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Summary 
Heart Failure represents a critical pathological case that is 
challenging to predict and discover at an early age, with a notable 
increase in morbidity and mortality. Machine Learning and Neural 
Network techniques play a crucial role in predicting heart attacks, 
diseases and more. These techniques give valuable perspectives 
for clinicians who may then adjust their diagnosis for each 
individual patient. This paper evaluated neural network models for 
heart attacks predictions. Several online learning methods were 
investigated to automatically and accurately predict heart attacks. 
The UCI dataset was used in this work to train and evaluate First 
Order and Second Order Online Learning methods; namely Back-
propagation, Delta bar Delta, Levenberg Marquardt and 
QuickProp learning methods. An optimizer technique was also 
used to minimize the random noise in the database. A 
regularization concept was employed to further improve the 
generalization of the model. Results show that a three layers’ NN 
model with a Backpropagation algorithm and Nadam optimizer 
achieved a promising accuracy for the heart attach prediction tasks. 
Key words: 
Neural Network; Heart Attack; online learning; Optimization; 
Regularization. 

1. Introduction 

The heart is a very important organ in the human body, 
and life depends entirely on the effective work of the heart. 
One of the most dangerous diseases in the world that affects 
a person’s life is heart disease, which is the problem of 
pushing the required amount of blood to the rest of the body 
[1]. According to a survey published by the World Health 
Organization (WHO), there are about 17 million people 
worldwide who are sick with cardiovascular disease, or 
29.20\% of all deaths, most of them are in developing 
countries [2]. In order to reduce the burden on cardiologists, 
many researchers applied machine learning methods to 
solve the problem of prediction with high accuracy with 
about one-third of these methods were neural networks [3]. 

Neural Network (NN) is a set of biological neurons that 
interact with each other, where an artificial neuron is a 
simulation of how biological neurons interact and process 
information [4]. NN is a form of predictive analytic 
methodology that can be used to predict or classify an 
attribute. It is a machine learning technique, attempts to 
predict values in the same way as a human brain would.  

In this paper, the heart disease prediction problem is 
addressed using Artificial Neural Network (ANN) 
algorithms. Using multiple learning algorithms, 
optimization and regulation methods, the aim is to find the 
best NN model for predicting heart disease with a good 
performance.  

The remainder of this paper is arranged as follows: 
Section 2 reviews the efforts made by previous studies to 
address the problem utilizing NN and deep learning 
methodologies. Section 3 provides details about the 
developed models, the most common techniques to improve 
the models’ generalization as well as a brief on the first and 
second online learning methods. Section 4 describes the 
experiment setup, results with different activation functions 
and learning methods and comparison with other techniques. 
Section 5 concludes the paper by recommending the best 
NN model to solve the heart attack prediction problem and 
potential future work. 

2. Related Work 

Several studies have been done in medical prediction 
using NN. A number of techniques have been used for the 
identification of heart diseases including data mining 
techniques, this section provides an overview of related 
works.  

The multilayer perceptron (MLP) back-propagation 
algorithm of the NN was used by Durairaj et al. [5] for 
producing efficient ANN training when combined with 
optimization techniques such as gradient descent. Their data 
was from the UCI repository and they calculated the error 
using MSE. Their model achieved an accuracy of 96.29%. 
While Awan et al. [6] used the Western Australian patient 
dataset and modeled an MLP network with a trial-and-error 
process was used to choose all of the hyper-parameters. A 
rectified linear activation was chosen for the hidden layer 
and a sigmoid activation function for the output layer. The 
MLP-based approach had the best accuracy of 0.64, with 
48.42% sensitivity and 70.01% specificity.  

Vladimir et al. [7] investigated multiple algorithms on 
the Cleveland dataset, which has 303 instances and 76 
attributes. For training the NN, they generated two arrays 
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with 2D that represent the training set, the second array 
consists of 30 elements for the test set. The output defined 
with 2 features to map training set with the target and 
achieved a recognition rate of 96.67%. Similarly, Takci et 
al. [8] used various machine learning techniques including 
MLP architecture on the UCI dataset. In their experiment, 
they used 90% of the data for the training and 10% for the 
testing and 10-fold cross-validation. Their model got an 
accuracy of 83.70%.  

Using multiple feature selection along with MLP, 
Sandeepkumar et al. [9] predict chronic diseases and 
achieved better performance than support vector machine 
(SVM) and decision tree. Similarly, Le et al. [10] proposed 
a genetic-based feature selection in combination with a 
Naïve Bayes classifier to predict heart disease. The 
accuracy of their method was 75%. While Panday et al. [11] 
applied standard and improved MLP algorithms on various 
medical datasets to develop a decision support system for 
cardiovascular heart disease diagnosis. Their improved 
MLP achieved 82.8%, 80.73%, and 93.49% on Cleveland, 
Hungarian, and Switzerland datasets respectively.  

Olaniyi et al. [12] employed both MLP and SVM on 
medical dataset to define a system that can avoid 
misdiagnosis in heart diseases. They achieved 85% with 
MLP and 87.5% with SVM. While Cheng et al. [13] 
employed the UCI dataset to find patterns using NN, DT, 
SVM, and Naive Bayes. The proposed hybrid method 
achieved 86.8% for F-measure, competing with the other 
existing methods. 

3. Methodology 

NN is a mathematical or computational model inspired 
by the functionality of biological neural networks [2]. It 
contains three layers: the input layer that fed the raw data to 
the network, the hidden layer that determines the activity of 
each input unit and the weights assigned to the links 
between them and the output layer that produces the output. 

The MLP is a logistic regression classifier that uses a 
learned non-linear transformation to transform the input. 
This transformation converts the input data into a space 
where it can be separated linearly. MLP is distinguished 
from a linear perceptron by its multiple layers and non-
linear activation [14]. An activation function specifies how 
the input weight is summed to converted it into the output 
from a node in a layer. In different parts of the model, 
different activation functions can be used [4,15]. For 
instance, the hidden layer can employ the rectified linear 
activation (ReLU), the logistic (or sigmoid) or the 
hyperbolic tangent (Tanh) function. While the output layer 
can use the linear, the sigmoid or the SoftMax function. 

In addition, in order to modify the weights and the learning 
rate of a NN model aiming to minimize error and speed up 
the performance, an optimizer is used to study the behavior 
of different algorithms for optimizing gradients. Some of 
the most common optimizers are Adaptive Moment 
Estimation (Adam) and Stochastic Gradient Descent SGD, 
which improve the NN model performance by reducing the 
overfitting [4].  

1. Adam optimizer is an adaptive learning rate 
optimization algorithm that works by adjusting the 
step size for each parameter based on previous results. 
This optimizer preserves its own set of fixed 
hyperparameters including: the learning rate 𝛼𝛼 and the 
two moment coefficients ß1, ß2 [16].  

2. SGD where the term "stochastic" refers to a 
mechanism or procedure that is subject to random 
probability. For each iteration of SGD, a few samples 
are chosen at random rather than the entire sample [16]. 
SGD algorithm updates the weights as follow: 

∅𝑗𝑗 = ∅𝑗𝑗  −  𝛼𝛼(𝑦𝑦�𝑖𝑖  −  𝑦𝑦𝑖𝑖)𝑥𝑥𝑗𝑗𝑖𝑖                    (1) 

It finds the gradient of a single sample for the cost 
function instead of calculating the sum of the gradients 
of all [17].  

Moreover, two important hyperparameters for the learning 
algorithm are: epoch and batch size. The Epoch specifies 
how long the learning algorithm will take to run through the 
entire training set [4]. While the Batch size refers to the total 
number of samples from a dataset that are used to determine 
the gradient for each iteration [4]. Batches are often used to 
group data sets. Several epochs are used in the creation of 
several models, where the dataset size is d, the number of 
epochs is e, the number of iterations is I and the batch size 
is b, the general relationship is d * e = I * b [17]. 

3.1 First Order Method 

In this paper, two different learning algorithms from first 
order are used which are Backpropagation and Adaptive 
Learning Rate algorithms.  

3.1.1 Back-Propagation (BP) 
In NN, the BP algorithm is still the approach of preference 
for training large networks. BP is a supervised learning 
method used by MLP for training. It is a gradient descent 
algorithm that aims to minimize the errors between the 
network's output and the desired outcome [14]. The most 
widely used training algorithm, back-propagation, is a 
gradient descent technique that efficiently computes the 
derivatives' values and modifies the weights according to 
a parameter known as the learning rate [14].  
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In the gradient descent algorithm, the weight link between 
the hidden layer's j neuron and the input layer's i neuron 
is modified according to [14]: 
 

    𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡 − 1) + ∆𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡) 
    𝑏𝑏𝑗𝑗(𝑡𝑡) = 𝑏𝑏𝑗𝑗(𝑡𝑡) + ∆𝑏𝑏𝑗𝑗(𝑡𝑡) 

 (2) 

For updating the weight, ∆𝒘𝒘𝒋𝒋𝒋𝒋(𝒕𝒕) 𝒂𝒂𝒂𝒂𝒂𝒂 ∆𝒃𝒃𝒋𝒋(𝒕𝒕) given by: 
    ∆𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡) = 𝜂𝜂𝑤𝑤𝜂𝜂𝑗𝑗(𝑡𝑡) 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝛼𝛼𝑤𝑤∆𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡) 
    ∆𝑏𝑏𝑗𝑗(𝑡𝑡) = 𝜂𝜂𝑏𝑏𝜂𝜂𝑗𝑗(𝑡𝑡)𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝛼𝛼𝑤𝑤∆𝑏𝑏𝑗𝑗(𝑡𝑡) 

   
(3) 

where w represents the weight and b represent the 
threshold, the momentum constants that determine the 
influence of the previous parameter change on the current 
direction movement in the space are the [Δw] and [Δb]. 
The learning rates represent in [ηb] and [ηw]. The [Pj(t)] 
is the error signal in the hidden layer's j neuron that signal 
is propagate backwards through the network [14].  
 
Because the output neuron's activation function is linear, 
the error signal at the output node is:  

    𝜂𝜂𝑗𝑗(𝑡𝑡) = 𝑦𝑦𝑘𝑘(𝑡𝑡)  −  𝑦𝑦�𝑘𝑘(𝑡𝑡) 
   
(4) 

where the expected output is the [yk (t)], for the neuron in 
the hidden layer [14]. 

    𝜂𝜂𝑗𝑗(𝑡𝑡) = 𝐹𝐹′′(𝑥𝑥𝑖𝑖(𝑡𝑡))∑𝜂𝜂𝑗𝑗𝑘𝑘(𝑡𝑡)𝑤𝑤𝑗𝑗𝑘𝑘2 (𝑡𝑡 − 1)  
   
(5) 

where the [F"(xi(t))] is the first derivative with respect to 
xi(t). 

3.1.2 Delta-Bar-Delta Learning (Adaptive Learning 
Rate) or TurboProp 

The BP algorithm is considered as a gradient decent type 
of algorithm. Thus, the algorithm has a problem of a slow 
convergence rate. The search for the global minima may 
become stucked at local minima. Also, the algorithm is 
sensitive to the user selectable parameters. In TurboProp 
every weight is adjusted with each iteration. Each weight 
can have its own learning rate [4]. 

1- The learning rate is improved if the direction in which 
the error declines at the current stage, as shown by the 
error gradient, is the same as the direction in which the 
error has been decreasing recently [4]. 

2- Otherwise, the learning rate is reduced if the current 
direction in which the error is decreasing is opposite to 
the previous direction in which the error has been 
decreasing [4]. 

Up to epoch m, the direction recent history in which the 
error has been decreasing is defined as: 

    𝑓𝑓𝑚𝑚 = ∅𝑓𝑓𝑚𝑚−1  +  (1 − ∅) 𝑑𝑑𝑚𝑚−1    (6) 

Thus, 𝑓𝑓𝑚𝑚 is the average direction history and 𝑑𝑑𝑚𝑚 is the the 
total gradient form epoch m, can be calculated as: 

     𝑑𝑑𝑚𝑚  =  ∑ [ 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑚𝑚

 ]𝑛𝑛𝑁𝑁
𝑛𝑛−1     (7) 

• With Momentum: The fundamental concept behind 
momentum in ML is to speed up the training process. 
It's often used in NNs as the size of data causes a 
significant time delay when training gradients. using 
momentum can handle noisy gradients and even 
extremely tiny gradients [18]. 

     ∆𝑤𝑤 =  𝜇𝜇∆𝑤𝑤𝑚𝑚−1  −  (1 − 𝜇𝜇) 𝜀𝜀𝑚𝑚𝑑𝑑𝑚𝑚    (8) 

where the Momentum part is in 𝜇𝜇∆𝑤𝑤𝑚𝑚−1 [4]. 

3.2 Second Order Method 

In this paper, two learning algorithms from second order are 
used which are Levenberg Marquardt and Quickprop 
algorithms. 

3.2.1 Levenberg Marquardt algorithm 
The Levenberg–Marquardt algorithm (LMA) is used to 
solve non-linear least squares problems. It depends on 
how the error function resembles a quadratic function. If 
the quadratic approximation is not suitable, the algorithm 
may diverge. 

The Formula for LMA is shown (e.g., see Eq. 9). 
     𝑓𝑓(𝑥𝑥)  = 1

2
 ∑ [ 𝑓𝑓𝑖𝑖(𝑥𝑥) ]2𝑚𝑚

𝑖𝑖=1     (9) 

Let the Jacobian of fi(x) be denoted Ji(x), then the LMA 
searches in the direction given by the solution p to the 
equations. 

     ( 𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘   +  𝜆𝜆𝑘𝑘𝐼𝐼) 𝜂𝜂𝑘𝑘  =  −𝐽𝐽𝑘𝑘𝑇𝑇𝑓𝑓𝑘𝑘   (10) 

where 𝜆𝜆𝑘𝑘  are non-negative scalars and I is the identity 
matrix. The method has the nice property that, for some 
scalar Delta related to 𝜆𝜆𝑘𝑘, the vector 𝜂𝜂𝑘𝑘 is the solution of 
the constrained sub-problem of minimizing. 

     || 𝐽𝐽𝑘𝑘𝑃𝑃  + 𝑓𝑓𝑘𝑘||22

2
   (11) 

Subject to ||p||2. 

3.2.2 Quickprop algorithm 
Quickprop is an iterative method for defining the 
minimum of the loss function of NN. It uses second order 
learning methods. The formula for updating the weights 
for the layer is given by (e.g., see Eq. 12). 

     Δ𝑘𝑘𝑤𝑤𝑖𝑖𝑗𝑗 =  Δ(𝑘𝑘−1)𝑤𝑤𝑖𝑖𝑗𝑗 (
Δ𝑖𝑖𝑗𝑗 𝜕𝜕(𝑘𝑘)

Δ𝑖𝑖𝑗𝑗 𝜕𝜕(𝑘𝑘−1) − Δ𝑖𝑖𝑗𝑗 𝜕𝜕(𝑘𝑘))   (12) 

Being wij the neuron j weight of its i input and E is the 
loss function [4]. 
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To further enhancement our models a regularization 
concept is applied. Avoiding over fitting is one of the most 
important aspects of training ML algorithms. If the model 
is over fitting, it will have a poor accuracy. This occurs 
because the model is attempting to capture the noise in the 
training dataset [4]. By noise, we mean data points that are 
not necessarily representative of the data's true properties 
but are just random chance. Learning such data points 
makes the model more adaptable, but it also increases the 
chance of over-fitting [20]. 

Regularization: Regularization is a method for 
improving the generalization of a learning algorithm by 
making small modifications to it  [21]. Regularization 
methods that are widely used are: 

1- L1 Regularization: LASSO (Least Absolute 
Shrinkage and Selection Operator) is a regression model 
that implements the L1technique. The “absolute value of 
magnitude” of the coefficient is applied as a compensation 
parameter to the loss function in Lasso Regression (L) 
[21]. 

     ||𝑤𝑤||1  =  |𝑤𝑤1|  +  |𝑤𝑤2| . . . + |𝑤𝑤𝑁𝑁|   (13) 

2- L2 Regularization: Where in Ridge regression the 
model that employs the L2  technique. In Ridge regression 
adds “squared magnitude” of coefficient as a parameter to 
the loss function(L) [21]. 

     ||𝑤𝑤||2  =  ( |𝑤𝑤1|2 + |𝑤𝑤2|2. . . + |𝑤𝑤𝑁𝑁|2)
1
2    (14) 

The output function y does not change during the 
regularization, only the loss function is changed. The 
following is the output function [21]: 

     𝑦𝑦� = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2+. . +𝑤𝑤𝑁𝑁𝑥𝑥𝑁𝑁 + 𝑏𝑏    (15) 

The loss function after L2 regularizatio: 
     𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 =  𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸(𝑦𝑦,𝑦𝑦�) + 𝜆𝜆∑ |𝑤𝑤𝑖𝑖|𝑛𝑛

𝑖𝑖=1     (16) 

where 𝜆𝜆  is a hyper-parameter Known as regularization 
constant and it is greater than zero [21]. 

3- Dropout Regularization: A regularization approach 
for approximates large number of NNs in the training 
stage, with various architectures in parallel. During 
training, certain layer outputs are dropped off randomly. 
This forces the layer to appear and act as a different 
number of nodes from the previous layer. Each update to 
a layer is done separately [22, 23]. 

In addition, there are also other strategies for improving 
model efficiency [4, 24], including: weight decay, early 
stopping and cross validation. 

4. Experimental Work 

In this section, framework setup is detailed as well as the 
UCI data overview, which includes information on each 
attribute, feature correlations and data pre-processing. 
Creating the MLP models with various layers. In addition, 
the model will be improved and detailed comparisons with 
other methods will be made. Experiments of various 
activation functions and online learning are shown. 

4.1 Experimental Setup 

Jupyter Notebook is a non-profit open-source software that 
has grown to support collaborative data science. The Python 
language was used to manage and execute the models using 
Jupyter [25]. The pandas and NumPy licensed libraries offer 
high-performance, easy-to-use data structures and data 
processing resources for the Python programming language. 
A panda’s module was used for data processing, and 
NumPy was used to convert string values to numerical 
values [26] [27]. In addition, the scikit-learn, which is a 
Python-based ML library, was widely used to split the 
dataset into a training and a testing set for this library [28]. 
This is necessary so that a part of the patient's data can be 
used to train the models and the rest can be used to test their 
efficacy. As a result, the data was split into; 78% for training 
and 22% for testing.  

For designing MLP model, Keras sequential layer was used 
to create the various NNs with different hidden layers. 
Keras is a Python-based NN interface that represents DL 
systems at a high level of abstraction. It is built on top of 
TensorFlow. The computing arrays are performed by 
TensorFlow, which is an open-source ML software library 
[22, 29]. 

4.2 Data Description 

The dataset provided by "Cleveland Heart Disease 
dataset", which is publicly available online at the 
University of California Irvine UCI data mining repository. 
The Cleveland database, in fact, is the only one used so far 
by ML researchers. The data-set can be downloaded on the 
follow link: www.kaggle.com. The database contains a 
sample size of 303 patients and 14 features as shown in 
Table 1.  

Table 1: Heart Data Information 

No Column Non-Null Column Data type 

0 Age 303 non-null Int64 

1 Sex 303 non-null Int64 
2 cp 303 non-null Int64 
3 Trestbps 303 non-null Int64 
4 Chol 303 non-null Int64 

http://www.kaggle.com/
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5 Fbs 303 non-null Int64 
6 Restecg 303 non-null Int64 
7 thalach 303 non-null Int64 
8 exang 303 non-null Int64 
9 oldpeak 303 non-null float64 
10 slop 303 non-null Int64 
11 ca 303 non-null Int64 
12 thal 303 non-null Int64 
13 target 303 non-null Int64 

From Table 1 there are no missing values. The essential 
point is to obtain a representation of whether the individual 
has heart attack or not. This provides data that is a 13 x 297 
feature matrix [30].  

The attributes consist of the following information: 

1- age: age in years. 

2- sex: sex (1 = male; 0 = female). 

3- CP: Chest Pain Type contains (4 Values). 

• Value 0: typical angina - Value 1: atypical angina - 
Value 2: non-anginal pain- Value 3: asymptomatic. 

4- trestbps: resting blood pressure (in mm Hg on admission 
to the hospital). 

5- chol: serum cholesterol in mg/dl.  

6- (fbs): (fasting blood sugar > 120 mg/dl) (1 = true; 0 = 
false). 

7- restecg: Resting Electrocardiographic results contains 
(values 0,1,2). 
• Value 0: normal - Value 1: having ST-T wave 

abnormality (T wave inversions and/or ST elevation 
or depression of > 0.05 mV)- Value 2: showing 
probable or definite left ventricular hypertrophy by 
Estes' criteria 20 ekgmo (month of exercise ECG 
reading). 

8- thalach: maximum heart rate achieved. 

9- exang: exercise induced angina, represent  
(1 = yes; 0 = no). 

10- oldpeak: ST depression induced by exercise relative to 
rest.    

11- slope: the slope of the peak exercise ST segment. 
• Value 1: upsloping - Value 2: flat - Value 3: 

downsloping.3: asymptomatic. 

12- ca: number of major vessels (0-3) colored by 
fluoroscopy.  

13- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect 
[30]. 

Table 2 depicts a sample of the last 8 rows and columns that 
display the listed data value. 

Table 2: Sample of UCI dataset. 

               

295 63 1 0 140 187 0 0 144 1 4.0 2 2 3 0 

296 63 0 0 124 197 0 1 163 1 0.0 1 0 2 0 

297 59 1 0 164 176 1 0 90 0 1.0 1 2 1 0 

298 57 0 0 140 241 0 1 123 1 0.2 1 0 3 0 

299 45 1 3 110 264 0 1 132 0 1.2 1 0 3 0 

300 68 1 0 144 193 1 1 141 0 3.4 1 2 3 0 

301 57 1 0 130 131 0 1 115 1 1.2 1 1 3 0 

302 57 0 1 130 236 0 0 174 0 0.0 1 1 2 0 

4.3 Data Visualization and Analysis 

From the histogram in Fig.1, the features: target, slope, thal, 
sex, fbs, exang, cp and ca are represented with discrete bars 
indicating that they are discrete variables, which represent 
categorical variables. We will need to process these 
variables before applying the algorithms. Our target labels 
have two classes, 0 for no disease and 1 for disease. From 
the histogram, each feature has a different range of 
distribution. Thus, using scaling before making the 
prediction is important to make the target classes equal in 
size. 

 

Fig.  1: Histograms of UCI dataset. 
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To figure out what age has a high risk of heart attacks, Fig.2 
shows the bar plot where people at age 41-51 and 51-59 
have the highest risk of heart attacks. 

 

Fig.  2: Heart Disease Frequency 
for Ages, x-axes represent the frequency form 0 to 12 and the y-
axes represent ages from 29 to 77. Ages between 41-59 have the 

highest frequencies of heart attack. 

To understand the correlation between features which is 
useful for the model feature selection, a heat-map shown in 
Fig.3 indicating that there is no tight correction between the 
features. 

 

Fig.  3: Heat Map for correction between features. 

Fig.4 described the number of patients with chest pain and 
high blood-sugar for fasting patient. 

 

Fig.  4: Subplot for a) Chest Pain types and b) blood sugar level. 

Fig.5 show the number of data in each class, indicating that 
the two classes are balanced (not exactly 50 percent) but the 
ratio is good enough to continue without dropping or 
increasing the data. 

 

Fig.  5: Target classes count where 0 represent the absent and 1 
represent the present of heart attack. 

4.4 Data Pre-Processing  

A strategy for testing the output of a ML algorithm is 
the train-test split. It can be used with any supervised 
learning algorithm and can be used for classification or 
regression problems [31]. The training part is for fitting the 
ML model, while the testing is for evaluating the model in 
order to fit the ML model [31]. 

There is a total of 13 features that are correlated to each 
patient. In this dataset, there are no needless attributes to be 
deleted, nor any null values to be removed. All the attribute 
types are considered as numeric. Then, we scaled the dataset 
to keep the computations more effective by using the 
standard scaler method to ensure that all values have a mean 
of zero and a unit variable. After pre-processed the data, the 
data were splitted into 80% training and 20% testing. 

4.5 Proposed Models  

The models were constructed as sequential. Then, 
different numbers of fully connected layers were added as 
shown in Table 3 for the first order online learning methods 
and Table 4 for the second order online learning methods. 
The inputs dimension for all models are set to 13 which 
corresponds to the 13 columns attributes.   

Table 3: First order online learning model structure 

Input 
No 

Hidden 
layer 
No 

Hidden 
activation 
function 

Neuron no  Output 
no 

output 
activation 
function 

13 2 ReLU 6, 3 neurons 1 Sigmoid 

13 3 ReLU 6, 3,3 neurons 1 Sigmoid 
13 4 Tanh 26,13,6,3neurons 1 Sigmoid 
13 3 ReLU 6, 3, 3 neurons 1 Sigmoid 
13 3 ReLU 6, 3, 3 neurons 1 Sigmoid 
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Table 4: Second order online learning model structure. 

Input 
No 

Hidden 
layer 
No 

Hidden 
activation 
function 

Neuron no  Output 
no 

output 
activation 
function 

13 2 Sigmoid 100, 20 neurons 1 Sigmoid 

13 2 Sigmoid 200, 20 neurons 1 Sigmoid 
 

4.5.1 Training the First Order Method 
First Model: The Model has 4 fully connected Dense 
layers, 3 hidden and one output layer. The first level has 
dimension of 13 which corresponds to 13 columns 
attributes, the second layer has 6 neurons, the third layer 
has 3 neurons, and a ReLU is used as the activation 
function for all hidden layers. The output layer has a 
single neuron and the sigmoid activation function suited 
for binary classification problems. The model was trained 
the using Mean Square Error. This involves forward 
propagating the inputs, back-propagating the error, and 
modifying the network weights for each row of tests. The 
learning rate parameter was set at 0.0001. This model has 
an accuracy 76.12% with loss 0.1753 as represented in Fig. 
6. The Adam optimizer was used. The data were tested 
with 16 mini-batch gradient descent over 1000 epochs. 

 

Fig.  6: First Model Accuracy 

Second Model: Contains 5 fully connected Dense layers, 
The input layer with 13 attributes, 6 neurons in the second 
layer, 3 neurons in the third layer, also 3 neurons in the 
fourth layer and a single neuron for the output layer. All 
the layers used ReLU as the activation function, except 
the output layer where the sigmoid activation function 
suited for binary classification problems. The second 
model has an accuracy 85.07% with loss 0.1408. An 
optimizer has been used "Adam". The data were tested 
with 20 mini-batch gradient descent over 1000 epochs. 
We can observe that the accuracy in the test data has been 
improved when setting the learning rate at 0.001, adding 
more hidden layer and increasing the test data to 30%. 

Third Model: The model architecture made up of 6 layers. 
The first level has dimension of 13 which corresponds to 
13 columns attributes and use the ReLU activation 

function. The second layer has 26 neurons, the third layer 
has 13 neurons, the fourth layer has 6 neurons and the fifth 
layer has 3 neurons. All these layers use the Tanh as an 
activation function. The last layer is the output layer with 
a single neuron and a sigmoid activation function for 
binary classification. 

As shown in Fig.7, the model achieved an accuracy of 
80.60% with loss 0.1791. The Adam optimizer was used. 
We can observe that the accuracy in this model decreased 
when we changed the activation function from ReLU (in 
the first model) to Tanh (in this model). 

 

Fig.  7: Third Model Accuracy. 

Fourth Model: The model consists of 5 layers as viewed 
in Table 5, with the same architecture of the second model. 
The Fourth model has an accuracy 86.89%, using Delta 
rule for updating weight with 0.01 learning rate and 
epsilon=1e-07. we can observe that the accuracy in the 
test data is much better among other models. 

Fifth Model: Has the structure of the Fourth model with 
accuracy at 85.25% and loss 0.1709, using Delta rule for 
updating weight with 0.01 learning rate. The SGD 
optimizer used with momentum and decay values 0.9 and 
0.01, respectively. 

The models were trained the using Mean Square Error. 
This involves repeatedly presenting a training dataset to 
the network, forward propagating the inputs, back 
propagating the error, and updating the network weights 
for each row of tests. This operation can be divided into 
two parts: 

1- Update Weights: 

• With backpropagation: After calculated each 
neuron error using the above method 
"backpropagation", we can use it to modify the 
weights. Network weights are modified as follows: 

        weight = weight + learning rate * error * input  
The learning rate is a parameter that we must defined, 
error is the error defined by the BP procedure for the 
neuron and input is the input value that produced the 
error. The learning rate was set at 0.0001. 
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• With Delta rule: updating of associated weights 
according to Delta rule: 

     ∆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝐿𝐿𝑖𝑖𝑗𝑗 = −𝜂𝜂 −𝜂𝜂𝜕𝜕𝜕𝜕 𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑡𝑡[𝑖𝑖𝑗𝑗]
𝜕𝜕𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑡𝑡[𝑖𝑖𝑗𝑗]

    (18) 

Apply the weight update to each weight wij for each 
training pattern. The learning rate was set at 0.001. 

2- Calculate the error: 

• Mean Square Error MSE: the error was 
calculated using the following:  

     𝑀𝑀𝑀𝑀𝐸𝐸 = 1
𝑛𝑛

 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1     (16) 

Where n is the number of data point,  𝑦𝑦𝑤𝑤 is the 
obtained value and 𝑦𝑦�𝑤𝑤 is the predicted values. 

Train Network: After updating the network. Using 
MSE, looping for a fixed number of epochs and for each 
epoch updating the network for each row in the train set. 
This type of learning is known as the online learning. If 
errors were accumulated across an epoch before 
updating the weights, this is called batch learning or 
batch gradient descent. The number of epochs was set to 
1000 and 16 batch size.   

The five constructed NN models with different layers, 
activation functions, achieved results are shown in 
Table 5.  

 

4.5.1 Training the Second Order Method 
First Model: contains 4 fully connected layers. The 
input layer with 13 attributes, 100 neurons in the second 
layer, 20 neurons in the third layer and a single neuron 
for the output layer. All the layers used sigmoid as the 
activation function. The data were tested with 20 mini-
batch gradient descent over 1000 epochs and the 
learning rate set at 0.01. The QuickProp validation 
accuracy: 52.27%. 

Second Model: also contains 4 fully connected layers. 
The input layer with 13 attributes, 200 neurons in the 
second layer, 20 neurons in the third layer and a single 
neuron for the output layer. All the layers used sigmoid 
as the activation function. The data were tested with 20 
mini-batch gradient descent over 1000 epochs and the 
learning rate set at 0.1. LMA accuracy is: 50.00%. 

After applying LMA and QuickProp, the validation 
accuracies of both methods are shown in Table 6. 

 

Table 5: Backpropagation and Delta Models Results. 
Backpropagation Method 

         

Model 1 

13 
6 3 1 

 
 

MSE 
   

Model 2 

13 
6 3 3  

MSE 
   

Model 3 

13 
26 13 6  

MSE 
   

Delta Bar Delta Method 
Model 4 

13 
6 3 3  

binary 
cross 

entropy 

   

Model 5 

13 
6 3 3 

 

MSE 

SGD 
0.01 

 

 

 

 
Table 6: Levenberg Marquardt and QuickProp Models Results. 

Model 1 - QuickProb 
Input 

No 
First 
layer  

Second 
layer 

Loss 
function  Algorithm Accuracy 

13 100 
Sigmoid 

10  
Sigmoid 

Binary 
cross 

entropy  
QuickProp  52.27% 

Model 2 - Levenberg Marquardt 

13 200 
Sigmoid 

20  
Sigmoid MSE LMA 50.00% 

4.6 Further Enhancement to the Models 

Deep Learning requires a lot of hyperparameter 
optimization. NNs are extremely complex to build, with 
numerous of parameters to configure. Furthermore, 
individual models will take a long time to train. 

4.6.1 First Order Method  
The defined MLP model that expects 13 inputs variables, 
has four hidden layers with 32, 13, 6, and 3 nodes 
respectively, and an output layer with one node to 
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Tanh  Tanh  Tanh 
80.60% 

ReLU ReLU ReLU _ 86.89% 
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estimate the probability of each class. Nodes in the hidden 
layer will employ the ReLU, while nodes in the output 
layer will employ the sigmoid activation function. 
Different optimizer has been employed such as (Adam, 
RMSprop, adadelta ..etc), where the learning rate needs to 
be defined for evaluating different rates values. The model 
will be trained to reduce the cross-entropy error with 4000 
epochs over 62 batch size. The test set will be used as to 
evaluate the generalization of the model. Further, the 
following evaluations will be conducted:  

• First, checking the effect of multiple learning rates on 
the accuracies of both training and testing sets. Fig.8 
represents line plots for each learning rate including 8-
line plots for the eight different learning rates that have 
been tested. The training dataset's classification 
accuracy is shown in blue, while the test dataset's 
accuracy is shown in orange. 

By comparing the average results, the plots show 
oscillations in behavior for the high learning rate of 
1.0 as in Fig. 8 a) and the model failure to learn 
anything with the low learning rates of 1E-6 and 1E-7 
as in Fig. 8 g) and h). While in Fig. 8 b), c) and d) the 
model was able to learn the problem well. The results 
indicate that a modest learning rate of 0.001 results in 
a good accuracy using both train and test sets for the 
selected model configuration. 

• Second, the effect of various “patience” values that 
represent the number of epochs to wait for a transition 
prior to reduce the learning rate, is being examined. 
The default learning rate of 0.01 will be used, and the 
learning rate will be dropped. According to theses 
graphs in Fig. 9, the patience value of 200 for this 
model on this issue should result in improved results 
because it allows the higher learning rate to be used 
for a longer period of time before the rate is lowered 
to optimize the weights. 

 

Fig.  8: Training Accuracy Over Epochs for Different Patience 
Values. a) patience value of 100 result in higher learning rate to 

be used for a longer period before the rate is lowered. b) patience 
value of 200 result in lower learning rate to be used for a shorter 

period. 

 

Fig.  9: the effect of different Learning Rates. a) too large lrate 
result in failure to learn, b) lrate 0.1 result in ability to learn, c) 

lrate 0.01 has showed good result, d) lrate 0.001 results in strong 
model performance on train and test set, e) lrate 0.0001 poor 

performance, g) and h) too small lrate result in inability to learn. 

• Third, the effect of Adaptive Learning Rates, the 
dynamics of different adaptive learning rate methods. 
By explore the most popular methods of Nesterov-
accelerated Adaptive Moment Estimation (Nadam), 
Root Mean Square Propagation (RMSprop), adaptive 
gradient algorithm (AdaGrad) and Adam and compare 
their behavior with a static learning rate. The Fig. 10 
shows four-line plots for the multiple optimization 
algorithms that have been tested. The training dataset's 
classification accuracy is shown in blue, while the test 
dataset's accuracy is shown in orange. 

 

Fig.  10: Train and Test accuracy Over Multiple 
optimizations. a) Nadam optimizer. b) RMSprop Optimizer 

and d) Adam optimizer demonstrate similar performance but 
a) Namdam showed best result. d) adagrad takes all 200 

epochs and result in unstable accuracy. 
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Observation showed that AdaGrad in Fig. 10 c) with a 
learning rate of 0.001 and epsilon=1e-07 does learn 
the problem, but it takes roughly about 200 epochs and 
produces unstable accuracy for both training and 
testing sets. Whereas Nadam in Fig. 10 a), RMSprop 
in Fig. 10 b), and Adam in Fig. 10 d) showed 
comparable results, learning the problem in less than 
50 training epochs and using the rest of the time 
performing small weight changes.   

• Lastly, NN requires a lot of hyperparameter 
optimization. By trying different values of the 
regularization parameter, weight regularization can 
help to improve the overfit model. Initially grid search 
through certain orders of magnitude between 0.0 and 
0.1, then grid search on that level until found it. By 
specifying the values to measure, looping through 
each, and saving the results from train and test sets, we 
can grid search through the orders of magnitude. 

Fig. 11 shows a line plot of the effects, demonstrating 
that greater weight regularization parameter values 
improve test accuracy. It is obvious that using the peak 
value of 0.1 produces a major decrease in both training 
and testing accuracies. 

 

Fig.  11: Accuracy on Train and Test with different weight 
regularization parameters. 

4.6.2 Second Order Method  
There are various factors that are limiting the accuracy of 
the built model. First is the small size of the dataset, 
second is the absence of optimizers in second-order 
methods compared to first-order methods, third is the time 
taken by the model to train for second-order methods 
increases exponentially as the model depth is increased. 
Thus, after trying various combinations of the network 
and hyperparameters, therefore, the model’s performance 
was not able to be improved. 

4.7 Comparison with Related Work 

Extensive comparison with other techniques of the same 
methods (See Table 7) shows the results. Durairaj et al. [5] 

and Vladimir et al. [7] outperform others due to determine 
the proper parameters setting for the MLP algorithm in 
order to predict heart disease with higher accuracy. 

The Table 6 shows a comparison of QuickProp and LMA 
with accuracy around 52.27% and 50% respectively. 
According to the loss function has limitation since it can 
only use the MSE loss function, which reduces its accuracy, 
due to the limit number of records. Usually, in second order 
methods understanding how the gradient is normally 
measured and added to network parameters to attempt to 
iteratively achieve convergence of the loss to a global 
minimum should be considered. 

Table 7: Comparison with Related Work. 

Authors  Techniques Dataset  Accuracy 

Durairaj 
et al. [5] MLP – Backpropagation UCI 96.29% 

Awan et 
al. [6] MLP 

Western 
Australian 

data system 
64.93% 

Vladimir et 
al. [7] MLP  Cleveland 96.67% 

Tackci et 
al. [8] MLP UCI 83.70% 

Sandeepk
umaret al. 

[9] 

Feature selection, 
SVM, Decision Tree 

and MLP 
UCI 80.1% 

Le et al. 
[10] 

Genetic feature 
selection Naive based 

classifier 
UCI 75.0% 

Pandy et 
al. [11] 

Applied ordinary 
improved MLP 

Cleveland  
 

Hungarian  
 

Switzerland  

93.49% 
 

80.73% 
 

82.8% 

Olaniyi et 
al. [12] 

MLP  
 

SVM 
UCI  

85.0% 
 

87.5% 

Cheng et 
al. [13] 

NN, DT, SVM and 
naive Bayes UCI  86.8% 

In order to fully confirm good performances that MLP has 
achieved, we have also applied activation function for 
hidden and output layers, the MLP details and results are 
shown in Table 8, where the models were tested with 
different optimizer, learning rate, loss function and 
regulizers. 

Table 8: Comparison with Other First order methods. 
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As a result, the NADAM optimizer updating the parameters 
with the momentum step before calculating the gradient, we 
can perform a more effective step in the gradient direction. 
NADAM optimizer had an accuracy about 99.30%. 

5. Conclusion and Discussion 

In this paper, we addressed the problem of heart 
disease diagnosis using NN. We employed the UCI dataset, 
which has 303 instances and 14 attributes to test multiple 
NN models.  

Our experiments show that the best NN architecture 
for prediction heart attack consists of three hidden layers 
with 13 features as an input and one output layer. The BP 
algorithms was used as online learning method with Nadam 
optimizer. The best learning rate was 0.001 with a binary 
cross entropy loss function for testing/validation among 62 
patch size and over 4000 epochs. Best activation function 
for all layers was ReLU for hidden layers and sigmoid for 
output layer. Further experiments with more advanced 
techniques is part of the authors’ ongoing research.  
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