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Abstract 
The application of the principle of trigeneration allows to 
simultaneously provide electricity to power electronic devices, 
as well as heat and cold to create the necessary microclimate of 
the premises and increase efficiency compared to separate 
cooling and heating systems. The use of Peltier thermoelectric 
modules (TEM) as part of trigenerative systems allows for 
smooth and precise control of the temperature regime, high 
manufacturability and reliability due to the absence of moving 
parts, resistance to shock and vibration, and small weight and 
size parameters of the system. One of the promising areas of 
improvement of trigenerative systems is their modeling and 
optimization based on the automatic control theory. A block 
diagram and functional model of an energy-saving trigenerative 
climate control system based on Peltier modules are developed, 
and the transfer functions of an open and closed system are 
obtained. The simulation of the transient characteristics of the 
system with varying parameters of the components is performed. 
The directions for improving the quality of transients in the 
climate control system are determined, as well as the prospects 
of the proposed methodology for modeling and analyzing 
control systems operating in substantially nonlinear modes. 
Keywords:  
energy trigeneration, thermoelectrics, Peltier effect, 
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1. Introduction 
 

The application of the trigeneration principle [1] 
allows to simultaneously obtain electricity to power 
electronic devices, as well as heat and cold to create the 
necessary microclimate of the premises. Studies have 
shown that the combined cooling and heating mode of a 
trigeneration system can be significantly more efficient 
than an independent cooling and heating system, which 
justifies the complexity of the design [2]. A separate 
direction is the integration of TE cooling systems in 
facilities based on solar energy (refrigeration systems, as 
well as air conditioning systems in a wide temperature 
range) [3]. 

The use of thermoelectric modules (TEM) as part of 
trigenerative systems allows for smooth and precise 
control of the temperature regime, high manufacturability 
and reliability due to the absence of moving parts, 
resistance to shock and vibration, and small weight and 
size parameters of the system [4-9]. Aboelmaaref et al. 
[10] identified the best standards for the use of solar 
energy with technological cooling and air conditioning 
systems, such as thermoelectric and thermoelectronic, for 
large-scale applications, since its productivity has 
reached at least 30%, which is very promising. 

The efficiency of thermoelectric and thermoemission 
characteristics can be improved by optimizing heat 
exchange and improving the configuration of products in 
thermoelectric and thermoemission systems, which 
facilitates the use of thermoelectric and thermoemission 
systems for use in refrigeration and air conditioning in 
remote areas [11-18]. Another promising direction for 
improvement of trigenerative systems is their modeling 
and optimization based on the automatic control theory 
[19-21]. 
 
The aim of the work is to develop and apply a 
methodology for modeling the dynamic characteristics of 
a trigenerative climate control system based on Peltier 
thermoelectric modules. 
 
1.1. Block diagram of an energy-saving trigenerative 

climate control system based on TEM 
 

The operation principle of a trigeneration energy-
saving climate control system for agricultural enterprises 
using thermoelectric batteries operating in direct (TEM1) 
and inverse modes (TEM2) is shown in Figure 1. In this 
case, the operation of the system and the main power 
supply of the main consumers of electricity (E1) is carried 
out from a thermal power plant (TEM) running on gas 
engine fuel (GEF). 
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Fig. 1. Structure of the trigeneration energy-saving climate control system for agricultural enterprises 

 
In this case, the heat generated by the thermal power plant 
(TPP) is utilized at the expense of a two-circuit thermal 
accumulator of the distributor (TA) with terminals to the 
TEM1, built on Peltier modules and generating electricity 
E2. Providing local places with required climatic 
conditions (temperatures of a hot and cold side Th and Tc) 
is carried out at the expense of TEM2, which also uses 
Peltier modules and is supplied from a electric power 
distributor (EPD). 
A block diagram of an energy-saving trigeneration 
system for a single control object (n=1) is shown in Figure 

2. If there are several control objects, a power supply 
source is common to all of them. The diagram shows: 
CCS1 – climate control system, TEM1 – system of 
thermoelectric modules, VS1 – ventilation system, PS1i – 
point source of cold or heat, D1i – climate detector, 
ICONTR1l – control influences for thermoelectric modules, 
ТPS1i – temperature of a point source of heat or cold, ТD1j 
– temperature recorded by a climate detector. The 
differentiation operator p=d/dt allows to take into account 
the dynamic properties of each object of the system in its 
transfer function. 

 

 
Fig. 2. Block diagram of an energy-saving trigeneration system for monitoring a single TEM 
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The microclimate is controlled by the climate control 
system, which controls the TEM by current ICONTRnl 
which depends on the desireable temperatures ТDESnl and 
the measurement results of the climate detectors ТDnj 

),( DnjDESnlCONTRnl TTfI 
.
 

The inertia of the climate detector is approximately 
described by a first-order differential equation 

PSninij
Dnj

nijDnj Тk
dt

dТ
Т   

where nij  is the time constant of the detector, or by the 

equivalent transfer function of the aperiodic link 
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1.2. Functional model of the TEM-based climate 

control system 
 

An example of a functional model of a trigenerative 
system based on TEM is shown in Fig. 3. The transfer 
functions of the blocks of the model H(p) are given by 
vectors, the number of the vector element determines the 
channel number. The following designations are accepted: 
ТDES – desired temperature (input influence), Тnoise – 
noise or interference, ТPS – the temperature of a point 
source of heat or cold, ТD – the temperature recorded by 
a climate detector. 

  
Fig. 3. Functional model of an energy-saving trigenerative climate control system based on TEM 

 
The transfer function of one control channel of the system 
(Fig. 3) for the influence ТDES has the form 
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where is the transfer function of the open system. The 
transfer function of the proportional-integral (PI) 
controller used as the controller of the climate control 
system has the form 

p

k
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.                                                       (3) 

The transfer functions of the TEM and the climate control 
detector are approximately described by models of first-
order inertial links 
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where k is the link transfer coefficient, and T is the link 
time constant. In the analysis, it may be necessary to take 
into account nonlinearities of the TEM (for example, 
dependence of the junction temperatures on the value of 
the control current) or other blocks [22-24]. For this 
purpose, an approach based on piecewise linear 
approximation of the TEM amplitude characteristic and 
crosslinking of partial solutions on separate linear 
sections can be used [25-26]. The approach will allow us 
to apply linear theory and analytically investigate the 
dynamic modes of control systems with substantially 
nonlinear TEM [27]. 
The transfer function of the ventilation system without 
taking into account its inertia has the form 

vVS kpТ )(
.                                       (5) 

Taking into account the expressions (3)-(5), the transfer 
function of the open system takes the form 
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(6) 
and the transmission coefficient of the system as a whole 
(2) in the absence of the first climate control channel 
CCS1 (ki1=kp1=0) is written as 
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1.3. Simulation of dynamic modes of the TEM-based 

climate control system 
 
Based on the proposed approach, the transient 
characteristics of the TEM-based climate control system 
are modeled. The Heaviside function ТDES(t) = 1(t), its 

operator image ТDES(p) = 1/p is taken as an input 
influence. The following values of the system parameters 
are accepted: the transmission coefficients of the 
controller CCS1 ki1=kp1=0 (the first channel is missing), 
the coefficients of CCS2 ki2=1 and kp2=4, the transmission 
coefficient of TEM kTEM =1, the transmission coefficient 
of the ventilation system kv=0.9, the transmission 
coefficient of the climate detector kd=1, the time constant 
of TEM ТTEM =10 s, the time constant of the climate 
detector Тd =1 с.  
The simulation results are shown in Fig. 4-6. The analysis 
of the obtained dependences shows that with an increase 
in ТTEM (Fig. 4a) and an increase in kv (Fig. 5b), the control 
time decreases, but the damping factor of the transient 
process increases. With an increase in Тd (Fig. 4b), ki2 (Fig. 
6a) and kp2 (Fig. 6b), the quality of the transition process 
deteriorates in both parameters: an increase of the control 
time and an increase of the damping factor. The increase 
in kd (Fig. 5a) causes an increase of the control time, 
damping factor, and steady-state value. 

 
 
 
 
 
 
 
 
 
 
 
 
 a) b) 
Fig. 4. Transient characteristics of the TEM-based climate control system: a) with different time constant of TEM (T1); b) with different time constant of 

the climate detector (Td) 

 
 
 
 
 
 
 
 
 
 
 

a)    b) 
Fig. 5 .  Transient characteristics of the TEM-based climate control system: a) with different gain of the climate detector (kd); b) with different gain of the 

ventilation system (kv) 
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 a) b) 

Fig. 6. Transient characteristics of the TEM-based climate control system: a) with different inertia coefficient of CCS2 (ki); b) with different 
proportionality coefficient of CCS2 (kp) 

 
2. Conclusion 
 

A new approach to modeling the dynamic 
characteristics of climate control systems based on Peltier 
thermoelectric modules is developed. It is a fairly simple 
and convenient tool for studying characteristics of such 
systems, their quality indicators, and can also be used to 
solve optimization and synthesis problems, both for 
single- and multi-channel systems. A block diagram and 
functional model of an energy-saving trigenerative 
climate control system based on Peltier modules are 
presented, and the transfer functions of an open and 
closed system are obtained. The transient characteristics 
of the system are modeled while varying the parameters 
of the component links: the transmission coefficients of 
the controller, the Peltier module, the ventilation system 
kv=0.9, the climate detector, as well as the time constants 
of the Peltier module and the climate detector. The 
simulation showed directions for improving the dynamic 
properties of the system, namely, reducing the control 
time and damping factor, as well as selecting the steady-
state value of the transition process. 
With a significant nonlinearity of the control object 
(Peltier module) or other circuit blocks, piecewise linear 
approximation of the amplitude characteristics of 
nonlinear blocks and crosslinking of particular solutions 
on separate linear sections can be used, which allows to 
apply linear theory and analytically study the dynamic 
modes of control systems with significantly nonlinear 
modules for required temporal changes of the desired 
temperature. 
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