
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

17

Manuscript received June 5, 2021
Manuscript revised June 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.6.4

Detecting Android Malware Based on Analyzing Abnormal Behaviors
of APK File

Cho Do Xuan 1†,

Information Assurance dept. FPT University, Hanoi, Vietnam

Summary
The attack trend on end-users via mobile devices is increasing in
both the danger level and the number of attacks. Especially, mobile
devices using the Android operating system are being recognized
as increasingly being exploited and attacked strongly. In addition,
one of the recent attack methods on the Android operating system
is to take advantage of Android Package Kit (APK) files.
Therefore, the problem of early detecting and warning attacks on
mobile devices using the Android operating system through the
APK file is very necessary today. This paper proposes to use the
method of analyzing abnormal behavior of APK files and use it as
a basis to conclude about signs of malware attacking the Android
operating system. In order to achieve this purpose, we propose 2
main tasks: i) analyzing and extracting abnormal behavior of APK
files; ii) detecting malware in APK files based on behavior
analysis techniques using machine learning or deep learning
algorithms. The difference between our research and other related
studies is that instead of focusing on analyzing and extracting
typical features of APK files, we will try to analyze and enumerate
all the features of the APK file as the basis for classifying
malicious APK files and clean APK files.
Key words:
APK file; behavior analysis; deep learning; anomaly detection;
machine learning

1. Introduction

The research [1] listed vulnerabilities in the Android
operating system that make it a favorite target for cyber
attackers. The document [2] reported the number of cyber-
attacks through mobile devices using the Android operating
system. In order to detect malicious APK files, recent
approaches often rely on static analysis and dynamic
analysis techniques to seek abnormal behaviors in these
files. Regarding the static analysis method, the approaches
often rely on signatures and extract signatures from the
sample malware. Although it is effective in detecting known
malware, it is not enough to detect unknown malware.
Regarding the dynamic analysis method, the approaches
often use virtualization tools to record the abnormal
behavior of APK file types. The studies [1, 2] have pointed
out that the approach of detecting malicious APK files
based on dynamic analysis techniques using machine
learning and deep learning algorithms has brought high
efficiency due to the support of virtualization and big data
technologies. The research [1] listed some approaches for

detecting malicious APK files based on a process of
extracting and handling abnormal behaviors of these APK
files. However, such approaches have the disadvantage that
data features do not exhibit generalization. This
demonstrates that such extracted features could give high
efficiency in some experimental datasets, but when applied
to datasets of other APK files, such behavior cannot be
extracted. To fix the above disadvantage, in this paper, we
propose a novel method based on analyzing different
components of APK files and then calculating and
enumerating features on all of these components. Finally,
based on the feature vector of all the components in these
APK files, we use typical deep learning and machine
learning algorithms for classification in order to detect clean
APK files and malicious APK files. The process in our
approach includes the following 3 main processing steps:

 Step 1: Collect behaviors of APK files based on
dynamic analysis tools.

 Step 2: Extract and statistic the behaviors of APK files
based on all the different components in these APK
files.

 Step 3: Classify clean APK files and malicious APK
files using machine learning and deep learning
algorithms.

2. Related Works

In the study [3], Yi Zhang et al. proposed a method of
detecting malware on Android devices using the
Convolutional Neural Network (CNN) model. Accordingly,
the authors use CNN network architecture to classify
Android malware based on the dynamic analysis method. In
the experimental section, the authors compared and
evaluated the CNN model with traditional classification
methods such as Linear Support Vector Machine (Linear-
SVM) and k-nearest Neighbors (KNN). The experimental
results showed that the CNN model gave better
performance than other models on all measures.

Besides, Xu Jiang [4] proposed a method for detecting
Android malware using Fine-Grained Features.
Accordingly, the author sought ways to analyze the

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

18

APKtool files according to AndroidManifest, Smail, Lib
folder components and then extract the features on these
components and then use KNN, SVM, J48 Decision Tree
(J48), Naive Bayes (NB) algorithms to analyze to conclude
about malware. In the experimental section, J48 algorithm
gave better results than other algorithms on all measures.

Wang [5] proposed an API call analysis method to look
for abnormal behaviors of malware and then use graphing
techniques to analyze and evaluate API call behaviors to
conclude about Android malware. Specifically, in this study
[5], the author analyzed API calls into different components
and then used embedding techniques including DeepWalk,
Node2vec, Structural deep network embedding methods to
train features of API call. Finally, to conclude about
Android malware, the author used CNN, Long Short Term
Memory (LSTM) models to compare with the author's
proposed method. The experimental results showed that the
proposed method of this team gave higher efficiency than
the CNN, LSTM models on all measures.

In the study [6], Minghui Cai et al. proposed the Graph
Convolutional Network (GCN) method to analyze and
evaluate enhanced function call graphs. In the experimental
section, the authors compared and evaluated the GCN
model with other models such as Linear Regression (LR),
Decision Tree (DT), SVM, KNN, Random Forest (RF),
Multi-layer Perceptron (MLP), and CNN.

3. Proposing the Detection Method

3.1 The model architecture

Fig. 1 Architecture of the Android malware detection system

From Figure 1, the architecture of the proposed Android
malware detection system includes the following
components:

 APK file: is an application file in the form of APK
compression. These APK files will be analyzed to
synthesize normal and abnormal behaviors in order to
detect malicious APK files and clean APK files.

 Dynamic analysis tool: This is a virtualized
environment that allows executable APK files in order
to record and synthesize all abnormal behaviors of
APK files.

 Feature extraction: Based on the results when
executing APK files in a virtualized environment, we
will analyze log files of dynamic analysis tools to
collect abnormal behaviors. This paper will use 215
features based on feature groups collected in the JSON
files from the log of the analysis tool. The list of
features and feature groups will present in detail in
section 3.2 of the paper.

 Data classification: After building the feature vector,
this feature vector will be used for the malware analysis
module using machine learning algorithms. The result
of the system is an assessment of the malicious degree
of the file. This study will detect malware in the
Android application based on the manifest file and
details of the Java source file, required permissions,
hash value of the file.

3.2 Feature selection and extraction

Table 1: List of features extracted in the APK file

No Group Name of Feature Description Type

1 API call signature abortBroadcast
Returns the flag indicating whether or not this receiver should abort

the current broadcast
int64

APK file
Dynamic
analysis tool

Feature extraction

Classification Deep and Machine Learning

Malware Clean

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

19

...

73 URLClassLoader
This class loader is used to load classes and resources from a search

path of URLs referring to both JAR files and directories.
int64

74

Commands
signature

/system/app x

...

79 remount
The adb remount command will help ADB to remount the /system,

/oem, and /vendor partitions in read-write mode on your device
x

80

Intent

android.intent.action
.ACTION_POWER

_CONNECTED

Broadcast Action: External power has been connected to the device.
This is intended for applications that wish to register specifically to

this notification.
int64

...

102 intent.action.RUN
The general action to be performed, such as ACTION_VIEW,

ACTION_EDIT, ACTION_MAIN, etc
int64

103

Manifest Permission

ACCESS_COARSE
_LOCATION

Allows an app to access approximate location derived from network
location sources such as cell towers and Wi-Fi

int64

...

215
WRITE_USER_DI

CTIONARY
Allows the app to write new words into the user dictionary int64

Table 1 shows the features of each feature group extracted
from the JSON file in the log of the dynamic analysis tool.
From Table 1, seeing that this paper uses 4 main feature
groups: API call signature [7, 8]; Commands signature [8];
Intent [9]; Manifest Permission [10]. The studies [1, 2]
defined the role and importance of these feature groups in
detail. In this paper, based on these 4 feature groups, we will
extract features as the basis for detecting the Android
malware.

3.3 Malware detection method

This paper uses a number of deep learning and machine
learning algorithms to classify APK files into normal or
malicious. Regarding machine learning, we choose to use
the RF and SVM algorithms. The documents [11, 12, 13]
described in detail the mathematical basis and operating
principle of these algorithms. Regarding deep learning, we
use 4 main algorithms: MLP, CNN, LSTM, Bidirectional
LSTM (BiLSTM). The documents [14, 15, 16, 17]
presented about how they work and their applicability. In
this paper, we will proceed to apply algorithms in the task
of detecting malware. Based on the experimental results, we
will have a basis to evaluate the effectiveness of each
algorithm in the task of detecting malware.

4. Experiments and evaluation

4.1 Experimental dataset

This paper uses 18,835 APK files consisting of 12,015 clean
APK files and 6,820 malicious APK files [18, 19, 10].
These APK files are extracted into 215 features that are
listed in Table 1.

4.2 Experimental scenario

In this paper, to evaluate the effectiveness of the Android
malware detection model, we conduct 2 main experimental
scenarios: i) detecting Android malware using 2 supervised
machine learning algorithms: SVM and RF; ii) detecting
Android malware using 4 deep learning models: MLP,
CNN, LSTM, and BiLSTM. Both two scenarios experiment
on a dataset that is randomly divided (where 80% is used
for training and 20% is used for testing).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

20

4.3 Classification Measures

 Accuracy: is the ratio between the number of correctly
predicted files and the total number of files in the test
dataset. It is calculated by the following formula:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁

 Precision: is the ratio of true positive files to the total
number of files classified as positive. It is calculated by
the formula:

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃

 Recall: is the ratio of true positive files to the total
number of actually positive files. It is calculated by the
formula

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁

 F1 Score: is harmonic mean of precision and recall
(assuming that these two quantities are nonzero)

Where: TP - True positive: The number of malicious files
classified correctly; FN - False negative: The number of
malicious files classified as clean; TN - True negative: The
number of clean files classified correctly; FP - False
positive: The number of clean files classified as malicious.

4.4 Experimental results

Table 2: Experimental results when using machine learning algorithms

Algorithm Parameters Precision Recall F1-score Accuracy
cohen_kappa

_score

SVM

Gamma = auto; C=1.0; kernel=rbf 97% 97% 97% 97.07% 93.73%

Gamma = 0.01; C=1.0

kernel=rbf 98% 98% 98% 97.61% 94.88%

kernel=linear 98% 98% 98% 97.66% 95.01%

kernel=poly 90% 89% 89% 89.06% 75.42%

kernel=sigmoid 97% 97% 97% 96.94% 93.46%

Random
Forest

class_weight = None;
criterion=gini;

max_depth = None;
max_features = auto;
min_inpurity_split =

None;
min_sample_split = 2;

random_state = 45

n_estimators=10 99% 99% 99% 98.77% 97.39%

n_estimators=50 99% 99% 99% 98.85% 97.56%

n_estimators=100 99% 99% 99% 98.83% 97.50%

n_estimators=250 99% 99% 99% 98.88% 97.62%

From the experimental results in Table 2, seeing that the RF
algorithm gave better results than the SVM algorithm on all
measures. In particular, with the SVM algorithm, the best
results of the algorithm are Precision, Recall, F1-score as
98%, and Accuracy as 97.66% with corresponding
parameters Gamma = 0.01, C = 1.0, kernel = linear.
Meanwhile, the lowest results of the RF algorithm
(Precision, Recall, F1-score as 99% and Accuracy as
98.77%) are also higher than SVM's highest result. In
addition, overall, we noticed that there is not much
difference in the experimental results of the RF algorithm

because the difference between the lowest and highest result
is only about 0.05%. And once again, these experimental
results have proven the remarkable efficiency of the RF
algorithm compared to other supervised classification
algorithms.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

21

Table 3: Experimental results when using deep learning algorithms

Algorithm Parameters (activation) Precision Recall F1-score Accuracy

CNN ReLU 99% 99% 99% 98.89%

LSTM
ReLU 99% 99% 99% 99.37%

Sigmoid 98% 98% 98% 97.87%

BiLSTM
ReLU 99% 99% 99% 98.67%

Sigmoid 98% 98% 98% 97%

MLP ReLU 99% 99% 99% 98.88%

From the experimental results in Table 3, seeing that the
deep learning models including CNN, MLP, LSTM, and
BiLSTM have relatively good classification results. In
which, the LSTM deep learning model with the ReLU
activation function gave better results than other deep
learning models on all measures. However, overall, we
noticed that deep learning models applied in this study
brought stable results with approximately the same
accuracy. Especially, the BiLSTM model, which we expect
is more effective than other deep learning models, did not
promote the ability to remember and highlight abnormal
features and behaviors in this experimental dataset. We
believe that the cause of this problem is that in this
experiment, the input of both the LSTM and BiLSTM were
not processed by each group of features. This makes the
LSTM and BiLSTM models do not have much data to learn,
so the analysis and evaluation process of the model is no
different from the CNN and MLP models.

Comparing the experimental results in Tables 2 and 3,
we found that the deep learning models bring more stable
and higher results than the machine learning models. One
of the reasons for this problem is that in this study, we used
216 features that represent abnormal behavior of APK files,
so machine learning algorithms do not promote their speed
and accuracy. In contrast, deep learning models with the
good ability to remember and select features have brought
a clear effect.

5. Conclusion

Distributing malware through end-users via mobile devices
has been, is, and will be a major challenge for malware
detection systems. In this paper, based on deep learning
models and abnormal behaviors of APK files, we proposed
a method for detecting malicious APK files. In the
experimental section, based on the scenario of comparing
and evaluating the results of machine learning algorithms

with deep learning models, we have provided a number of
options and methods to build the Android malware
detection system based on analyzing behaviors of APK files.
Specifically, if only interested in the accuracy of malware
detection systems, the LSTM deep learning model can be
used as an optimal solution. However, in terms of detection
time and computational complexity, it is clear that the RF
algorithm brings more advantages. In the future, in order to
improve the efficiency of this method, there are 2 problems
that need to be optimized: i) remove redundant features; ii)
use combined deep learning models or 2D models in order
to increase the efficiency of the process of synthesizing and
extracting features that are related to each other.

References
[1] Yue Liu, Chakkrit Tantithamthavorn, Li Li, Yepang Liu:

Deep Learning for Android Malware Defenses: a Systematic
Literature Review. ArXiv:2103.05292v1.

[2] Wang W., Zhao M., Gao Z., Xu G., Xian H., Li Y., Zhang X.:
Constructing Features for Detecting Android Malicious
Applications: Issues, Taxonomy and Directions. IEEE
Access, vol. 7, pp. 67602–67631 (2019).
doi:10.1109/access.2019.2918139.

[3] Yi Zhang, Yuexiang Yang, Xiaolei Wang: A Novel Android
Malware Detection Approach Based on Convolutional
Neural Network. In: Proc. of the 2nd International
Conference on Cryptography, Security and Privacy, pp. 144–
149 (March 2018). https://doi.org/10.1145/3199478.3199492

[4] Xu Jiang, Baolei Mao, Jun Guan, Xingli Huang: Android
Malware Detection Using Fine-Grained Features. Scientific
Programming (2020). https://doi.org/10.1155/2020/5190138.

[5] Abdurrahman Pekta, Tankut Acarman: Deep learning for
effective Android malware detection using API call graph
embeddings. Soft Computing.
https://doi.org/10.1007/s00500-019-03940-5.

[6] Minghui Cai, Yuan Jiang, Cuiying Gao, Heng Li, Wei Yuan:
Learning features from enhanced function call graphs for
Android malware detection. Neurocomputing, vol. 423, pp.
301–307 (2021).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

22

[7] Ali Feizollahm, Nor Badrul Anuar, Rosli Salleh, Guillermo
Suarez-Tangil, Steven Furnell: AndroDialysis: Analysis of
Android Intent Effectiveness in Malware Dectection. In: 30th
IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2015).

[8] P. Faruki, V. Ganmoor, V. Laxmi, M.S. Gaur, A. Bharmal:
AndroSimilar: robust statistical feature signature for
Android malware detection. In: Proc. of the 6th International
Conference on Security of Information and Networks, ACM,
pp. 152–159 (2013).

[9] Asaf Shabtai Uri Kanonov, Yuval Elovici, Chanan Glezer,
Yael Weiss: Andromaly: a behavioral malware detection
framework for android devices. Journal of Intelligent
Information Systems, vol. 38, pp. 161–190 (2012).

[10] Dataset android malware permission:
https://www.kaggle.com/xwolf12/datasetandroidpermissions

[11] S.S. Shai, B.D. Shai: Understanding Machine Learning:
From Theory to Algorithms. Cambridge University Press
(2014).

[12] JohnShawe-Taylor, ShiliangSun: Kernel Methods and
Support Vector Machines. Academic Press Library in Signal
Processing, vol. 1, pp. 857-881 (2014).

[13] Leo Breiman: Random Forests. Machine Learning, vol. 4(1),
pp. 5–32 (2001).

[14] Daniel Svozil, Vladimir Kvasnicka, Jiří Pospíchal:
Introduction to multi-layer feed-forward neural networks.
Chemometrics and Intelligent Laboratory Systems, vol. 39(1),
pp. 43–62.

[15] Zewen Li, Wenjie Yang, Shouheng Peng, Fan Liu: A Survey
of Convolutional Neural Networks: Analysis, Applications,
and Prospects (2020). ArXiv:2004.02806.

[16] Keiron O’Shea, Ryan Nash: An Introduction to
Convolutional Neural Networks (2015). ArXiv:1511.08458.

[17] Sepp Hochreiter, Jürgen Schmidhuber: Long Short-Term
Memory. Neural Computation, vol. 9(8), pp. 1735–1780
(1997).

[18] https://www.kaggle.com/razgallah/apps-base
[19] https://www.kaggle.com/tamirkh/apks-dataset
[20] https://www.kaggle.com/covaanalyst1/cova-dataset

Dr. Cho Do Xuan is currently a lecturer
at the Faculty of Information Technology
at Posts and Telecommunications
Institute of Technology and FPTU in
Vietnam
In 2008, received a bachelor's degree in
the Saint Petersburg Electrotechnical
University "LETI" on a specialty
"Computer science and computer
facilities", Russia. In 2010, graduated a

masters from the Saint Petersburg Electrotechnical University
"LETI" on a specialty "Computer science and computer facilities",
Russia. In 2013, received a PhD in the Saint Petersburg
Electrotechnical University "LETI", on a specialty CAD. Russia.
Area of scientific interests - modeling, control systems,
algorithmization, information security.
Email: chodx@ptit.edu.vn chodx@fe.edu.vn

