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Summary 
Monte-Carlo GO is a computer GO program that is sufficiently 
competent without using knowledge expressions of IGO. 
Although it is computationally intensive, the computational 
complexity can be reduced by properly pruning the IGO game tree. 
Here, I achieve this by using a potential model based on the 
knowledge expressions of IGO. The potential model treats GO 
stones as potentials. A specific potential distribution on the GO 
board results from a unique arrangement of stones on the board. 
Pruning using the potential model categorizes legal moves into 
effective and ineffective moves in accordance with the potential 
threshold. Here, certain pruning strategies based on potentials and 
potential gradients are experimentally evaluated. For different-
sized boards, including an official-sized board, the effects of 
pruning strategies are evaluated in terms of their robustness. I 
successfully demonstrate pruning using a potential model to 
reduce the computational complexity of GO as well as the 
robustness of this effect across different-sized boards. 
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1. Introduction 

In this study, I reduce computational complexity by pruning 
an IGO game tree with a potential model based on the 
knowledge expression of IGO. Monte-Carlo GO [1], which 
is sufficiently competent without the knowledge 
expressions of IGO, is used as the computer GO program 
for this experiment. Monte-Carlo GO employs a 
randomized and computationally intensive algorithm. 
However, this computational complexity can be reduced by 
properly pruning the IGO game tree. Because Monte-Carlo 
GO shows no deviation in the sequence of moves for IGO, 
the effects of the heuristics generated by a potential model 
are demonstrated correctly. 

This study builds upon existing research on potential model 
pruning in Monte-Carlo GO [2, 3]. In the previous 
experiment [3], the effects of nine potential models on 
Monte-Carlo GO were demonstrated on 9 × 9 and 13 × 13 
boards. In this experiment, the nine potential models are 
demonstrated on 9 × 9, 13 × 13, and 19 × 19 (i.e., official 
size) boards. 

2. Proposed Method 

The method proposed herein consists of Monte-Carlo GO 
and a potential model. 

2.1 Monte-Carlo GO 

Monte-Carlo GO evaluates legal moves in each phase to 
select the next move via a simulation based on a Monte-
Carlo search process comprising many moves. This 
simulation, called “Play Out,” involves both sides 
constantly choosing the next move alternately and 
randomly from the current phase until the end of the game. 
Play Out calculates an estimate Xi  for each legal move i  
by using Eq. 1.  
 

iii sXX /=    (1) 
 
Here, Si  is the number of times of Play Out and Xi  is the 
total number of considerations. In Play Out, the 
consideration is +1 or 0 if an offensive move wins or loses, 
respectively. As a result, the move with the best estimate is 
selected as the next move. 

2.2 Potential Model 

Stones influence the possibility that surrounding 
intersections become their territory. The potential model 
proposed here quantifies these influences by assuming GO 
stones as potentials, like in previous studies [4, 5]. 
 
2.2.1 Definition of Potential 
 
The potential is defined in Eqs. 2–4 and Table 1. Fig. 1 
shows a calculation example. The sign of Eq. 3 was 
switched depending on the setting of the proposed method. 
The potential distribution on the GO board was calculated 
by these equations. If necessary, the potential gradient was 
subsequently calculated according to the gradient method 
by using geographical information systems [6] with the 
potential distribution. Fig. 2 shows a schematic diagram of 
this process. 
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(X, Y) = (5, 4) 
m = 2 
r1 = √10 
r2 = √34 
 

P1(X, Y) = +1/2√10 

P2(X, Y) = –1/2√34 
 

Pall = +1/2√10 + (–1/2√34) 
  ≒ 0.09413 

Fig. 1 Example of potential calculation. 

 

 

PG(e) = (dz/dx)2 + (dz/dy)2 
 
a–i: Potential Value 
dz/dx: Rate of Change of x-axis 
dz/dy: Rate of Change of y-axis 
 
dz/dx = (c + 2f + i) – (a + 2d +g) 
dz/dy = (g + 2h + i) – (a + 2b +c) 

Fig. 2 Schematic of potential gradient. 

 

Table 1: Mathematical expressions 
 r : Euclidean distance 

   m : Attenuation rate of potential, m > 1. 
   xi, yi : Intersection of stonei 
   
Pk(X, Y) : 

Potential difference between  
intersection (X, Y) and stonek 

   n : Total number of stones on the GO board 
   
Pall(X, Y) : 

Total potential difference between  
intersection (X, Y) and stone1–n 

   PG(X, Y) : Potential gradient at an intersection (X, Y) 
    

 
 

2.2.2 Pruning by using Potential Model 
 
Potential Filters (PFs): 
Potential filters (PFs) were used as the pruning instruments. 
In each phase of choosing the next move, these filters 
pruned legal moves according to the following procedures: 
 
(i) Calculate the potential distribution resulting from the 

arrangement of stones on the board.  
(ii) Rank legal moves by each magnitude of potential (or 

potential gradient). 
(iii) Categorize ranked legal moves into effective and 

ineffective moves according to the thresholds for the 
ranking. (Each PF has a unique threshold level.) 

(iv) Eliminate ineffective moves from candidates for the 
next move. (Run Monte-Carlo search only on effective 
moves.) 

 
In accordance with the number of eliminated legal moves, 
the computational load of the Monte-Carlo search was 
reduced; i.e., PFs reduced the range of search spaces on the 
board. 

Potential Filter Configurations: 
Table 2 lists the configurations of the five filters (the 
Random Filter and PFs 1–4), listing the ranking, attenuation 
rate of the potential m, polar characteristics of black and 
white stones, and threshold conditions. Each PF ranked 
legal moves in descending order of potential values (except 
for the Random Filter) and categorized them according to 
each threshold condition for the ranking. PFs 1–4 are the 
same as PFs 1–4 in the previous experiment [3]. 

Table 3 lists the configurations of five other filters (PFs 5–
9). Each PF ranked legal moves in descending order of 
potential gradient values and categorized them according to 
each threshold condition for the ranking. In PFs 5–9, m 
critically involved their filtering functions. According to the 
magnitude of m, potential gradient values of intersections 
surrounding each stone increased. In contrast, the lower m 
became, the higher the potential gradients of intersections 
between black and white stones. For example, in Table 3, 
PF 5, m is 4 and the intersection marked with an x, the 
midpoint between a black and white stone, is ranked 77th in 
order of magnitude of potential gradient. With PF 6, the 
intersection marked x ranked 55th; with PF 7, 33rd;  with PF 
8, 11th; and with PF 9, 5th. 

All filters mutually halved the number of legal moves. Thus, 
all filters reduced the computational load in each phase for 
choosing the next move by half. 

On and Off Switch of Potential Filter: 
Each PF had a point at which its state was switched on or 
off. This switching point took a number from among the 
number of all intersections on the GO board. Specifically, a 
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switching point could be selected from numbers 2 to 81 
when the board size was 9 × 9 (=81), from 2 to 169 when 
the size was 13 × 13 (=169), or from 2 to 361 when the size 
was 19 × 19 (=361). 

During a game, the PFs were on when the number of legal 
moves remaining on the GO board was above a switching 
point and off when it was below the switching point. The 
borders where effective PFs became ineffective were 
measured by changing the switching point one step at a time. 
The borders were the points at which winning percentages 
exceeded the average winning percentage between two 
normal Monte-Carlo GO programs (57% with a board size 
of 9 × 9, 51% with 13 × 13, or 50% with 19 × 19). 

The performance of the Monte-Carlo search was higher 
when the game tree was small; it deteriorated as the game 
tree became larger. Thus, pruning was effective in the 
opening game. However, pruning gradually became 
ineffective thereafter as legal moves on the GO board 
decreased. 

3. Competence of Monte-Carlo GO with 
Potential Filters 

Monte-Carlo GO with PFs was adopted for the initiative 
move, whereas normal Monte-Carlo GO was adopted for 
the passive move. The number of times of Play Out at each 
intersection was set to 100. In a match-up between two 
normal Monte-Carlo GO programs, the winning percentage 
of the initiative move was 57% with a 9 × 9 board, 51% with 
13 × 13, or 50% with 19 × 19 (the winning percentage of 
the initiative move exceeded 50% because this move was 
advantageous). Therefore, 57%, 51%, or 50% was 
considered the average level of normal competence. 

4. Results and Observation 

Figs. 3 and 4 show the winning percentages of Monte-Carlo 
GO with PFs along the left-hand axis (upper graphs, 9 × 9 
board size; middle graphs, 13 × 13 board size; lower graphs, 
19 × 19 board size). The level of competence varied with 
the filter and switching point. The normal winning 
percentage of 57%, 51%, or 50% and the calculated results 
of the Random Filter were important for comparing and 
evaluating the effects and tendencies of the PFs. Figs. 3 and 
4 show the number of total Play Out times required for one 
game for three board sizes along the right-hand scale. The 
number of total Play Out times varied with the filter and 
switching point. 

4.1 Effects of Potential Filters 

The Random Filter pruned legal moves at random. 
Therefore, the winning percentage of the Random Filter 
decreased gradually with a reduction in the number of legal 
moves without exceeding the normal winning percentage. 

PF 1 became the bias around which black stones gathered. 
These black stones effectively strengthened initiative 
territory. PF 2 became the bias where black stones were 
attracted around white stones. Black stones effectively 
suppressed white stones. PF 3 became the bias where black 
stones were scattered on the GO board. These black stones 
were removed easily by white stones. PF 4 became the bias 
where stones were attracted around black and white stones. 
PFs 5–9 became the bias where black stones were attracted 
around black and white stones, and the areas between black 
and white stones were closed. The lower the value of m, the 
stronger the bias and effect of pruning. 

The characteristics of each PF were unique. However, they 
were all capable of properly pruning ineffective moves that 
the Monte-Carlo search could not when the winning 
percentage exceeded the average (57%, 51%, or 50%). 
Thereafter, the competence of each PF decreased gradually 
as the number of legal moves decreased and the precision 
of the Monte-Carlo search increased. In fact, pruning by 
each PF reduced the precision of the Monte-Carlo search. 

4.2 Robustness of Potential Filter Effects 

Concerning the upper, middle, and lower graphs in Figs. 3 
and 4, if the x-axes were scaled to the same width, each 
winning percentage curve of PFs 1–9 in these graphs was 
similar and had much in common with the others: the 
relative location, the proportion of the border where 
effective PFs became ineffective, the number of all 
intersections on the GO board, and the reduction rate of total 
Play Out numbers required for one game. This indicated 
that the PF effects were robust to the size of the GO board; 
they depended only on the ratio of the number of legal 
moves to that of all intersections on the GO board. 

5. Summary 

Here, I reduced computational complexity of Monte-Carlo 
GO by pruning the IGO game tree using a potential model 
based on the knowledge expression of IGO. In my 
experiments, the effects of nine types of pruning strategies 
(PFs) were evaluated on different-sized boards, including 
an official-sized board. Each PF had a specific effect on 
IGO, which was maintained on the 9 × 9, 13 × 13, and 19 × 
19 boards. 

I successfully demonstrated pruning by using the potential 
model to reduce the computational complexity of GO, as 
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well as the robustness of the PF effects to the size of the GO 
board. These results indicated the possibility that 
knowledge expressions of stones as potentials contribute to 
the enhancement of existing computer GO and the 
understanding of the essence of IGO. However, my 
experiments were limited as the Play Out number was set to 
100. For future research, I intend to expand the proposed 
strategy to address more complex games with larger Play 
Out numbers. 
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Table 2. Types of potential filters (Random Filter and PFs 1–4) 
Method Random Filter PF 1 PF 2 PF 3 PF 4 
Ranking - Potential Potential Potential Potential 

m - 2 2 2 2 
Black/White - +/– +/– +/– +/+ 

Filtering Random Low 50% Top 50% Above 25% and 
below 75% Low 50% 

      

Overhead - 

    
      

Landscape - 

    
 

Table 3. Types of potential filters (Random Filter and PFs 5–9) 
Method PF 5 PF 6 PF 7 PF 8 PF 9 
Ranking Potential Gradient Potential Gradient Potential Gradient Potential Gradient Potential Gradient 

m 4 2 1.5 1.25 1.15 
Black/White +/– +/– +/– +/– +/– 

Filtering Low 50% Low 50% Low 50% Low 50% Low 50% 
      

Overhead 

     
      

Landscape 
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Method 
9 × 9 Board Size 13 × 13 Board Size 19 × 19 Board Size 

Border Play Out 
Number 

Reduction 
Rate Border Play Out 

Number 
Reduction 

Rate Border Play Out 
Number 

Reduction 
Rate 

Random  - 168,000 0.0 - 722,400 0.00 - 3,276,000 00.0 
PF 1  77 160,000 4.7 157 673,500 06.8 333 3,032,400 07.4 
PF 2  73 152,400 9.2 153 658,000 08.9 325 2,967,300 09.4 
PF 3  - 168,000 0.0 - 722,400 00.0 - 3,276,000 00.0 
PF 4  65 138,400 17.4 135 593,200 17.9 285 2,662,300 18.7 

Fig. 3. Winning percentages of Monte-Carlo GO with potential filters 1–4 

 
 

Play Out Number 

Winning percentage between two normal Monte-Carlo Go programs 

9 × 9 board 

13 × 13 board 

19 × 19 board 
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Method 
9 × 9 Board Size 13 × 13 Board Size 19 × 19 Board Size 

Border Play Out 
Number 

Reduction 
Rate Border Play Out 

Number 
Reduction 

Rate Border Play Out 
Number 

Reduction 
Rate 

PF 5  77 160,100 04.7 159 681,400 05.7 343 3,117,600 04.8 
PF 6  65 138,800 17.4 135 593,200 18.0 283 3,648,100 19.2 
PF 7  63 135,600 19.3 131 579,900 19.7 277 2,606,100 20.4 
PF 8  61 132,500 21.1 131 579,900 19.7 275 2,592,300 20.9 
PF 9  61 132,500 21.1 129 573,400 20.6 273 2,578,600 21.3 

Fig. 4. Winning percentages of Monte-Carlo GO with potential filters 5–9 

 
 

Play Out Number 

Winning percentage between two normal Monte-Carlo Go programs 

9 × 9 board 

13 × 13 board 

19 × 19 board 
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