
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

77

Manuscript received June 5, 2021
Manuscript revised June 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.6.12

Heart Attack Prediction using Neural Network and Different Online
Learning Methods

Rayana Khaled Antar, Shouq Talal ALotaibi, Manal AlGhamdi

Umm Al-Qura University, Department of Computer Science, Alawali, Mecca, 24381, KSA

Summary
Heart Failure represents a critical pathological case that is
challenging to predict and discover at an early age, with a notable
increase in morbidity and mortality. Machine Learning and Neural
Network techniques play a crucial role in predicting heart attacks,
diseases and more. These techniques give valuable perspectives
for clinicians who may then adjust their diagnosis for each
individual patient. This paper evaluated neural network models for
heart attacks predictions. Several online learning methods were
investigated to automatically and accurately predict heart attacks.
The UCI dataset was used in this work to train and evaluate First
Order and Second Order Online Learning methods; namely Back-
propagation, Delta bar Delta, Levenberg Marquardt and
QuickProp learning methods. An optimizer technique was also
used to minimize the random noise in the database. A
regularization concept was employed to further improve the
generalization of the model. Results show that a three layers’ NN
model with a Backpropagation algorithm and Nadam optimizer
achieved a promising accuracy for the heart attach prediction tasks.
Key words:
Neural Network; Heart Attack; online learning; Optimization;
Regularization.

1. Introduction

The heart is a very important organ in the human body,
and life depends entirely on the effective work of the heart.
One of the most dangerous diseases in the world that affects
a person’s life is heart disease, which is the problem of
pushing the required amount of blood to the rest of the body
[1]. According to a survey published by the World Health
Organization (WHO), there are about 17 million people
worldwide who are sick with cardiovascular disease, or
29.20\% of all deaths, most of them are in developing
countries [2]. In order to reduce the burden on cardiologists,
many researchers applied machine learning methods to
solve the problem of prediction with high accuracy with
about one-third of these methods were neural networks [3].

Neural Network (NN) is a set of biological neurons that
interact with each other, where an artificial neuron is a
simulation of how biological neurons interact and process
information [4]. NN is a form of predictive analytic
methodology that can be used to predict or classify an
attribute. It is a machine learning technique, attempts to
predict values in the same way as a human brain would.

In this paper, the heart disease prediction problem is
addressed using Artificial Neural Network (ANN)
algorithms. Using multiple learning algorithms,
optimization and regulation methods, the aim is to find the
best NN model for predicting heart disease with a good
performance.

The remainder of this paper is arranged as follows:
Section 2 reviews the efforts made by previous studies to
address the problem utilizing NN and deep learning
methodologies. Section 3 provides details about the
developed models, the most common techniques to improve
the models’ generalization as well as a brief on the first and
second online learning methods. Section 4 describes the
experiment setup, results with different activation functions
and learning methods and comparison with other techniques.
Section 5 concludes the paper by recommending the best
NN model to solve the heart attack prediction problem and
potential future work.

2. Related Work

Several studies have been done in medical prediction
using NN. A number of techniques have been used for the
identification of heart diseases including data mining
techniques, this section provides an overview of related
works.

The multilayer perceptron (MLP) back-propagation
algorithm of the NN was used by Durairaj et al. [5] for
producing efficient ANN training when combined with
optimization techniques such as gradient descent. Their data
was from the UCI repository and they calculated the error
using MSE. Their model achieved an accuracy of 96.29%.
While Awan et al. [6] used the Western Australian patient
dataset and modeled an MLP network with a trial-and-error
process was used to choose all of the hyper-parameters. A
rectified linear activation was chosen for the hidden layer
and a sigmoid activation function for the output layer. The
MLP-based approach had the best accuracy of 0.64, with
48.42% sensitivity and 70.01% specificity.

Vladimir et al. [7] investigated multiple algorithms on
the Cleveland dataset, which has 303 instances and 76
attributes. For training the NN, they generated two arrays

https://doi.org/10.22937/IJCSNS.2020.20.10.01

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

78

with 2D that represent the training set, the second array
consists of 30 elements for the test set. The output defined
with 2 features to map training set with the target and
achieved a recognition rate of 96.67%. Similarly, Takci et
al. [8] used various machine learning techniques including
MLP architecture on the UCI dataset. In their experiment,
they used 90% of the data for the training and 10% for the
testing and 10-fold cross-validation. Their model got an
accuracy of 83.70%.

Using multiple feature selection along with MLP,
Sandeepkumar et al. [9] predict chronic diseases and
achieved better performance than support vector machine
(SVM) and decision tree. Similarly, Le et al. [10] proposed
a genetic-based feature selection in combination with a
Naïve Bayes classifier to predict heart disease. The
accuracy of their method was 75%. While Panday et al. [11]
applied standard and improved MLP algorithms on various
medical datasets to develop a decision support system for
cardiovascular heart disease diagnosis. Their improved
MLP achieved 82.8%, 80.73%, and 93.49% on Cleveland,
Hungarian, and Switzerland datasets respectively.

Olaniyi et al. [12] employed both MLP and SVM on
medical dataset to define a system that can avoid
misdiagnosis in heart diseases. They achieved 85% with
MLP and 87.5% with SVM. While Cheng et al. [13]
employed the UCI dataset to find patterns using NN, DT,
SVM, and Naive Bayes. The proposed hybrid method
achieved 86.8% for F-measure, competing with the other
existing methods.

3. Methodology

NN is a mathematical or computational model inspired
by the functionality of biological neural networks [2]. It
contains three layers: the input layer that fed the raw data to
the network, the hidden layer that determines the activity of
each input unit and the weights assigned to the links
between them and the output layer that produces the output.

The MLP is a logistic regression classifier that uses a
learned non-linear transformation to transform the input.
This transformation converts the input data into a space
where it can be separated linearly. MLP is distinguished
from a linear perceptron by its multiple layers and non-
linear activation [14]. An activation function specifies how
the input weight is summed to converted it into the output
from a node in a layer. In different parts of the model,
different activation functions can be used [4,15]. For
instance, the hidden layer can employ the rectified linear
activation (ReLU), the logistic (or sigmoid) or the
hyperbolic tangent (Tanh) function. While the output layer
can use the linear, the sigmoid or the SoftMax function.

In addition, in order to modify the weights and the learning
rate of a NN model aiming to minimize error and speed up
the performance, an optimizer is used to study the behavior
of different algorithms for optimizing gradients. Some of
the most common optimizers are Adaptive Moment
Estimation (Adam) and Stochastic Gradient Descent SGD,
which improve the NN model performance by reducing the
overfitting [4].

1. Adam optimizer is an adaptive learning rate
optimization algorithm that works by adjusting the
step size for each parameter based on previous results.
This optimizer preserves its own set of fixed
hyperparameters including: the learning rate 𝛼𝛼 and the
two moment coefficients ß1, ß2 [16].

2. SGD where the term "stochastic" refers to a
mechanism or procedure that is subject to random
probability. For each iteration of SGD, a few samples
are chosen at random rather than the entire sample [16].
SGD algorithm updates the weights as follow:

∅𝑗𝑗 = ∅𝑗𝑗 − 𝛼𝛼(𝑦𝑦�𝑖𝑖 − 𝑦𝑦𝑖𝑖)𝑥𝑥𝑗𝑗𝑖𝑖 (1)

It finds the gradient of a single sample for the cost
function instead of calculating the sum of the gradients
of all [17].

Moreover, two important hyperparameters for the learning
algorithm are: epoch and batch size. The Epoch specifies
how long the learning algorithm will take to run through the
entire training set [4]. While the Batch size refers to the total
number of samples from a dataset that are used to determine
the gradient for each iteration [4]. Batches are often used to
group data sets. Several epochs are used in the creation of
several models, where the dataset size is d, the number of
epochs is e, the number of iterations is I and the batch size
is b, the general relationship is d * e = I * b [17].

3.1 First Order Method

In this paper, two different learning algorithms from first
order are used which are Backpropagation and Adaptive
Learning Rate algorithms.

3.1.1 Back-Propagation (BP)
In NN, the BP algorithm is still the approach of preference
for training large networks. BP is a supervised learning
method used by MLP for training. It is a gradient descent
algorithm that aims to minimize the errors between the
network's output and the desired outcome [14]. The most
widely used training algorithm, back-propagation, is a
gradient descent technique that efficiently computes the
derivatives' values and modifies the weights according to
a parameter known as the learning rate [14].

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

79

In the gradient descent algorithm, the weight link between
the hidden layer's j neuron and the input layer's i neuron
is modified according to [14]:

 𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡) = 𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡 − 1) + ∆𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡)
 𝑏𝑏𝑗𝑗(𝑡𝑡) = 𝑏𝑏𝑗𝑗(𝑡𝑡) + ∆𝑏𝑏𝑗𝑗(𝑡𝑡)

 (2)

For updating the weight, ∆𝒘𝒘𝒋𝒋𝒋𝒋(𝒕𝒕) 𝒂𝒂𝒂𝒂𝒂𝒂 ∆𝒃𝒃𝒋𝒋(𝒕𝒕) given by:
 ∆𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡) = 𝜂𝜂𝑤𝑤𝜂𝜂𝑗𝑗(𝑡𝑡) 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝛼𝛼𝑤𝑤∆𝑤𝑤𝑗𝑗𝑖𝑖(𝑡𝑡)
 ∆𝑏𝑏𝑗𝑗(𝑡𝑡) = 𝜂𝜂𝑏𝑏𝜂𝜂𝑗𝑗(𝑡𝑡)𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝛼𝛼𝑤𝑤∆𝑏𝑏𝑗𝑗(𝑡𝑡)

(3)

where w represents the weight and b represent the
threshold, the momentum constants that determine the
influence of the previous parameter change on the current
direction movement in the space are the [Δw] and [Δb].
The learning rates represent in [ηb] and [ηw]. The [Pj(t)]
is the error signal in the hidden layer's j neuron that signal
is propagate backwards through the network [14].

Because the output neuron's activation function is linear,
the error signal at the output node is:

 𝜂𝜂𝑗𝑗(𝑡𝑡) = 𝑦𝑦𝑘𝑘(𝑡𝑡) − 𝑦𝑦�𝑘𝑘(𝑡𝑡)

(4)

where the expected output is the [yk (t)], for the neuron in
the hidden layer [14].

 𝜂𝜂𝑗𝑗(𝑡𝑡) = 𝐹𝐹′′(𝑥𝑥𝑖𝑖(𝑡𝑡))∑𝜂𝜂𝑗𝑗𝑘𝑘(𝑡𝑡)𝑤𝑤𝑗𝑗𝑘𝑘2 (𝑡𝑡 − 1)

(5)

where the [F"(xi(t))] is the first derivative with respect to
xi(t).

3.1.2 Delta-Bar-Delta Learning (Adaptive Learning
Rate) or TurboProp

The BP algorithm is considered as a gradient decent type
of algorithm. Thus, the algorithm has a problem of a slow
convergence rate. The search for the global minima may
become stucked at local minima. Also, the algorithm is
sensitive to the user selectable parameters. In TurboProp
every weight is adjusted with each iteration. Each weight
can have its own learning rate [4].

1- The learning rate is improved if the direction in which
the error declines at the current stage, as shown by the
error gradient, is the same as the direction in which the
error has been decreasing recently [4].

2- Otherwise, the learning rate is reduced if the current
direction in which the error is decreasing is opposite to
the previous direction in which the error has been
decreasing [4].

Up to epoch m, the direction recent history in which the
error has been decreasing is defined as:

 𝑓𝑓𝑚𝑚 = ∅𝑓𝑓𝑚𝑚−1 + (1 − ∅) 𝑑𝑑𝑚𝑚−1 (6)

Thus, 𝑓𝑓𝑚𝑚 is the average direction history and 𝑑𝑑𝑚𝑚 is the the
total gradient form epoch m, can be calculated as:

 𝑑𝑑𝑚𝑚 = ∑ [𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑚𝑚

]𝑛𝑛𝑁𝑁
𝑛𝑛−1 (7)

• With Momentum: The fundamental concept behind
momentum in ML is to speed up the training process.
It's often used in NNs as the size of data causes a
significant time delay when training gradients. using
momentum can handle noisy gradients and even
extremely tiny gradients [18].

 ∆𝑤𝑤 = 𝜇𝜇∆𝑤𝑤𝑚𝑚−1 − (1 − 𝜇𝜇) 𝜀𝜀𝑚𝑚𝑑𝑑𝑚𝑚 (8)

where the Momentum part is in 𝜇𝜇∆𝑤𝑤𝑚𝑚−1 [4].

3.2 Second Order Method

In this paper, two learning algorithms from second order are
used which are Levenberg Marquardt and Quickprop
algorithms.

3.2.1 Levenberg Marquardt algorithm
The Levenberg–Marquardt algorithm (LMA) is used to
solve non-linear least squares problems. It depends on
how the error function resembles a quadratic function. If
the quadratic approximation is not suitable, the algorithm
may diverge.

The Formula for LMA is shown (e.g., see Eq. 9).
 𝑓𝑓(𝑥𝑥) = 1

2
 ∑ [𝑓𝑓𝑖𝑖(𝑥𝑥)]2𝑚𝑚

𝑖𝑖=1 (9)

Let the Jacobian of fi(x) be denoted Ji(x), then the LMA
searches in the direction given by the solution p to the
equations.

 (𝐽𝐽𝑘𝑘𝑇𝑇𝐽𝐽𝑘𝑘 + 𝜆𝜆𝑘𝑘𝐼𝐼) 𝜂𝜂𝑘𝑘 = −𝐽𝐽𝑘𝑘𝑇𝑇𝑓𝑓𝑘𝑘 (10)

where 𝜆𝜆𝑘𝑘 are non-negative scalars and I is the identity
matrix. The method has the nice property that, for some
scalar Delta related to 𝜆𝜆𝑘𝑘, the vector 𝜂𝜂𝑘𝑘 is the solution of
the constrained sub-problem of minimizing.

 || 𝐽𝐽𝑘𝑘𝑃𝑃 + 𝑓𝑓𝑘𝑘||22

2
 (11)

Subject to ||p||2.

3.2.2 Quickprop algorithm
Quickprop is an iterative method for defining the
minimum of the loss function of NN. It uses second order
learning methods. The formula for updating the weights
for the layer is given by (e.g., see Eq. 12).

 Δ𝑘𝑘𝑤𝑤𝑖𝑖𝑗𝑗 = Δ(𝑘𝑘−1)𝑤𝑤𝑖𝑖𝑗𝑗 (
Δ𝑖𝑖𝑗𝑗 𝜕𝜕(𝑘𝑘)

Δ𝑖𝑖𝑗𝑗 𝜕𝜕(𝑘𝑘−1) − Δ𝑖𝑖𝑗𝑗 𝜕𝜕(𝑘𝑘)) (12)

Being wij the neuron j weight of its i input and E is the
loss function [4].

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

80

To further enhancement our models a regularization
concept is applied. Avoiding over fitting is one of the most
important aspects of training ML algorithms. If the model
is over fitting, it will have a poor accuracy. This occurs
because the model is attempting to capture the noise in the
training dataset [4]. By noise, we mean data points that are
not necessarily representative of the data's true properties
but are just random chance. Learning such data points
makes the model more adaptable, but it also increases the
chance of over-fitting [20].

Regularization: Regularization is a method for
improving the generalization of a learning algorithm by
making small modifications to it [21]. Regularization
methods that are widely used are:

1- L1 Regularization: LASSO (Least Absolute
Shrinkage and Selection Operator) is a regression model
that implements the L1technique. The “absolute value of
magnitude” of the coefficient is applied as a compensation
parameter to the loss function in Lasso Regression (L)
[21].

 ||𝑤𝑤||1 = |𝑤𝑤1| + |𝑤𝑤2| . . . + |𝑤𝑤𝑁𝑁| (13)

2- L2 Regularization: Where in Ridge regression the
model that employs the L2 technique. In Ridge regression
adds “squared magnitude” of coefficient as a parameter to
the loss function(L) [21].

 ||𝑤𝑤||2 = (|𝑤𝑤1|2 + |𝑤𝑤2|2. . . + |𝑤𝑤𝑁𝑁|2)
1
2 (14)

The output function y does not change during the
regularization, only the loss function is changed. The
following is the output function [21]:

 𝑦𝑦� = 𝑤𝑤1𝑥𝑥1 + 𝑤𝑤2𝑥𝑥2+. . +𝑤𝑤𝑁𝑁𝑥𝑥𝑁𝑁 + 𝑏𝑏 (15)

The loss function after L2 regularizatio:
 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝐸𝐸𝐸𝐸𝐸𝐸𝐿𝐿𝐸𝐸(𝑦𝑦,𝑦𝑦�) + 𝜆𝜆∑ |𝑤𝑤𝑖𝑖|𝑛𝑛

𝑖𝑖=1 (16)

where 𝜆𝜆 is a hyper-parameter Known as regularization
constant and it is greater than zero [21].

3- Dropout Regularization: A regularization approach
for approximates large number of NNs in the training
stage, with various architectures in parallel. During
training, certain layer outputs are dropped off randomly.
This forces the layer to appear and act as a different
number of nodes from the previous layer. Each update to
a layer is done separately [22, 23].

In addition, there are also other strategies for improving
model efficiency [4, 24], including: weight decay, early
stopping and cross validation.

4. Experimental Work

In this section, framework setup is detailed as well as the
UCI data overview, which includes information on each
attribute, feature correlations and data pre-processing.
Creating the MLP models with various layers. In addition,
the model will be improved and detailed comparisons with
other methods will be made. Experiments of various
activation functions and online learning are shown.

4.1 Experimental Setup

Jupyter Notebook is a non-profit open-source software that
has grown to support collaborative data science. The Python
language was used to manage and execute the models using
Jupyter [25]. The pandas and NumPy licensed libraries offer
high-performance, easy-to-use data structures and data
processing resources for the Python programming language.
A panda’s module was used for data processing, and
NumPy was used to convert string values to numerical
values [26] [27]. In addition, the scikit-learn, which is a
Python-based ML library, was widely used to split the
dataset into a training and a testing set for this library [28].
This is necessary so that a part of the patient's data can be
used to train the models and the rest can be used to test their
efficacy. As a result, the data was split into; 78% for training
and 22% for testing.

For designing MLP model, Keras sequential layer was used
to create the various NNs with different hidden layers.
Keras is a Python-based NN interface that represents DL
systems at a high level of abstraction. It is built on top of
TensorFlow. The computing arrays are performed by
TensorFlow, which is an open-source ML software library
[22, 29].

4.2 Data Description

The dataset provided by "Cleveland Heart Disease
dataset", which is publicly available online at the
University of California Irvine UCI data mining repository.
The Cleveland database, in fact, is the only one used so far
by ML researchers. The data-set can be downloaded on the
follow link: www.kaggle.com. The database contains a
sample size of 303 patients and 14 features as shown in
Table 1.

Table 1: Heart Data Information

No Column Non-Null Column Data type

0 Age 303 non-null Int64

1 Sex 303 non-null Int64
2 cp 303 non-null Int64
3 Trestbps 303 non-null Int64
4 Chol 303 non-null Int64

http://www.kaggle.com/

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

81

5 Fbs 303 non-null Int64
6 Restecg 303 non-null Int64
7 thalach 303 non-null Int64
8 exang 303 non-null Int64
9 oldpeak 303 non-null float64
10 slop 303 non-null Int64
11 ca 303 non-null Int64
12 thal 303 non-null Int64
13 target 303 non-null Int64

From Table 1 there are no missing values. The essential
point is to obtain a representation of whether the individual
has heart attack or not. This provides data that is a 13 x 297
feature matrix [30].

The attributes consist of the following information:

1- age: age in years.

2- sex: sex (1 = male; 0 = female).

3- CP: Chest Pain Type contains (4 Values).

• Value 0: typical angina - Value 1: atypical angina -
Value 2: non-anginal pain- Value 3: asymptomatic.

4- trestbps: resting blood pressure (in mm Hg on admission
to the hospital).

5- chol: serum cholesterol in mg/dl.

6- (fbs): (fasting blood sugar > 120 mg/dl) (1 = true; 0 =
false).

7- restecg: Resting Electrocardiographic results contains
(values 0,1,2).
• Value 0: normal - Value 1: having ST-T wave

abnormality (T wave inversions and/or ST elevation
or depression of > 0.05 mV)- Value 2: showing
probable or definite left ventricular hypertrophy by
Estes' criteria 20 ekgmo (month of exercise ECG
reading).

8- thalach: maximum heart rate achieved.

9- exang: exercise induced angina, represent
(1 = yes; 0 = no).

10- oldpeak: ST depression induced by exercise relative to
rest.

11- slope: the slope of the peak exercise ST segment.
• Value 1: upsloping - Value 2: flat - Value 3:

downsloping.3: asymptomatic.

12- ca: number of major vessels (0-3) colored by
fluoroscopy.

13- thal: 3 = normal; 6 = fixed defect; 7 = reversable defect
[30].

Table 2 depicts a sample of the last 8 rows and columns that
display the listed data value.

Table 2: Sample of UCI dataset.

295 63 1 0 140 187 0 0 144 1 4.0 2 2 3 0

296 63 0 0 124 197 0 1 163 1 0.0 1 0 2 0

297 59 1 0 164 176 1 0 90 0 1.0 1 2 1 0

298 57 0 0 140 241 0 1 123 1 0.2 1 0 3 0

299 45 1 3 110 264 0 1 132 0 1.2 1 0 3 0

300 68 1 0 144 193 1 1 141 0 3.4 1 2 3 0

301 57 1 0 130 131 0 1 115 1 1.2 1 1 3 0

302 57 0 1 130 236 0 0 174 0 0.0 1 1 2 0

4.3 Data Visualization and Analysis

From the histogram in Fig.1, the features: target, slope, thal,
sex, fbs, exang, cp and ca are represented with discrete bars
indicating that they are discrete variables, which represent
categorical variables. We will need to process these
variables before applying the algorithms. Our target labels
have two classes, 0 for no disease and 1 for disease. From
the histogram, each feature has a different range of
distribution. Thus, using scaling before making the
prediction is important to make the target classes equal in
size.

Fig. 1: Histograms of UCI dataset.

se
x

cp

tr
es

tb
ps

C
ho

l

fb
s

re
st

ec
g

th
al

ac
h

ex
an

g

ol
dp

ea
k

sl
op

ca

th

al

ta
rg

et

ag
e

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

82

To figure out what age has a high risk of heart attacks, Fig.2
shows the bar plot where people at age 41-51 and 51-59
have the highest risk of heart attacks.

Fig. 2: Heart Disease Frequency
for Ages, x-axes represent the frequency form 0 to 12 and the y-
axes represent ages from 29 to 77. Ages between 41-59 have the

highest frequencies of heart attack.

To understand the correlation between features which is
useful for the model feature selection, a heat-map shown in
Fig.3 indicating that there is no tight correction between the
features.

Fig. 3: Heat Map for correction between features.

Fig.4 described the number of patients with chest pain and
high blood-sugar for fasting patient.

Fig. 4: Subplot for a) Chest Pain types and b) blood sugar level.

Fig.5 show the number of data in each class, indicating that
the two classes are balanced (not exactly 50 percent) but the
ratio is good enough to continue without dropping or
increasing the data.

Fig. 5: Target classes count where 0 represent the absent and 1
represent the present of heart attack.

4.4 Data Pre-Processing

A strategy for testing the output of a ML algorithm is
the train-test split. It can be used with any supervised
learning algorithm and can be used for classification or
regression problems [31]. The training part is for fitting the
ML model, while the testing is for evaluating the model in
order to fit the ML model [31].

There is a total of 13 features that are correlated to each
patient. In this dataset, there are no needless attributes to be
deleted, nor any null values to be removed. All the attribute
types are considered as numeric. Then, we scaled the dataset
to keep the computations more effective by using the
standard scaler method to ensure that all values have a mean
of zero and a unit variable. After pre-processed the data, the
data were splitted into 80% training and 20% testing.

4.5 Proposed Models

The models were constructed as sequential. Then,
different numbers of fully connected layers were added as
shown in Table 3 for the first order online learning methods
and Table 4 for the second order online learning methods.
The inputs dimension for all models are set to 13 which
corresponds to the 13 columns attributes.

Table 3: First order online learning model structure

Input
No

Hidden
layer
No

Hidden
activation
function

Neuron no Output
no

output
activation
function

13 2 ReLU 6, 3 neurons 1 Sigmoid

13 3 ReLU 6, 3,3 neurons 1 Sigmoid
13 4 Tanh 26,13,6,3neurons 1 Sigmoid
13 3 ReLU 6, 3, 3 neurons 1 Sigmoid
13 3 ReLU 6, 3, 3 neurons 1 Sigmoid

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

83

Table 4: Second order online learning model structure.

Input
No

Hidden
layer
No

Hidden
activation
function

Neuron no Output
no

output
activation
function

13 2 Sigmoid 100, 20 neurons 1 Sigmoid

13 2 Sigmoid 200, 20 neurons 1 Sigmoid

4.5.1 Training the First Order Method
First Model: The Model has 4 fully connected Dense
layers, 3 hidden and one output layer. The first level has
dimension of 13 which corresponds to 13 columns
attributes, the second layer has 6 neurons, the third layer
has 3 neurons, and a ReLU is used as the activation
function for all hidden layers. The output layer has a
single neuron and the sigmoid activation function suited
for binary classification problems. The model was trained
the using Mean Square Error. This involves forward
propagating the inputs, back-propagating the error, and
modifying the network weights for each row of tests. The
learning rate parameter was set at 0.0001. This model has
an accuracy 76.12% with loss 0.1753 as represented in Fig.
6. The Adam optimizer was used. The data were tested
with 16 mini-batch gradient descent over 1000 epochs.

Fig. 6: First Model Accuracy

Second Model: Contains 5 fully connected Dense layers,
The input layer with 13 attributes, 6 neurons in the second
layer, 3 neurons in the third layer, also 3 neurons in the
fourth layer and a single neuron for the output layer. All
the layers used ReLU as the activation function, except
the output layer where the sigmoid activation function
suited for binary classification problems. The second
model has an accuracy 85.07% with loss 0.1408. An
optimizer has been used "Adam". The data were tested
with 20 mini-batch gradient descent over 1000 epochs.
We can observe that the accuracy in the test data has been
improved when setting the learning rate at 0.001, adding
more hidden layer and increasing the test data to 30%.

Third Model: The model architecture made up of 6 layers.
The first level has dimension of 13 which corresponds to
13 columns attributes and use the ReLU activation

function. The second layer has 26 neurons, the third layer
has 13 neurons, the fourth layer has 6 neurons and the fifth
layer has 3 neurons. All these layers use the Tanh as an
activation function. The last layer is the output layer with
a single neuron and a sigmoid activation function for
binary classification.

As shown in Fig.7, the model achieved an accuracy of
80.60% with loss 0.1791. The Adam optimizer was used.
We can observe that the accuracy in this model decreased
when we changed the activation function from ReLU (in
the first model) to Tanh (in this model).

Fig. 7: Third Model Accuracy.

Fourth Model: The model consists of 5 layers as viewed
in Table 5, with the same architecture of the second model.
The Fourth model has an accuracy 86.89%, using Delta
rule for updating weight with 0.01 learning rate and
epsilon=1e-07. we can observe that the accuracy in the
test data is much better among other models.

Fifth Model: Has the structure of the Fourth model with
accuracy at 85.25% and loss 0.1709, using Delta rule for
updating weight with 0.01 learning rate. The SGD
optimizer used with momentum and decay values 0.9 and
0.01, respectively.

The models were trained the using Mean Square Error.
This involves repeatedly presenting a training dataset to
the network, forward propagating the inputs, back
propagating the error, and updating the network weights
for each row of tests. This operation can be divided into
two parts:

1- Update Weights:

• With backpropagation: After calculated each
neuron error using the above method
"backpropagation", we can use it to modify the
weights. Network weights are modified as follows:

 weight = weight + learning rate * error * input
The learning rate is a parameter that we must defined,
error is the error defined by the BP procedure for the
neuron and input is the input value that produced the
error. The learning rate was set at 0.0001.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

84

• With Delta rule: updating of associated weights
according to Delta rule:

 ∆𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤ℎ𝑡𝑡𝐿𝐿𝑖𝑖𝑗𝑗 = −𝜂𝜂 −𝜂𝜂𝜕𝜕𝜕𝜕 𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑡𝑡[𝑖𝑖𝑗𝑗]
𝜕𝜕𝑤𝑤𝑤𝑤𝑖𝑖𝑤𝑤ℎ𝑡𝑡𝑡𝑡[𝑖𝑖𝑗𝑗]

 (18)

Apply the weight update to each weight wij for each
training pattern. The learning rate was set at 0.001.

2- Calculate the error:

• Mean Square Error MSE: the error was
calculated using the following:

 𝑀𝑀𝑀𝑀𝐸𝐸 = 1
𝑛𝑛

 ∑ (𝑦𝑦𝑖𝑖 − 𝑦𝑦�𝑖𝑖)2𝑛𝑛
𝑖𝑖=1 (16)

Where n is the number of data point, 𝑦𝑦𝑤𝑤 is the
obtained value and 𝑦𝑦�𝑤𝑤 is the predicted values.

Train Network: After updating the network. Using
MSE, looping for a fixed number of epochs and for each
epoch updating the network for each row in the train set.
This type of learning is known as the online learning. If
errors were accumulated across an epoch before
updating the weights, this is called batch learning or
batch gradient descent. The number of epochs was set to
1000 and 16 batch size.

The five constructed NN models with different layers,
activation functions, achieved results are shown in
Table 5.

4.5.1 Training the Second Order Method
First Model: contains 4 fully connected layers. The
input layer with 13 attributes, 100 neurons in the second
layer, 20 neurons in the third layer and a single neuron
for the output layer. All the layers used sigmoid as the
activation function. The data were tested with 20 mini-
batch gradient descent over 1000 epochs and the
learning rate set at 0.01. The QuickProp validation
accuracy: 52.27%.

Second Model: also contains 4 fully connected layers.
The input layer with 13 attributes, 200 neurons in the
second layer, 20 neurons in the third layer and a single
neuron for the output layer. All the layers used sigmoid
as the activation function. The data were tested with 20
mini-batch gradient descent over 1000 epochs and the
learning rate set at 0.1. LMA accuracy is: 50.00%.

After applying LMA and QuickProp, the validation
accuracies of both methods are shown in Table 6.

Table 5: Backpropagation and Delta Models Results.
Backpropagation Method

Model 1

13
6 3 1

MSE

Model 2

13
6 3 3

MSE

Model 3

13
26 13 6

MSE

Delta Bar Delta Method
Model 4

13
6 3 3

binary
cross

entropy

Model 5

13
6 3 3

MSE

SGD
0.01

Table 6: Levenberg Marquardt and QuickProp Models Results.

Model 1 - QuickProb
Input

No
First
layer

Second
layer

Loss
function Algorithm Accuracy

13 100
Sigmoid

10
Sigmoid

Binary
cross

entropy
QuickProp 52.27%

Model 2 - Levenberg Marquardt

13 200
Sigmoid

20
Sigmoid MSE LMA 50.00%

4.6 Further Enhancement to the Models

Deep Learning requires a lot of hyperparameter
optimization. NNs are extremely complex to build, with
numerous of parameters to configure. Furthermore,
individual models will take a long time to train.

4.6.1 First Order Method
The defined MLP model that expects 13 inputs variables,
has four hidden layers with 32, 13, 6, and 3 nodes
respectively, and an output layer with one node to

F
ir

st
 la

ye
r

A
cc

ur
ac

y

In
pu

t N
o

Se
co

nd
 la

ye
r

Lo
ss

 fu
nc

tio
n

76.12%
ReLU

Th
ir

d
la

ye
r

sigmoid ReLU

ReLU ReLU ReLU _ 85.07%

Tanh Tanh Tanh
80.60%

ReLU ReLU ReLU _ 86.89%

ReLU ReLU ReLU
_

85.25%
momentum

= 0.9

decay
= 0.01

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

85

estimate the probability of each class. Nodes in the hidden
layer will employ the ReLU, while nodes in the output
layer will employ the sigmoid activation function.
Different optimizer has been employed such as (Adam,
RMSprop, adadelta ..etc), where the learning rate needs to
be defined for evaluating different rates values. The model
will be trained to reduce the cross-entropy error with 4000
epochs over 62 batch size. The test set will be used as to
evaluate the generalization of the model. Further, the
following evaluations will be conducted:

• First, checking the effect of multiple learning rates on
the accuracies of both training and testing sets. Fig.8
represents line plots for each learning rate including 8-
line plots for the eight different learning rates that have
been tested. The training dataset's classification
accuracy is shown in blue, while the test dataset's
accuracy is shown in orange.

By comparing the average results, the plots show
oscillations in behavior for the high learning rate of
1.0 as in Fig. 8 a) and the model failure to learn
anything with the low learning rates of 1E-6 and 1E-7
as in Fig. 8 g) and h). While in Fig. 8 b), c) and d) the
model was able to learn the problem well. The results
indicate that a modest learning rate of 0.001 results in
a good accuracy using both train and test sets for the
selected model configuration.

• Second, the effect of various “patience” values that
represent the number of epochs to wait for a transition
prior to reduce the learning rate, is being examined.
The default learning rate of 0.01 will be used, and the
learning rate will be dropped. According to theses
graphs in Fig. 9, the patience value of 200 for this
model on this issue should result in improved results
because it allows the higher learning rate to be used
for a longer period of time before the rate is lowered
to optimize the weights.

Fig. 8: Training Accuracy Over Epochs for Different Patience
Values. a) patience value of 100 result in higher learning rate to

be used for a longer period before the rate is lowered. b) patience
value of 200 result in lower learning rate to be used for a shorter

period.

Fig. 9: the effect of different Learning Rates. a) too large lrate
result in failure to learn, b) lrate 0.1 result in ability to learn, c)

lrate 0.01 has showed good result, d) lrate 0.001 results in strong
model performance on train and test set, e) lrate 0.0001 poor

performance, g) and h) too small lrate result in inability to learn.

• Third, the effect of Adaptive Learning Rates, the
dynamics of different adaptive learning rate methods.
By explore the most popular methods of Nesterov-
accelerated Adaptive Moment Estimation (Nadam),
Root Mean Square Propagation (RMSprop), adaptive
gradient algorithm (AdaGrad) and Adam and compare
their behavior with a static learning rate. The Fig. 10
shows four-line plots for the multiple optimization
algorithms that have been tested. The training dataset's
classification accuracy is shown in blue, while the test
dataset's accuracy is shown in orange.

Fig. 10: Train and Test accuracy Over Multiple
optimizations. a) Nadam optimizer. b) RMSprop Optimizer

and d) Adam optimizer demonstrate similar performance but
a) Namdam showed best result. d) adagrad takes all 200

epochs and result in unstable accuracy.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

86

Observation showed that AdaGrad in Fig. 10 c) with a
learning rate of 0.001 and epsilon=1e-07 does learn
the problem, but it takes roughly about 200 epochs and
produces unstable accuracy for both training and
testing sets. Whereas Nadam in Fig. 10 a), RMSprop
in Fig. 10 b), and Adam in Fig. 10 d) showed
comparable results, learning the problem in less than
50 training epochs and using the rest of the time
performing small weight changes.

• Lastly, NN requires a lot of hyperparameter
optimization. By trying different values of the
regularization parameter, weight regularization can
help to improve the overfit model. Initially grid search
through certain orders of magnitude between 0.0 and
0.1, then grid search on that level until found it. By
specifying the values to measure, looping through
each, and saving the results from train and test sets, we
can grid search through the orders of magnitude.

Fig. 11 shows a line plot of the effects, demonstrating
that greater weight regularization parameter values
improve test accuracy. It is obvious that using the peak
value of 0.1 produces a major decrease in both training
and testing accuracies.

Fig. 11: Accuracy on Train and Test with different weight
regularization parameters.

4.6.2 Second Order Method
There are various factors that are limiting the accuracy of
the built model. First is the small size of the dataset,
second is the absence of optimizers in second-order
methods compared to first-order methods, third is the time
taken by the model to train for second-order methods
increases exponentially as the model depth is increased.
Thus, after trying various combinations of the network
and hyperparameters, therefore, the model’s performance
was not able to be improved.

4.7 Comparison with Related Work

Extensive comparison with other techniques of the same
methods (See Table 7) shows the results. Durairaj et al. [5]

and Vladimir et al. [7] outperform others due to determine
the proper parameters setting for the MLP algorithm in
order to predict heart disease with higher accuracy.

The Table 6 shows a comparison of QuickProp and LMA
with accuracy around 52.27% and 50% respectively.
According to the loss function has limitation since it can
only use the MSE loss function, which reduces its accuracy,
due to the limit number of records. Usually, in second order
methods understanding how the gradient is normally
measured and added to network parameters to attempt to
iteratively achieve convergence of the loss to a global
minimum should be considered.

Table 7: Comparison with Related Work.

Authors Techniques Dataset Accuracy

Durairaj
et al. [5] MLP – Backpropagation UCI 96.29%

Awan et
al. [6] MLP

Western
Australian

data system
64.93%

Vladimir et
al. [7] MLP Cleveland 96.67%

Tackci et
al. [8] MLP UCI 83.70%

Sandeepk
umaret al.

[9]

Feature selection,
SVM, Decision Tree

and MLP
UCI 80.1%

Le et al.
[10]

Genetic feature
selection Naive based

classifier
UCI 75.0%

Pandy et
al. [11]

Applied ordinary
improved MLP

Cleveland

Hungarian

Switzerland

93.49%

80.73%

82.8%

Olaniyi et
al. [12]

MLP

SVM
UCI

85.0%

87.5%

Cheng et
al. [13]

NN, DT, SVM and
naive Bayes UCI 86.8%

In order to fully confirm good performances that MLP has
achieved, we have also applied activation function for
hidden and output layers, the MLP details and results are
shown in Table 8, where the models were tested with
different optimizer, learning rate, loss function and
regulizers.

Table 8: Comparison with Other First order methods.

13 3

1

binary
cross

entropy

H
id

de
n

la
ye

r N
o

A
cc

ur
ac

y

In
pu

t N
o

H
id

de
n

ac
tiv

at
io

n
fu

nc
tio

n

R
eg

ul
iz

er

Lo
ss

 fu
nc

tio
n

O
ut

pu
t a

ct
iv

at
io

n
fu

nc
tio

n

O
ut

pu
t N

o

97.8% 0.000001 ReLU sigmoid

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

87

13 3

1 binary
cross

entropy

13 4

1 binary
cross

entropy

-

13 3

1 binary

cross
entropy

13 3

1 binary
cross

entropy

13 3

1 binary
cross

entropy

13 4

1 Mean
Square
Error

As a result, the NADAM optimizer updating the parameters
with the momentum step before calculating the gradient, we
can perform a more effective step in the gradient direction.
NADAM optimizer had an accuracy about 99.30%.

5. Conclusion and Discussion

In this paper, we addressed the problem of heart
disease diagnosis using NN. We employed the UCI dataset,
which has 303 instances and 14 attributes to test multiple
NN models.

Our experiments show that the best NN architecture
for prediction heart attack consists of three hidden layers
with 13 features as an input and one output layer. The BP
algorithms was used as online learning method with Nadam
optimizer. The best learning rate was 0.001 with a binary
cross entropy loss function for testing/validation among 62
patch size and over 4000 epochs. Best activation function
for all layers was ReLU for hidden layers and sigmoid for
output layer. Further experiments with more advanced
techniques is part of the authors’ ongoing research.

References
[1] Haq, A.U., Li, J.P., Memon, M.H., Nazir, S., Sun, R.. A

hybrid intelligent system framework for the prediction of
heart disease using machine learning algorithms. Mobile
Information Systems2018;2018.

[2] Malav, A., Kadam, K., Kamat, P.. Prediction of heart disease
using k-means and artificial neural network as hybrid
approach to improve accuracy. International Journal of
Engineering and Technology2017;9(4):3081–3085.

[3] Peng, C.C., Huang, C.W., Lai, Y.C.. Heart disease prediction
using artificial neural networks: A survey. In:2020 IEEE
2nd Eurasia Conference on Biomedical Engineering,
Healthcare and Sustainability (ECBIOS). IEEE; 2020, p.
147–150.

[4] Samarasinghe, S.. Neural networks for applied sciences and
engineering: from fundamentals to complex pattern
recognition. Crc Press; 2016.

[5] Durairaj, M., Revathi, V. Prediction of heart disease using
back propagation mlp algorithm. International Journal of
Scientific & Technology Research 2015;4(8):235–239.

[6] Awan, S.E., Bennamoun, M., Sohel, F., Sanfilippo, F.M.,
Dwivedi, G.. Machine learning-based prediction of heart
failure readmission or death: implications of choosing the
right model and the right metrics. ESC heart failure
2019;6(2):428–435.

[7] Mati ć, V., et al. Effective diagnosis of heart disease presence
using artificial neural networks. In: Sinteza 2017-
International Scientific Conference on Information
Technology and Data Related Research. Singidunum
University; 2017, p. 3–8.8.

[8] Takci, H.. Improvement of heart attack prediction by the
feature selection methods. Turkish Journal of Electrical
Engineering & Computer Sciences 2018;26(1):1–10.

[9] Hegde, S., Hedge, R.. Symmetry based feature selection with
multilayer perceptron for the prediction of chronic disease.
International Journal of Recent Technology and Engineering
2019;8(2):3316–3322.10.

[10] Le, H.M., Tran, T.D., Van Tran, L.. Automatic heart disease
prediction using feature selection and data mining technique.
Journal of Computer Science and Cybernetics
2018;34(1):33–48.

[11] Panday, P., Godara, N.. Decision support system for
cardiovascular heart disease diagnosis using improved
multilayer perceptron. International Journal of Computer
Applications 2012;45(8).12.

[12] Olaniyi, E.O., Oyedotun, O.K., Adnan, K.. Heart diseases
diagnosis using neural networks arbitration. International
Journal of Intelligent Systems and Applications
2015;7(12):72.

[13] Cheng, C.A., Chiu, H.W.. An artificial neural network model
for the evaluation of carotid artery stenting prognosis using a
national-wide database. In: 2017 39th Annual International
Conference of the IEEE Engineering in Medicine and Biology
Society (EMBC). IEEE; 2017, p.2566–2569.14.

[14] Adnan, J., Daud, N.N., Ahmad, S., Mat, M., Ishak, M.,
Hashim, F., et al. Heart abnormality activity detection using
multilayer perceptron (mlp) network. In: AIP Conference
Proceedings; vol. 2016. AIP Publishing LLC; 2018, p.
020013.15.

[15] Yosi Taguri, S.E., Lussato, R.. 7 types of neural network
activation functions: How to choose? Available at
https://missinglink.ai/guides/neural-network-concepts/7-
types-neural-network-activation-functions-right/ (2016).

[16] Chandra, K., Meijer, E., Andow, S., Arroyo-Fang, E., Dea,
I., George, J., et al. Gradient descent: The ultimate optimizer.
arXiv preprintarXiv:190913371 2019.

[17] geeksforgeeks.org. Ml —stochastic gradient descent (sgd).
Available at https://www.geeksforgeeks.org/ml-stochastic-
gradient-descent-sgd/ (2020/05/16).

[18] Mahapatra, A.. Momentum in machine learning by medium.
Available at https://medium.com (2019/06/14).

[19] Xiao, T., Zhang, L., Ma, S.. System Simulation and Scientific
Computing: International Conference, ICSC 2012, Shanghai,
China, October27-30, 2012. Proceedings, Part I; vol. 326.
Springer; 2012.20.

95.60% ReLU sigmoid 0.000001

86.89% Tanh sigmoid

ReLU sigmoid 0.000001 56.89%

ReLU sigmoid 0.000001 85.20%

ReLU sigmoid 0.000001 99.3%

ReLU sigmoid 0.000001 85.25%

https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://missinglink.ai/guides/neural-network-concepts/7-types-neural-network-activation-functions-right/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://www.geeksforgeeks.org/ml-stochastic-gradient-descent-sgd/
https://medium.com/

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

88

[20] Farahmand, A.m.. Regularization in reinforcement learning
2011.

[21] AlindGupta, g.. Regularization in machine learning.
Available at https://www.geeksforgeeks.org/regularization-
in-machine-learning/amp/ (2020/08/21).

[22] Aakash Nain Sayak Paul, M.M.R.. Keras. Available at
https://keras.io/about// (2020/08/26).

[23] Brownlee, J.. A gentle introduction to dropout for
regularizing deep neural networks. Available at
https://machinelearningmastery.com/dropout-for-
regularizing-deep-neural-networks/ (2019/08/06).

[24] Gupta,P..Cross-validation in machine learning. Available at
https://towardsdatascience.com/cross-validation-in-
machine-learning-72924a69872f (2020/08/21).

[25] Kluyver, T., Ragan-Kelley, B., Perez, F., Granger, B.,
Bussonnier, M., Frederic, J., et al. Jupyter notebooks – a
publishing format for reproducible computational workflows.
In: Loizides, F., Schmidt, B., editors. Positioning and Power
in Academic Publishing: Players, Agents and Agendas. IOS
Press; 2016, p. 87 – 90.26.

[26] Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R.,
Virtanen, P., Cournapeau, D., et al. Array programming with
NumPy. Nature 2020;585(7825):357–362. doi: \bibinfo{doi}
{10.1038/s41586-020-2649-2}. URL
https://doi.org/10.1038/s41586-020-2649-2.

[27] pandas development team, T.. pandas-dev/pandas : Pandas.
2020. doi:\bibinfo{doi}{10.5281/zenodo.3509134}. URL
https://doi.org/10.5281/zenodo.3509134.28.

[28] Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller,
A., Grisel, O., et al. Api design for machine learning software:
experiences from the scikit-learn project. ArXiv preprint
arXiv :13090238 2013.

[29] Chollet, F., et al. Keras. https://github.com/fchollet/keras;
2015.

[30] Inc., K.. Heart disease uci. 2019.
[31] Brownlee, J..Train-test split for evaluating machine

learning algorithms. Available at
https://machinelearningmastery.com/train-test-split-for-
evaluating-machine-learning-algorithms/ (2020/08/26).

Rayana Elmustapha Antar received the B.S. degree in
Information Technology and Computing from Arab Open
University in 2018 with first class honor. In 2007, she trained as
an Executive Secretary at Finance department in Dr. Abdulrahman
Taha Bakhsh Hospital. In 2010, she trained as a system analyst in
Global Tracks Company. Since 2018 she has been working as an
IT Manager in Advanced Smart Integration Company, Jeddah,
KSA.

Shouq Talal ALotaibi obtained a BA in Computer Science from
Umm AlQura University in 2019 with first class honors. At the
end of 2019, she trained in Egypt at an application company called
PITECHNOLOGY. She volunteered at the Rafa Charity
Association for 3 months, Mecca, KSA.

 Manal Algamdi received her Ph.D. degree in Computer Vision
from University of Sheffield, United Kingdom in 2015. Her study
involved video representation and video similarity measurements.
Currently, she is an Associate Professor at the Department of
Computer Science, UQU, Saudi Arabia. Manal’s research interests
include deep learning and its application in different areas of
computer vision including HealthCare applications.

https://www.geeksforgeeks.org/regularization-in-machine-learning/amp/
https://www.geeksforgeeks.org/regularization-in-machine-learning/amp/
https://keras.io/about/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://machinelearningmastery.com/dropout-for-regularizing-deep-neural-networks/
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
https://towardsdatascience.com/cross-validation-in-machine-learning-72924a69872f
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.5281/zenodo.3509134.28
https://github.com/fchollet/keras
https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/
https://machinelearningmastery.com/train-test-split-for-evaluating-machine-learning-algorithms/

	Summary
	Key words:
	1. Introduction
	2. Related Work
	3. Methodology
	3.1 First Order Method
	3.1.1 Back-Propagation (BP)
	3.1.2 Delta-Bar-Delta Learning (Adaptive Learning
	3.2 Second Order Method
	3.2.1 Levenberg Marquardt algorithm
	3.2.2 Quickprop algorithm
	4.1 Experimental Setup
	4.2 Data Description
	Column
	Non-Null Column
	Data type

	No
	Table 2: Sample of UCI dataset.
	Fig. 1: Histograms of UCI dataset.
	Fig. 2: Heart Disease Frequency
	Fig. 3: Heat Map for correction between features.
	Fig. 4: Subplot for a) Chest Pain types and b) blood sugar level.
	4.4 Data Pre-Processing
	4.5 Proposed Models
	Hidden layer No
	Hidden activation function
	Neuron no
	Output no
	output activation function

	Input No
	Hidden layer No
	Hidden activation function
	Neuron no
	Output no
	output activation function

	Input No
	Fig. 6: First Model Accuracy
	Fig. 7: Third Model Accuracy.
	1- Update Weights:
	Backpropagation Method
	Model 1 - QuickProb

	2- Calculate the error:
	First layer
	Second layer
	Loss function
	Algorithm
	Accuracy

	Input No
	4.6.1 First Order Method
	Authors
	Techniques
	Dataset
	Accuracy

	4.6.2 Second Order Method
	4.7 Comparison with Related Work
	Table 8: Comparison with Other First order methods.
	5. Conclusion and Discussion
	References

