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Summary 
The attack trend on end-users via mobile devices is increasing in 
both the danger level and the number of attacks. Especially, mobile 
devices using the Android operating system are being recognized 
as increasingly being exploited and attacked strongly. In addition, 
one of the recent attack methods on the Android operating system 
is to take advantage of Android Package Kit (APK) files. 
Therefore, the problem of early detecting and warning attacks on 
mobile devices using the Android operating system through the 
APK file is very necessary today. This paper proposes to use the 
method of analyzing abnormal behavior of APK files and use it as 
a basis to conclude about signs of malware attacking the Android 
operating system. In order to achieve this purpose, we propose 2 
main tasks: i) analyzing and extracting abnormal behavior of APK 
files; ii) detecting malware in APK files based on behavior 
analysis techniques using machine learning or deep learning 
algorithms. The difference between our research and other related 
studies is that instead of focusing on analyzing and extracting 
typical features of APK files, we will try to analyze and enumerate 
all the features of the APK file as the basis for classifying 
malicious APK files and clean APK files. 
Key words: 
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1. Introduction 

The research [1] listed vulnerabilities in the Android 
operating system that make it a favorite target for cyber 
attackers. The document [2] reported the number of cyber-
attacks through mobile devices using the Android operating 
system. In order to detect malicious APK files, recent 
approaches often rely on static analysis and dynamic 
analysis techniques to seek abnormal behaviors in these 
files. Regarding the static analysis method, the approaches 
often rely on signatures and extract signatures from the 
sample malware. Although it is effective in detecting known 
malware, it is not enough to detect unknown malware. 
Regarding the dynamic analysis method, the approaches 
often use virtualization tools to record the abnormal 
behavior of APK file types. The studies [1, 2] have pointed 
out that the approach of detecting malicious APK files 
based on dynamic analysis techniques using machine 
learning and deep learning algorithms has brought high 
efficiency due to the support of virtualization and big data 
technologies. The research [1] listed some approaches for 

detecting malicious APK files based on a process of 
extracting and handling abnormal behaviors of these APK 
files. However, such approaches have the disadvantage that 
data features do not exhibit generalization. This 
demonstrates that such extracted features could give high 
efficiency in some experimental datasets, but when applied 
to datasets of other APK files, such behavior cannot be 
extracted. To fix the above disadvantage, in this paper, we 
propose a novel method based on analyzing different 
components of APK files and then calculating and 
enumerating features on all of these components. Finally, 
based on the feature vector of all the components in these 
APK files, we use typical deep learning and machine 
learning algorithms for classification in order to detect clean 
APK files and malicious APK files. The process in our 
approach includes the following 3 main processing steps: 

 Step 1: Collect behaviors of APK files based on 
dynamic analysis tools. 

 Step 2: Extract and statistic the behaviors of APK files 
based on all the different components in these APK 
files. 

 Step 3: Classify clean APK files and malicious APK 
files using machine learning and deep learning 
algorithms. 

2. Related Works   

In the study [3], Yi Zhang et al. proposed a method of 
detecting malware on Android devices using the 
Convolutional Neural Network (CNN) model. Accordingly, 
the authors use CNN network architecture to classify 
Android malware based on the dynamic analysis method. In 
the experimental section, the authors compared and 
evaluated the CNN model with traditional classification 
methods such as Linear Support Vector Machine (Linear-
SVM) and k-nearest Neighbors (KNN). The experimental 
results showed that the CNN model gave better 
performance than other models on all measures. 

Besides, Xu Jiang [4] proposed a method for detecting 
Android malware using Fine-Grained Features. 
Accordingly, the author sought ways to analyze the 
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APKtool files according to AndroidManifest, Smail, Lib 
folder components and then extract the features on these 
components and then use KNN, SVM, J48 Decision Tree 
(J48), Naive Bayes (NB) algorithms to analyze to conclude 
about malware. In the experimental section, J48 algorithm 
gave better results than other algorithms on all measures. 

Wang [5] proposed an API call analysis method to look 
for abnormal behaviors of malware and then use graphing 
techniques to analyze and evaluate API call behaviors to 
conclude about Android malware. Specifically, in this study 
[5], the author analyzed API calls into different components 
and then used embedding techniques including DeepWalk, 
Node2vec, Structural deep network embedding methods to 
train features of API call. Finally, to conclude about 
Android malware, the author used CNN, Long Short Term 
Memory (LSTM) models to compare with the author's 
proposed method. The experimental results showed that the 
proposed method of this team gave higher efficiency than 
the CNN, LSTM models on all measures. 

In the study [6], Minghui Cai et al. proposed the Graph 
Convolutional Network (GCN) method to analyze and 
evaluate enhanced function call graphs. In the experimental 
section, the authors compared and evaluated the GCN 
model with other models such as Linear Regression (LR), 
Decision Tree (DT), SVM, KNN, Random Forest (RF), 
Multi-layer Perceptron (MLP), and CNN. 

3. Proposing the Detection Method 

3.1 The model architecture 

 

Fig. 1 Architecture of the Android malware detection system 

From Figure 1, the architecture of the proposed Android 
malware detection system includes the following 
components: 

 APK file: is an application file in the form of APK 
compression. These APK files will be analyzed to 
synthesize normal and abnormal behaviors in order to 
detect malicious APK files and clean APK files. 

 Dynamic analysis tool: This is a virtualized 
environment that allows executable APK files in order 
to record and synthesize all abnormal behaviors of 
APK files. 

 Feature extraction: Based on the results when 
executing APK files in a virtualized environment, we 
will analyze log files of dynamic analysis tools to 
collect abnormal behaviors. This paper will use 215 
features based on feature groups collected in the JSON 
files from the log of the analysis tool. The list of 
features and feature groups will present in detail in 
section 3.2 of the paper. 

 Data classification: After building the feature vector, 
this feature vector will be used for the malware analysis 
module using machine learning algorithms. The result 
of the system is an assessment of the malicious degree 
of the file. This study will detect malware in the 
Android application based on the manifest file and 
details of the Java source file, required permissions, 
hash value of the file. 

3.2 Feature selection and extraction 

Table 1: List of features extracted in the APK file 
 

No Group Name of Feature Description Type 

1 API call signature abortBroadcast 
Returns the flag indicating whether or not this receiver should abort 

the current broadcast 
int64 

APK file 
Dynamic 
analysis tool 

Feature extraction 

Classification Deep and Machine Learning 

Malware Clean 
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...    

73 URLClassLoader 
This class loader is used to load classes and resources from a search 

path of URLs referring to both JAR files and directories. 
int64 

74 

Commands 
signature 

/system/app  x 

...    

79 remount 
The adb remount command will help ADB to remount the /system, 

/oem, and /vendor partitions in read-write mode on your device 
x 

80 

Intent 

android.intent.action
.ACTION_POWER

_CONNECTED 

Broadcast Action: External power has been connected to the device. 
This is intended for applications that wish to register specifically to 

this notification. 
int64 

...    

102 intent.action.RUN 
The general action to be performed, such as ACTION_VIEW, 

ACTION_EDIT, ACTION_MAIN, etc 
int64 

103 

Manifest Permission 

ACCESS_COARSE
_LOCATION 

Allows an app to access approximate location derived from network 
location sources such as cell towers and Wi-Fi 

int64 

...    

215 
WRITE_USER_DI

CTIONARY 
Allows the app to write new words into the user dictionary int64 

 

Table 1 shows the features of each feature group extracted 
from the JSON file in the log of the dynamic analysis tool. 
From Table 1, seeing that this paper uses 4 main feature 
groups: API call signature [7, 8]; Commands signature [8]; 
Intent [9]; Manifest Permission [10]. The studies [1, 2] 
defined the role and importance of these feature groups in 
detail. In this paper, based on these 4 feature groups, we will 
extract features as the basis for detecting the Android 
malware. 

3.3 Malware detection method 

This paper uses a number of deep learning and machine 
learning algorithms to classify APK files into normal or 
malicious. Regarding machine learning, we choose to use 
the RF and SVM algorithms. The documents [11, 12, 13] 
described in detail the mathematical basis and operating 
principle of these algorithms.  Regarding deep learning, we 
use 4 main algorithms: MLP, CNN, LSTM, Bidirectional 
LSTM (BiLSTM). The documents [14, 15, 16, 17] 
presented about how they work and their applicability. In 
this paper, we will proceed to apply algorithms in the task 
of detecting malware. Based on the experimental results, we 
will have a basis to evaluate the effectiveness of each 
algorithm in the task of detecting malware. 

4. Experiments and evaluation    

4.1 Experimental dataset 

This paper uses 18,835 APK files consisting of 12,015 clean 
APK files and 6,820 malicious APK files [18, 19, 10]. 
These APK files are extracted into 215 features that are 
listed in Table 1. 

4.2 Experimental scenario  

In this paper, to evaluate the effectiveness of the Android 
malware detection model, we conduct 2 main experimental 
scenarios: i) detecting Android malware using 2 supervised 
machine learning algorithms: SVM and RF; ii) detecting 
Android malware using 4 deep learning models: MLP, 
CNN, LSTM, and BiLSTM. Both two scenarios experiment 
on a dataset that is randomly divided (where 80% is used 
for training and 20% is used for testing). 
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4.3 Classification Measures 

 Accuracy: is the ratio between the number of correctly 
predicted files and the total number of files in the test 
dataset. It is calculated by the following formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ൌ
𝑇𝑃 ൅ 𝑇𝑁

𝑇𝑃 ൅ 𝑇𝑁 ൅ 𝐹𝑃 ൅ 𝐹𝑁
 

 Precision: is the ratio of true positive files to the total 
number of files classified as positive. It is calculated by 
the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑃
 

 Recall: is the ratio of true positive files to the total 
number of actually positive files. It is calculated by the 
formula 

𝑅𝑒𝑐𝑎𝑙𝑙 ൌ
𝑇𝑃

𝑇𝑃 ൅ 𝐹𝑁
 

 F1 Score: is harmonic mean of precision and recall 
(assuming that these two quantities are nonzero) 

Where: TP - True positive: The number of malicious files 
classified correctly; FN - False negative: The number of 
malicious files classified as clean; TN - True negative: The 
number of clean files classified correctly; FP - False 
positive: The number of clean files classified as malicious. 

4.4 Experimental results 

Table 2: Experimental results when using machine learning algorithms 

Algorithm Parameters Precision Recall F1-score Accuracy 
cohen_kappa

_score 

SVM 

 

Gamma = auto; C=1.0; kernel=rbf 97% 97% 97% 97.07% 93.73% 

Gamma = 0.01; C=1.0 

kernel=rbf 98% 98% 98% 97.61% 94.88% 

kernel=linear 98% 98% 98% 97.66% 95.01% 

kernel=poly 90% 89% 89% 89.06% 75.42% 

kernel=sigmoid 97% 97% 97% 96.94% 93.46% 

Random 
Forest 

class_weight = None; 
criterion=gini; 

max_depth = None; 
max_features = auto; 
min_inpurity_split = 

None; 
min_sample_split = 2; 

random_state = 45 

n_estimators=10 99% 99% 99% 98.77% 97.39% 

n_estimators=50 99% 99% 99% 98.85% 97.56% 

n_estimators=100 99% 99% 99% 98.83% 97.50% 

n_estimators=250 99% 99% 99% 98.88% 97.62% 

From the experimental results in Table 2, seeing that the RF 
algorithm gave better results than the SVM algorithm on all 
measures. In particular, with the SVM algorithm, the best 
results of the algorithm are Precision, Recall, F1-score as 
98%, and Accuracy as 97.66% with corresponding 
parameters Gamma = 0.01, C = 1.0, kernel = linear. 
Meanwhile, the lowest results of the RF algorithm 
(Precision, Recall, F1-score as 99% and Accuracy as 
98.77%) are also higher than SVM's highest result. In 
addition, overall, we noticed that there is not much 
difference in the experimental results of the RF algorithm 

because the difference between the lowest and highest result 
is only about 0.05%. And once again, these experimental 
results have proven the remarkable efficiency of the RF 
algorithm compared to other supervised classification 
algorithms. 
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Table 3: Experimental results when using deep learning algorithms 

Algorithm Parameters (activation) Precision Recall F1-score Accuracy 

CNN ReLU 99% 99% 99% 98.89% 

LSTM 
ReLU 99% 99% 99% 99.37% 

Sigmoid 98% 98% 98% 97.87% 

BiLSTM 
ReLU 99% 99% 99% 98.67% 

Sigmoid 98% 98% 98% 97% 

MLP ReLU 99% 99% 99% 98.88% 

From the experimental results in Table 3, seeing that the 
deep learning models including CNN, MLP, LSTM, and 
BiLSTM have relatively good classification results. In 
which, the LSTM deep learning model with the ReLU 
activation function gave better results than other deep 
learning models on all measures. However, overall, we 
noticed that deep learning models applied in this study 
brought stable results with approximately the same 
accuracy. Especially, the BiLSTM model, which we expect 
is more effective than other deep learning models, did not 
promote the ability to remember and highlight abnormal 
features and behaviors in this experimental dataset. We 
believe that the cause of this problem is that in this 
experiment, the input of both the LSTM and BiLSTM were 
not processed by each group of features. This makes the 
LSTM and BiLSTM models do not have much data to learn, 
so the analysis and evaluation process of the model is no 
different from the CNN and MLP models. 

Comparing the experimental results in Tables 2 and 3, 
we found that the deep learning models bring more stable 
and higher results than the machine learning models. One 
of the reasons for this problem is that in this study, we used 
216 features that represent abnormal behavior of APK files, 
so machine learning algorithms do not promote their speed 
and accuracy. In contrast, deep learning models with the 
good ability to remember and select features have brought 
a clear effect. 

5. Conclusion 

Distributing malware through end-users via mobile devices 
has been, is, and will be a major challenge for malware 
detection systems. In this paper, based on deep learning 
models and abnormal behaviors of APK files, we proposed 
a method for detecting malicious APK files. In the 
experimental section, based on the scenario of comparing 
and evaluating the results of machine learning algorithms 

with deep learning models, we have provided a number of 
options and methods to build the Android malware 
detection system based on analyzing behaviors of APK files. 
Specifically, if only interested in the accuracy of malware 
detection systems, the LSTM deep learning model can be 
used as an optimal solution. However, in terms of detection 
time and computational complexity, it is clear that the RF 
algorithm brings more advantages. In the future, in order to 
improve the efficiency of this method, there are 2 problems 
that need to be optimized: i) remove redundant features; ii) 
use combined deep learning models or 2D models in order 
to increase the efficiency of the process of synthesizing and 
extracting features that are related to each other. 
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