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Abstract 
Recently, the growth of e-commerce in Saudi Arabia has been 
exponential, bringing new remarkable challenges. A naive 
approach for product matching and categorization is needed to 
help consumers choose the right store to purchase a product. This 
paper presents a machine learning approach for product matching 
that combines deep learning techniques with standard artificial 
neural networks (ANNs). Existing methods focused on product 
matching, whereas our model compares products based on 
unstructured descriptions. We evaluated our electronics dataset 
model from three business-to-consumer (B2C) online stores by 
putting the match products collectively in one dataset. The 
performance evaluation based on k-mean classifier prediction 
from three real-world online stores demonstrates that the proposed 
algorithm outperforms the benchmarked approach by 80% on 
average F1-measure. 
Keywords: product matching; artificial neural network; 
consumer decision-making; deep learning; e-commerce. 

1. Introduction 

Recently, e-commerce in the Saudi market has grown 
significantly [1]. According to the Saudi Communication 
and Information Technology Commission (CITC), the rapid 
growth of online shopping has resulted in global business-
to-consumer (B2C) e-commerce spending exceeding $3.8 
trillion [1]. The e-commerce industry in Saudi Arabia 
reached $7.92b in 2016 and is expected to grow over the 
next years [1]. Furthermore, the number of internet users in 
Saudi Arabia is continuously growing, reaching 20.8 
million users in 2017; 58% of them are online buyers [1]. 
The proliferation of the e-commerce market creates 
challenges associated with buyer decision-making from 
different online stores. Thus, consumers have the choice to 
purchase the product from different online stores, which 
made the purchasing decision of the products more complex. 
Moreover, product descriptions and labels vary across 
different stores, indicating a lack of standardization in their 
schema. For example, when a consumer should buy a 

specific product, they can navigate through different online 
stores that sell the same product to decide where to buy that 
product. This issue raised the need for a product-matching 
scheme to effortlessly look for a product and find the most 
reliable provider. 

To improve consumer shopping experience, an 
approach for matching e-commerce products based on their 
description is required. If online stores adopted semantic 
markup language to interpret the products, the product-
matching method can be efficient [2]. 

The problem of product matching is crucial for e-
commerce platforms, their users, and the e-commerce 
industry in general. In the literature, the issue of e-
commerce product matching has been studied 
systematically and draws a considerable number of 
researchers. Several prior studies used the standard string 
similarity method [3, 4]. More recent methods have focused 
on machine learning techniques such as fuzzy matching, 
which is based on extending standard token-based 
similarity functions [5, 6]. Another study by [7] used an 
unsupervised algorithm for matching products based on 
their titles. 

This paper provides a machine learning method for 
matching e-commerce products in one platform. The aim is 
to enhance product lookup and comparison. 
Given that we are working with unstructured data, we use 
unsupervised deep learning ANN techniques to locate 
matched products. The method starts by detecting and 
grouping similar products allocated on different online 
stores based on their different textual descriptions and other 
available product-specific properties. 
The remainder of this paper is organized as follows: Section 
2 covers the related works in the field. Section 3 presents 
the product-matching approach. Section 4 presents the 
results. We conclude with a discussion and directions for 
future work in section 5. 
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2. RELATED WORK 

Several product-matching techniques find similar 
products that different brands can produce, whereas others 
find identical products of the same brand from various 
online stores. Although finding duplicate products among 
different online stores is not yet a mature framework, many 
proposed algorithms in the literature aim to find duplicate 
texts. Several algorithms for text duplicate detection can be 
found in the literature for databases and information 
networks. 

Bakker et al. [8] present two methods for detecting 
duplicated products on the web, specifically for pair-wise 
matching. The core step in the two methods is to determine 
whether the two products under consideration are duplicates 
or not based on the product descriptions. The first approach 
uses a model-words algorithm to find similar product names. 
If the product matches, the distance measure is used to 
determine the similarity of their attributes. The second 
method is the extended model-words, where the model-
words algorithm is used to measure the similarity for 
product names and their attributes simultaneously. The 
performance measures used for evaluation are precision, 
recall, and F1-measure with an average of 63.7%, 59.7%, 
and a value of 0.607, respectively. The p-value was used to 
compute the significance level when comparing the 
extended method with each algorithm separately (once with 
model-words algorithm and once with attribute distance 
algorithm). Although the extended model-words approach 
performed satisfactorily, it can be improved by applying 
optimization and features extraction procedures to the 
descriptions before the process of finding the duplicate 
products. 

A method for duplicate detection proposed by [9] used 
hierarchical clustering based on K-Means (top-down 
divisive approach and bottom-up agglomerative approach) 
to start classifying the products [9]. Following that, the 
multi-component similarity is used to find similar products 
by calculating the q-gram string similarity measure and 
determining whether the similarity was found within the 
same store or on different online stores. The method by [9] 
depends on the extracted attributes from product 
descriptions for its method. The contribution of this 
approach is noticed when using the diffBrand(i,j) python 
function. The role of this function is to compare the 
product's brand name. The evaluation datasets were 
obtained from four online stores with an average of 29 key-

value pairs. The evaluation results were 0.475 F1-measure 
values, the average precision value of 44.5%, and the 
average recall of 51.2%. 

Another matching method proposed in [10] is based on 
unstructured product descriptions. The proposed matching 
offers method aims to match identical product offers from 
various online sources. The process starts by extracting 
product features from the textual offers. The similarity is 
then calculated using distance measures for the extracted 
features suitable to match pair-wise of the product names. 
The distance measures used are Levenshtein, the python-
based class called difflib.SequenceMatcher(), Sorensen, and 
Jaccard distances. Following that, the suitable similarity is 
chosen based on the mean of all distance measures for each 
product. The next step is to measure the following similarity 
values:  

 Similarity of Strings. 
 Intersection of Words. 
 Similarity of Number Words. 
 Maximum N-Gram Similarity. 
 Average N-Gram Similarity. 

Defining the optimal similarity value combination depends 
on the online store scope. The datasets used in the 
developing phase come from three categories, while 
datasets of two categories were used in the evaluation phase. 
The evaluation proves the matching other method’s 
competence with an average precision of 78.5% and 
average recall of 91%. 

Ristoski et al. [2] used ANNs for matching and classifying 
products. The attributes used in their work are the product's 
short name and description. The product's features are 
extracted using the following algorithms:  

a. Dictionary-Based: a dictionary of the product 
attributes and values presented in the structured 
product descriptions. 

b. Conditional Random Field (CRF): the CRF model 
with a set of discrete features. 

c. CRF with Text Embeddings: an improved CRF 
model integrated with text embedding features and 
is used to handle the different forms of a word, like 
the synonyms, found in product descriptions. 

d. Image Feature Extraction Model: In addition to the 
textual features, the authors in [2] built an image 
embedding model using convolutional neural 
networks (CNNs).  

The performance of matching products for the above four 
models was measured using random forest, support vector 
machines (SVM), Naïve Bayes, and logistic regression 
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models. An evaluation of electronics datasets showed 
promising results. However, the approach proposed by [2] 
can integrate unstructured product descriptions only if the 
product name appears in the text. 

The basic word2vec word embedding algorithm is 
used to map each word in the text into a multi-dimensional 
sequence of numbers. In a paper presented by Biswas et al. 
[11], word embedding has been shown comprehensively to 
accommodate the context of online product titles. This 
paper presented the MRNet-Product2Vec approach to 
achieve extreme performance for product embeddings. 
Biswas et al. suggested developing a technique for learning 
product embeddings directly from a training set rather than 
using pre-trained word embeddings. The proposed 
embeddings were evaluated qualitatively and quantitatively, 
and the results were effective. The authors of this paper also 
proposed a multi-mode encoder for comparing products 
from different countries. Thus, the MRNet-Product2Vec 
provides initial results using the various factors resulting 
from different sources that offer products in different 
languages. The evaluation of this approach provides the 
flexibility to learn product embeddings with any other list 
of features or perfectly tune the pre-learned embeddings 
with additional features. 

We focus on unstructured textual descriptions of the 
products offered by online stores in this paper. We 
demonstrate the generality of using the reported methods in 
this section, despite the language of the product description.   
We use deep learning algorithms to extract product features 

from product descriptions using text vectors. Following that, 
we used clustering algorithms on the features vectors to find 
the matching product in relevant clusters -categories- rather 
than matching the product to the entire datasets. This paper 
is based on Arabic language detection, unlike other works, 
which are based on the English language [2] [8] [10] [11]. 
We show the potential of applying the above-reported 
approaches [2] [8] [10] [11] on product descriptions written 
in Arabic. 

3. ARAPRODMATCH: PRODUCT MATCHING 

APROACH 

This section presents our framework that 
addresses the product-matching issues in e-commerce 
that were described in the previous section. The 
framework is called Arabic E-Commerce Products 
Matching (AraProdMatch) and consists of three 
phases: 

 Data collection phase. 
 Feature extraction phase. 
 Product matching based on related clusters. 

The AraProdMatch framework is depicted in Figure 1. 
The workflow runs in two phases: training and testing. 
The training phase launches through preprocessing the 
unstructured product descriptions. In the application 
phase, the model generates a set N of all feasible 
candidate-matching product pairs, which guides a 
more extensive set of candidates. 

 

 
Fig. 1. AraProdMatch Framework Architecture. 
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A. Data Collection  

a)	Scrapy 

Scrapy is an open-source and joint framework for 
crawling websites and extracting data. It is a data 
extraction framework that is fast, simple, and extendable. 
It can be used for various useful applications, such as data 
mining, information processing, and historical archival. 

Scrapy is written in python, and it has a robust architecture, 
as illustrated in Figure 2. The architecture of the framework 
consists of seven components [12]: 

 Scrapy Engine: it is responsible for controlling 
the data flow between all its components. 

 Scheduler: it receives requests from the engine 
and places them in queues to feed the engine 
when required. 

 Downloader: it is responsible for capturing web 
pages and feeding them to the engine, which in 
turn feeds them to the spiders. 

 Spiders: they are custom classes coded by the 
developers to parse websites' responses and 
extract data from them or get additional URLs 
to parse. 

 Item Pipeline: it is responsible for processing 
items. In our case, items are the description, 
price, image URL, and direct URL for each 
product. 

 Downloader: it is a middleware that sits 
between the engine and downloader to process 
requests and responses when they pass between 
them. 

The Scrapy components provide a convenient mechanism 
to extend Scrapy functionality by plugging in customized 
codes. For the spiders used in the AraProdMatch framework, 
we update the settings of the original spiders as follows: 

 FEED_EXPORT_ENCODING = 'utf-8', this 
variable allows us to extract correctly encoded 
Arabic texts. 

 DOWNLOAD_DELAY = 3. This specifies the 
time interval between each crawling step in 
seconds. 

 

 

Fig. 2. Scrapy Architecture [7]. 

b)  Dataset 

We choose three Saudi online stores to collect product 
data. Since each online store has its HTML structure for 
listing products, a spider for each store has been developed. 
Spiders, also known as web crawlers or spider bots, are 
internet bots that automatically visit websites and collect 
data based on their HTML structure [13]. Spiders are 
mainly used for web indexing, but they are also used for 
automatically collecting massive data from the web. 
Before developing the spiders, we manually navigate 
through each online store to learn and collect data from the 
webpage HTML structure. There are numerous ways to 
access any HTML page content; one of them is using x-path 
selectors. The x-path selector is a language used to select 
elements of any XML or HTML files [14]. Learning the 
HTML structure enables us to move to the next step, where 
we use the same code of the spider with minor changes to 
the four following variables: product description, original 
price, image URL, and product URL. These four variables 
hold the x-path to the four desired elements in the targeted 
online store.  
One of the most powerful web crawler framework libraries 
is Scrapy. We used Scrapy to develop our spiders for each 
store.  

In our framework, we set four main constraints on the 
variables that we collect (i) Product should contain textual 
description. (ii) The description length should be more than 
three words. (iii) The descriptions should be written in 
Arabic. (iv) Each product should show the original price in 
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case the product is discounted. The pseudocode for data 
extraction spiders is shown in Algorithm 1. 

Algorithm 1: Data extraction spider 
Require: Scrapy library 
Require: start_urls: sets a list of all targeted urls 
Require: custom_settings: sets the location of a.CSV 
file to save the scraped results 
Require: total_pages: to easily crawl over paginations 
Require: parse: takes the current url to parse 
 

1: titles = list of product titles in the current page 
from given xPath 

2: prices = list of product original prices in the 
current page from given xPath 

3: img_urls = list of product images in the current 
page from given xPath 

4: prod_url = list of product direct URL to the 
products in the current page from given xPath 

5: For all items in (titles, prices, img_urls, 
prod_url) Do: 

6:           scraped_info = { 
7:                'title': item[0], 
8:                'price': item[1], 
9:                'image_url': [item[2]], 
10:                'prod_url': item[3] 
11:            } 
12: End For 
13: add scraped_info to CSV file 
14: If visited_pages < total_pages Then: 
15:           next_page = visited_pages 
16:            visited_pages = visited_pages + 1 
17:            new page request ( 
18:                     url = next_page URL, 
19:                     callback = self.parse ) 

 

 
Following the filtering process, the dataset contains 

~10,000 product data from three online stores with different 
sizes. The store is considered big or small based on the 
count of its products. If the product count is less than 2000, 
it is considered small; otherwise, the online store is 
considered big. 

The dataset is simple and consists of just electronic 
products: computers, TVs, smartphones, wearables, 
refrigerators, and washing machines. We divide the dataset 
into two parts: training and the remaining data for the 
product-matching approach. 
 

c) Data Preparation 

Preprocessing data starts by removing punctuation, 
specific article characters, stop words, checking, and 
converting letters that have different representations. We 
followed the standard steps to preparing Arabic content for 
deep learning, except removing Latin letters since we are 
considering the product model number included in 
descriptions. For example, the letter "Alef” can be 
represented as follows: 
 آ or ا، أ، إ
Table 1 shows an example of a product description as an 
output from the data preparation phase. 

TABLE I: A DEMONSTRATION OF A PRODUCT 
DESCRIPTION PREPARATION PROCESS  

Step Example Illustration of 
descriptions in 
English 

Original text  ،سماعة واي فاي
وبلوتوث من جيه بي 

  للون رماديا–إل جو
  

Wi-fi headset, and 
Bluetooth from 
JBL the Color is 
Gray 

Remove 
punctuations 

سماعة واي فاي 
وبلوتوث من جيه بي 

  إل جو اللون رمادي
 

Wifi headset and 
Bluetooth from 
JBL the Color is 
Gray 

Remove 
definite 
article 

فاي سماعة واي 
وبلوتوث من جيه بي 

  إل جو لون رمادي
 

Wifi headset and 
Bluetooth from 
JBL Color is Gray 

Remove stop 
words 

سماعة واي فاي 
وبلوتوث جيه بي إل 

  جو لون رمادي
 

Wifi headset 
Bluetooth JBL 
Color Gray 

Check and 
convert letter 
Alef 

سماعة واي فاي 
وبلوتوث جيه بي ال 

  جو لون رمادي
 

Handle different 
representation of 
the Arabic alphabet 
Alef 

Check and 
convert letter 
Ha and closed 
Ta’a 

سماعه واي فاي 
وبلوتوث جيه بي ال 

  جو لون رمادي
  

Handle different 
representation of 
the Arabic alphabet 
Ta'a 

 

B. Feature Extraction   

We use several extraction approaches to extract 
features from product descriptions. These methods are 



IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.4, April 2021 219

frequently used algorithms for extracting features designed 
for unstructured descriptions [2] [8] [9] [10] [15]. 

a) Dictionary-Based Approach 

To increase the speed of our framework, we prepared a 
dictionary of available electronics brands in Saudi Arabia. 
To generate a dictionary of brands; we extracted the list of 
brand names used in the online stores. Since many brands 
manufacture the product type, we set the product as a key 
identifier and the brand name as values. The dictionary of 
brands is used to cluster the dataset. Furthermore, we 
matched the brands with all possible n-grams produced 
from product descriptions in each online store product list.  

b) Word Embeddings 

We undertake to address the challenge that the product 
descriptions in Arabic from online stores contain 
combinations of numbers, Arabic and Latin alphabets. 
Despite the characters' complexity in the Arabic product 
description, we did not exclude the manufacturer model 
number since it is considered a unique product feature. 
In particular, we used ANNs to extract product embeddings 
from unstructured product descriptions. We followed the 
proposed product to vector approach (MRNet-Product2Vec) 
in [11]. We roughly calculate the likelihood of a specific 
sequence product to appear in the product lists. We assume 
that the nearest product neighbors in the product vectors are 
statistically dependent where different product-related 
indications are explicitly inserted into their embeddings. 
Afterward, we followed the rest of the approach from [2] to 
implement the CRF with product embeddings. The only 
difference is that we replaced the simple word2vec 
approach used in [2] with MRNet-Product2Vec to train the 
CRF model. We also compare the results of using basic 
word2vec trained using Twitter corpus collected by the 
authors of [16] against using MRNet-Product2Vec trained 
using massive descriptions of online products collected 
roughly from ten Arabic online stores. 
 

c) Calculating Similarity of Feature Vectors 

Our method measures the probability of finding matched 
products by measuring the similarity distance among the 
collected online stores' products. However, the feature 
extracted in the previous subsection, we defined product 
features as P = {p1, p2, p3, … pn}. P here represents all the 
possible features related to and extracted from a product 

description. Then, we calculated the similarity between the 
two products' vectors by measuring the distance between 
each feature in product1from every feature in product2. 
The used similarity measures are two of the most widely 
used distance measures: Jaccard and Cosine similarity 
measures. The Jaccard similarity is computed on character 
n-grams where n <= 4, and the Cosine similarity is 
computed on the words of product descriptions tokens as 
shown in Equation (1) [2]. 
 

 

The similarity here is computed between two products at a 
time, as explained in Algorithm 2. The AraProdMatch 
framework is not restricted to the comparison between two 
stores only. Still, it provides a way to compute products' 
similarity between the unlimited numbers of online stores 
that the AraProdMatch approach has to check. 

Algorithm 2: Computing similarity between products 

Require: scikit-learn library 

Require: stores data directory 

1: starting_store = path to store 1 
2: For all store in stores directory Do: 
3:   next_store = path to the next occurrent 

store in the directory 
4:   For all products in (starting_store, 

next_store) Do: 
5:   compute the similarity between every 

product in 
  the starting store to every product in 
next_store 
6:         If similarity => threshold Then 
7:            matched 
8:         else  
9:            not_matched 
10:   End For 
11: End For 

 

d) Classification Approaches 

Similarity feature vectors are being generated when the 
similarity process is complete. Next, is the classification 
step, where we train two classifiers: K-Means and logistic 
regression. 
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4. APROACH EVALUATION   

We used the cross-validation method to train and test 
our models at a rate of 70% of our collected dataset for the 
training phase and 30% for testing.  

A. Experiment Setup  

To set up the experiment, we relied on Anaconda, a rich data 
science platform with an extensive number of python 
libraries and are widely used by data scientists. In Anaconda, 
we used Jupyter Notebook1, an open-source and intuitive 
application to read code documentation and data 
visualization easily. Further, the python version in use is 
python 3.6. Moreover, the python libraries used to achieve 
our goal are Gensim2 and Scikit-Learn3. 
On the dataset, we set two constraints: the name of the 
online store and the product descriptions to avoid getting 
similarities from the same online store since we are 
assuming that one online store will not list a product twice. 
Matching products are labeled as matched if they contain a 
defined quantity of information identified as unique 
features. 
The measures for evaluating the AraProdMatch approach 
are the three well-known measures: precision, recall, and f-
measure. 
Precision in data mining, as shown in equation (2), is the 
number of items predicted correctly among all predictions 
[17]. 

 

MpPos denote the count of products that are matched 
correctly, and npPos denotes the count of matched products 
incorrectly. Hence, the optimum way of improving 
precision is to decrease the poorly matched products. This 
explains the reason behind the progress toward ontology 
mapping, adopting conventional and strict approaches. 
The second measure is recall – Equation 3-, which is in data 
mining, and it recalls the number of actual items captured 
correctly among all items [17].  

 

In Equation (3), mpPos is the count of products that are 
matched correctly, and npNeg is the count of matching 
products that are not captured as matched by our approach. 

                                                            
1 http://jupyter.org 
2 https://radimrehurek.com/gensim/about.html 

Robust matching approaches attempt to increase precision 
as much as possible, regardless of the low recall [18]. This 
choice is undesirable in this study since we need a highly 
accurate and trustworthy matching method. 
The third and last measure is the F-measure. The F-measure 
is described as a harmonic mean of precision and recall [19]. 
To compare the algorithm, the same pair of measures should 
be used for all of them [20]. When viewed as weighted 
arithmetic mean in the F-measure and the ratio of weights 
is shown in Equation (4). 

   

B. Results  

In our method, we compared the use of basic word2vec 
with product embedding. The results of the similarity 
measure evaluation are shown in Table 2. The similarity 
results show that the product’s embedding outperforms the 
basic word embeddings word2vec approach by 13% on 
average F1-measure. 
Furthermore, we compare the performance of the two 
classifiers: K-Means and logistic regression. Table 3 shows 
the results of the classifier's performance comparison. As 
we can see from Table 3, the K-Means classifier delivers 
the best result for all three performance measures over 
logistic regression. K-Means classifier exceeds the 
accuracy of the logistic regression by 22.4% on average F-
measure. 

TABLE II: SIMILARITY MEASURES EVALUATION 
RESULTS 

 Precision Recall f-measure 

Word2vec 0.229 0.219  0.224 

Product2Vec 0.329 0.384 0.354 

 

TABLE III: ARAPRODMATCH PERFORMANCE 

 Precision Recall f-measure 

K-Means 0.819 0.770  0.794 

Logistic Regression 0.490 0.680 0.570 

3 https://scikit-learn.org 
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5. CONCLUSION AND FUTURE WORKS 

This study builds a product-matching approach for e-
commerce, to provide a method for matching products from 
various online stores. We proposed an AraProdMatch 
method that uses a combination of the best algorithms used 
in the literature, starting from the MRNet-Product2Vec to 
extract features from product descriptions to Jaccard and 
Cosine's use similarity measures to match products vectors. 
This study demonstrates that the AraProdMatch method has 
good quality performance on text extraction designed for 
Arabic. Out of the two matching classifiers, K-Means and 
logistic regression, we conclude that using K-Means 
outperforms logistic regression. Moreover, we adopt the 
ANN deep learning method using the word embeddings 
algorithm. We looked at the difference between using the 
basic word embedding method word2vec versus the 
advanced product embeddings method MRNet-
Product2Vec, and we demonstrated that MRNet-
Product2Vec outperforms the basic word2vec algorithm. 
The first step in the AraProdMatch method is to collect 
dynamically collect data from online stores. One limitation 
in this phase is that we should feed the spiders with the x-
path of online store elements. The step is expected to be 
improved in future work by conducting a standalone study 
on detecting the product descriptions x-path without human 
intervention. 

In future works, we add a phase for matching products 
by using the algorithms to build a robust image classifier. 
The aim is to support the matching process of the product 
descriptions. Furthermore, in the future, we test the model 
on a large number of product descriptions from a wider 
range of online stores and other categories rather than just 
the electronic dataset. 
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