple word2vec
approach used in [2] with MRNet-Product2Vec to train the
CRF model. We also compare the results of using basic
word2vec trained using Twitter corpus collected by the
authors of [16] against using MRNet-Product2Vec trained
using massive descriptions of online products collected
roughly from ten Arabic online stores.

c) Calculating Similarity of Feature Vectors

Our method measures the probability of finding matched
products by measuring the similarity distance among the
collected online stores' products. However, the feature
extracted in the previous subsection, we defined product
features as P = {p1, p2, p3, … pn}. P here represents all the
possible features related to and extracted from a product

description. Then, we calculated the similarity between the
two products' vectors by measuring the distance between
each feature in product1from every feature in product2.
The used similarity measures are two of the most widely
used distance measures: Jaccard and Cosine similarity
measures. The Jaccard similarity is computed on character
n-grams where n <= 4, and the Cosine similarity is
computed on the words of product descriptions tokens as
shown in Equation (1) [2].

The similarity here is computed between two products at a
time, as explained in Algorithm 2. The AraProdMatch
framework is not restricted to the comparison between two
stores only. Still, it provides a way to compute products'
similarity between the unlimited numbers of online stores
that the AraProdMatch approach has to check.

Algorithm 2: Computing similarity between products

Require: scikit-learn library

Require: stores data directory

1: starting_store = path to store 1
2: For all store in stores directory Do:
3: next_store = path to the next occurrent

store in the directory
4: For all products in (starting_store,

next_store) Do:
5: compute the similarity between every

product in
 the starting store to every product in
next_store
6: If similarity => threshold Then
7: matched
8: else
9: not_matched
10: End For
11: End For

d) Classification Approaches

Similarity feature vectors are being generated when the
similarity process is complete. Next, is the classification
step, where we train two classifiers: K-Means and logistic
regression.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 220

4. APROACH EVALUATION

We used the cross-validation method to train and test
our models at a rate of 70% of our collected dataset for the
training phase and 30% for testing.

A. Experiment Setup

To set up the experiment, we relied on Anaconda, a rich data
science platform with an extensive number of python
libraries and are widely used by data scientists. In Anaconda,
we used Jupyter Notebook1, an open-source and intuitive
application to read code documentation and data
visualization easily. Further, the python version in use is
python 3.6. Moreover, the python libraries used to achieve
our goal are Gensim2 and Scikit-Learn3.
On the dataset, we set two constraints: the name of the
online store and the product descriptions to avoid getting
similarities from the same online store since we are
assuming that one online store will not list a product twice.
Matching products are labeled as matched if they contain a
defined quantity of information identified as unique
features.
The measures for evaluating the AraProdMatch approach
are the three well-known measures: precision, recall, and f-
measure.
Precision in data mining, as shown in equation (2), is the
number of items predicted correctly among all predictions
[17].

MpPos denote the count of products that are matched
correctly, and npPos denotes the count of matched products
incorrectly. Hence, the optimum way of improving
precision is to decrease the poorly matched products. This
explains the reason behind the progress toward ontology
mapping, adopting conventional and strict approaches.
The second measure is recall – Equation 3-, which is in data
mining, and it recalls the number of actual items captured
correctly among all items [17].

In Equation (3), mpPos is the count of products that are
matched correctly, and npNeg is the count of matching
products that are not captured as matched by our approach.

1 http://jupyter.org
2 https://radimrehurek.com/gensim/about.html

Robust matching approaches attempt to increase precision
as much as possible, regardless of the low recall [18]. This
choice is undesirable in this study since we need a highly
accurate and trustworthy matching method.
The third and last measure is the F-measure. The F-measure
is described as a harmonic mean of precision and recall [19].
To compare the algorithm, the same pair of measures should
be used for all of them [20]. When viewed as weighted
arithmetic mean in the F-measure and the ratio of weights
is shown in Equation (4).

B. Results

In our method, we compared the use of basic word2vec
with product embedding. The results of the similarity
measure evaluation are shown in Table 2. The similarity
results show that the product’s embedding outperforms the
basic word embeddings word2vec approach by 13% on
average F1-measure.
Furthermore, we compare the performance of the two
classifiers: K-Means and logistic regression. Table 3 shows
the results of the classifier's performance comparison. As
we can see from Table 3, the K-Means classifier delivers
the best result for all three performance measures over
logistic regression. K-Means classifier exceeds the
accuracy of the logistic regression by 22.4% on average F-
measure.

TABLE II: SIMILARITY MEASURES EVALUATION
RESULTS

 Precision Recall f-measure

Word2vec 0.229 0.219 0.224

Product2Vec 0.329 0.384 0.354

TABLE III: ARAPRODMATCH PERFORMANCE

 Precision Recall f-measure

K-Means 0.819 0.770 0.794

Logistic Regression 0.490 0.680 0.570

3 https://scikit-learn.org

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 221

5. CONCLUSION AND FUTURE WORKS

This study builds a product-matching approach for e-
commerce, to provide a method for matching products from
various online stores. We proposed an AraProdMatch
method that uses a combination of the best algorithms used
in the literature, starting from the MRNet-Product2Vec to
extract features from product descriptions to Jaccard and
Cosine's use similarity measures to match products vectors.
This study demonstrates that the AraProdMatch method has
good quality performance on text extraction designed for
Arabic. Out of the two matching classifiers, K-Means and
logistic regression, we conclude that using K-Means
outperforms logistic regression. Moreover, we adopt the
ANN deep learning method using the word embeddings
algorithm. We looked at the difference between using the
basic word embedding method word2vec versus the
advanced product embeddings method MRNet-
Product2Vec, and we demonstrated that MRNet-
Product2Vec outperforms the basic word2vec algorithm.
The first step in the AraProdMatch method is to collect
dynamically collect data from online stores. One limitation
in this phase is that we should feed the spiders with the x-
path of online store elements. The step is expected to be
improved in future work by conducting a standalone study
on detecting the product descriptions x-path without human
intervention.

In future works, we add a phase for matching products
by using the algorithms to build a robust image classifier.
The aim is to support the matching process of the product
descriptions. Furthermore, in the future, we test the model
on a large number of product descriptions from a wider
range of online stores and other categories rather than just
the electronic dataset.

ACKNOWLEDGMENT
The authors thank the Deanship of Scientific Research

and RSSU at King Saud University for their technical
support .

REFERENCES

[1] CITC, "ICT Report - ECommerce in Saudi Arabia,”
2017.

[2] P. Ristoski, P. Petrovski, P. Mika, and H. Paulheim, "A
Machine Learning Approach for Product Matching and
Categorization Use case: Enriching Product Ads with

Semantic Structured Data,” Semant. Web–
Interoperability, Usability, Appl. an IOS Press, vol. 0,
2016.

[3] L. Akritidis, A. Fevgas, P. Bozanis, and C. Makris. A
self-verifying clustering approach to unsupervised
matching of product titles. Artificial Intelligence
Review. 2020;53(7): pp. 4777–4820.
doi:10.1007/s10462-020-09807-8

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios
Knowl Data Eng 19(1): pp. 1–16

[5] W. H. Gomaaand A. A. Fahmy (2013) A survey of text
similarity approaches. Int J Comput Appl 68(13):13–18

[6] S. Chaudhuri, K. Ganjam, V. Ganti, and R. Motwani
(2003) Robust and efcient fuzzy match for online data
cleaning. In: Proceedings of the 2003 ACM
international conference on management of data
(SIGMOD), pp 313–324

[7] J. Wang, G. Li, and J. Fe (2011) Fast-join: An efcient
method for fuzzy token matching based string similarity
join. In: Proceedings of the 27th IEEE international
conference on data engineering (ICDE), pp 458–469

[8] M. de Bakker, D. Vandic, F. Frasincar, and U. Kaymak,
"Model words-driven approaches for duplicate
detection on the web,” Proc. 28th Annu. ACM Symp.
Appl. Comput. - SAC '13, p. 717, 2013.

[9] R. Van Bezu, J. Verhagen, and R. Rijkse, “Multi-
component Similarity Method for Web Product
Duplicate Detection,” pp. 761–768, 2015.

[10] A. Horch, H. Kett, and A. Weisbecker, “Matching
Product Offers of E-Shops,” Springer, Cham, 2016, pp.
248–259.

[11] A. Biswas, M. Bhutani, and S. Sanyal, "MRNet-
Product2Vec: A Multi-task Recurrent Neural Network
for Product Embeddings,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif. Intell. Lect. Notes
Bioinformatics), vol. 10536 LNAI, pp. 153–165, 2017.

[12] Scrapy developers, “Architecture overview—
Scrapy 1.5.1 documentation,” 2017-01-10. [Online].
Available:
https://doc.scrapy.org/en/latest/topics/architecture.html.
[Accessed: 31-March-2021].

[13] J. Wang and Y. Guo, "Scrapy-Based Crawling and
User-Behavior Characteristics Analysis on Taobao,” in
2012 International Conference on Cyber-Enabled
Distributed Computing and Knowledge Discovery,
2012, pp. 44–52.

[14] w3schools, “XML and XPath.” [Online].
Available:

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 222

https://www.w3schools.com/xml/xml_xpath.asp.
[Accessed: 30-March-2021].

[15] H. Lee and Y. Yoon, "Engineering doc2vec for
automatic classification of product descriptions on O2O
applications,” Electron. Commer. Res., vol. 18, no. 3,
pp. 433–456, 2018.

[16] A. B. Soliman, K. Eissa, and S. R. El-Beltagy,
"AraVec: A set of Arabic Word Embedding Models for
use in Arabic NLP,” Procedia Comput. Sci., vol. 117,
pp. 256–265, 2017.

[17] J. Han and M. Kamber, Data mining : concepts
and techniques. Elsevier, 2006.

[18] S. Park and W. Kim, "Ontology Mapping Between
Heterogeneous Product Taxonomies in an Electronic
Commerce Environment,” Int. J. Electron. Commer.,
vol. 12, no. 2, pp. 69–87, 2007.

[19] Y. S.-T. T. mater and undefined 2007, "The truth
of the F-measure,” cs.odu.edu.

[20] D. Hand and P. Christen, "A note on using the F-
measure for evaluating record linkage algorithms,” Stat.
Comput., vol. 28, no. 3, pp. 539–547, May 2018.

