
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

286

Manuscript received June 5, 2021
Manuscript revised June 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.6.37

Intelligent Android Malware Detection Using Radial Basis Function
Networks and Permission Features

 Ammar Abdulrahman , Khalid Hashem, Gaze Adnan, Waleed Ali

Information Technology Department, Faculty of Computing and Information Technology,
King Abdulaziz University, Rabigh, Saudi Arabia

Summary
Recently, the quick development rate of apps in the Android
platform has led to an accelerated increment in creating malware
applications by cyber attackers. Numerous Android malware
detection tools have utilized conventional signature-based
approaches to detect malware apps. However, these conventional
strategies can't identify the latest apps on whether applications are
malware or not. Many new malware apps are periodically
discovered but not all malware Apps can be accurately detected.
Hence, there is a need to propose intelligent approaches that are
able to detect the newly developed Android malware applications.
In this study, Radial Basis Function (RBF) networks are trained
using known Android applications and then used to detect the
latest and new Android malware applications. Initially, the optimal
permission features of Android apps are selected using
Information Gain Ratio (IGR). Appropriately, the features selected
by IGR are utilized to train the RBF networks in order to detect
effectively the new Android malware apps. The empirical results
showed that RBF achieved the best detection accuracy (97.20%)
among other common machine learning techniques. Furthermore,
RBF accomplished the best detection results in most of the other
measures.
Keywords: Android applications, Android malware detection,
Radial basis function network, Feature selection

1. Introduction

In the last few years, the Android platform has become
one of the most known mobile platforms for smart mobile
devices as it is uncharged and open source. The quick
development percentage of apps in the Android platform
has led to a tremendous increment in creating and spreading
Android malware apps by cyber attackers. Fig.1. illustrates
the number of mobile malware installation packages
detected by Kaspersky between the first quarter of 2019 and
the first quarter of 2020 [1].

Fig.1. The number of mobile malware installation packages detected by

Kaspersky between Q1 2019 and Q1 2020 [1].

Numerous Android malware detection tools have
utilized the conventional signature-based approaches to
detect malware apps periodically. However, these
conventional strategies can't identify the latest android
malware apps on whether the new applications are malware
or not. Even at the official Google Play store, many new
malware apps are periodically discovered but not all
Android malware Apps are discovered, especially in early
stages of publication in the Google Android Market [2,3].
Hence, there is a need to propose intelligent approaches that
are able to recognize the latest Android malware apps.

Recently, in order to address the major obstacles of the
conventional Android malware detection approaches based
on the signature, some popular intelligent techniques such
as artificial neural network (ANN), support vector machine
(SVM), Naive Bayes, and decision trees were employed in
the existing works [4-7] to distinguish effectively the latest
Android malware apps.

This study proposes utilizing one of the fast neural
networks called Radial Basis Function (RBF) networks to
detect malware applications. The RBF networks have
several attractive advantages such as simple structure, good
generalization, strong tolerance to input noise, and online
learning ability [8]. These good characteristics of RBF

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

287

networks make it more appropriate machine learning to be
utilized in Android malware detection. In addition,
Information Gain Ratio (IGR) was used to select the most
important permission features of Android apps. The
experimental results showed that RBF achieved outstanding
results in most of the detection measures and accomplished
better performance compared to other common machine
learning techniques.

The rest of the study is arranged as follows. Some
selected works on intelligent Android malware detection
based on permission features are given in Section 2. Section
3 explains the suggested methodology of intelligent
Android malware detection method based on Radial Basis
Function networks and Information Gain Ratio. Section 4
discusses the performance results of Radial Basis Function
network with Information Gain Ratio. Lastly, the
conclusion and future work of the proposed work is given
in Section 5.

2. Related Work

The study of existing works is a very important step to
avoid the possibility of duplicating similar problems in our
study. In this study, we concentrate on some existing
intelligent detection methods that used static malware
analysis, especially based on permission features, in
android malware detection. In the Android malware
detection methods based on static analysis, the Android
malware applications are detected without executing the
Android applications. Therefore, they are simpler and
quicker, and require less utilization of resources compared
to the dynamic analysis-based methods.

Table 1: Summary of some recent intelligent Android malware detection methods based on permission features.

Approach Features Machine learning Feature selection
Mining API calls and permissions
for Android malware detection [9]

Permissions and API
calls

Naive Bayes and ANN Correlation-based feature
selection and information

gain
Static detection of Android
malware by using permissions
and API calls [10]

Permissions and API
calls

Naive Bayes, SVM, MLP,
random forest, and J48

Information
gain

Exploring Permission-induced
Risk in Android Applications for
Malicious Application Detection
[11]

Individual permission
and group of
collaborative
permissions.

SVM, decision trees,
and random forest.

Forward selection (SFS) and
principal component

analysis (PCA)

A probabilistic discriminative
model for Android malware
detection with decompiled source
code [12]

API calls and
permissions

Regularized logistic
regression

Information gain and Chi-
square

K-ANFIS [13] Permission features kEFCM-based Adaptive
Neuro-Fuzzy Inference

System

Information gain ratio

DroidDetector [14] Static analysis-based
features and dynamic

analysis -based
features

Deep belief networks Frequency analysis -based
feature evaluation

EHNFC [15] Permission features Hybrid neuro-fuzzy
classifier with evolving

clustering

Information gain ratio

Identification of malicious
Android app using manifest and
opcode features [16]

Static features from
the manifest and
executable files

SVM, random forest,
and rotation forests

Entropy based Category
Coverage Difference and

Weighted Mutual
Information

Droid-HESVMGA and Droid-
HESVMPSO [17]

Permission features evolving support vector
machine

Information gain ratio

In [9], the best features of permissions and API calls were
selected using correlation-based feature selection and

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

288

information gain. Accordingly, the training dataset with the
best features was used to train Naive Bayes and ANN in
order to detect the Android malware apps.

In [10], Naive Bayes, SVM, MLP, random forest, and
J48 were trained based on the best permissions and API
calls features selected by information gain technique. The
trained classifiers were then used to distinguish the Android
malware apps from benign apps.

In [11], authors used forward selection (SFS) and
principal component analysis (PCA) to select the best
features of individual permission and group of collaborative
permissions. Then, SVM, decision trees, and random forest
were trained and subsequently used to detect the Android
malware apps.

In [12], information gain and Chi-square techniques
were utilized to select the best features of API calls and
permissions. Regularized logistic regression was then
trained and employed to detect the Android malware apps.

In K-ANFIS [13], kEFCM-based Adaptive Neuro-Fuzzy
Inference System was suggested to detect the Android
malware apps after training based on the best permissions
features selected by information gain ratio.

In DroidDetector [14], frequency analysis-based
feature evaluation was used to select the best static and
dynamic features. Subsequently, deep belief networks were
trained and then used to detect the Android malware apps.

In EHNFC [15], the most important permission
features were identified by information gain ratio.
Accordingly, hybrid neuro-fuzzy classifier with evolving
clustering was trained and then used to detect the Android
malware apps.

In [16], authors used Entropy based Category
Coverage Difference and Weighted Mutual Information to
find the best static features from the manifest and
executable files. Then, they trained SVM, random forest,
and rotation forests using training data with the best features
in order to detect the malicious Android apps.

In [17], evolving support vector machine based on
evolutionary algorithms called Droid-HESVMGA and
Droid-HESVMPSO were trained with the best permissions
features selected by information gain ratio. The trained
Droid-HESVMGA and Droid-HESVMPSO were used to
detect the Android malware apps.

Table 1 shows a summary of some recent intelligent
Android malware detection based on permission features.
As can be seen from Table 1, the existing works used some
popular intelligent techniques such as MLP, SVM, decision
trees, and Naive Bayes. Unlike the existing works, our study
utilized one of the fast neural networks called RBF
networks to detect malware applications. Besides,

Information Gain Ratio was used to select the most
important permission features of Android apps.

3. Materials and Methods

This section explains a suggested methodology of
intelligent Android malware detection method based on
Radial Basis Function (RBF) and Information Gain Ratio
(IGR). Fig. 2 shows the methodology of the proposed
intelligent Android malware detection approach based on
the RBF network and IGR.

Fig. 2. The suggested methodology of intelligent Android malware

detection approach based on RBF network and IGR

As can be seen from Fig. 2., the methodology includes six
phases: data collection, feature extraction, dataset
preparation, IGR-based feature selection, training of RBF
networks, and testing of RBF networks. The first five
phases are explained in the following subsections, while the
evaluation and testing of RBF networks will be explained
in Section 4.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

289

3.1 Data Collection of Android Malware and Benign
Applications

Many malware and benign applications were collected
and analyzed by several researchers from several various
sources such as Genome [18], Contagiodump [19],
Certtools [20], Google Play Store [21], VirusShare [22],
MitchellKrogza [23], TheZoo [24], VirusBay [25], and
DasMalwerk [26].

Malgenome-215-dataset [27] used by [28] was used in this
paper. The Malgenome-215-dataset includes 1260 Android
malware apps and 2539 Android benign apps.

3.2 Feature Extraction

The permission features are the most significant
features in Android applications since they are critical in
recognizing malware from benign applications. Android
applications include AndroidManifest.xml as shown in Fig.
3., which is an XML file that has all the permission features
required to work properly in Android applications. As seen
in Fig. 3., the permission features required to access system
resources are declared in the AndroidManifest.xml. The
developers of Android applications usually declare all
permissions required to access system resources using
<uses-permission> tags in the AndroidManifest.xml. Then,
some tools are used to decompress the Android application
packets, and then the permission features can be obtained
from AndroidManifest.xml.

Fig. 3. The permission features in AndroidManifest.xml that are required

to use system resources [17]

3.3 Dataset Preparation

In machine learning, a dataset is usually organized as
a table with rows and columns. The columns can also be
referred to as features or ‘variables, while the rows refer to
examples or instances.

In the Android malware detection, the rows represent
Android apps in the dataset while the permission features
are the columns in the dataset. The permission features of
Android applications are converted into numerical form to
be effectively used in the training phase. If the feature is
available in the application, it will be assigned to 1. If it is
not available, it will be assigned to 0. Table 2. shows an
example of dataset preparation for 5 apps and 6 permission
features in Android malware detection.

Table 2: An example of dataset preparation in Android malware
detection

SEND

SMS

RECEIVE

SMS

GET

ACCOUN

TS

MAN
AGE
ACC

OUNT

S

USE

CRED

ENTIA

LS

 INSTALL
PACKA

GES

Class
(Label)

App1 1 0 1 1 0 1
1

(Malware)

App2 0 1 0 0 0 0 0
(Benign)

App3 0 1 0 0 0 0 0

App4 1 1 1 1 1 0 1

App5 0 0 0 1 0 1 1

3.4 Information Gain Ratio Based Feature Selection

Feature selection is an extremely important step that
can select only the most relevant and useful features to be
used with machine learning training sets, which
dramatically reduces costs and data volume [29, 30].

In this study, we used feature selection based on
Information Gain Ratio (IGR) algorithm. IGR is one of the
most common filter feature selections. IGR is a ratio of the
amount of information gained about a random variable or
signal from observing another random variable, which uses
the information gained to rank the most useful feature. The
filter feature selection methods rank the features
independently, without training any machine learning
algorithm. Therefore, they are more straightforward and
faster compared to the wrapper methods. Hence, the filter
feature selection methods are more suitable for mobile
environment [17, 31].

3.5 Training of RBF Networks

RBF networks is a neural network with three fixed
layers: the input layer, hidden layer, and output layer. In
our study, the input layer in RBF networks consists of
several inputs or nodes that represent the permission
features of Android apps selected by IGR as explained in
Section 3.4. In addition to the input layer, a number of nodes
in the hidden layer is determined by experiments. In the

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

290

output layer, we have just one node that represents the class
of Android app, either malware application (1) or benign
application (0).

Fig. 4. shows the architecture of the RBF network with
six inputs as an example. In Fig. 4. there are six input nodes,
or equivalently, an input vector with six binary values. If
the feature is available in the app, it will be represented by
1, otherwise, it will be represented by 0. The hidden layer
consists of four hidden nodes. Each hidden node has a
centroid which is a vector with the same number of values
as the input. RBF centroids are usually given the symbol μ.
Each hidden node has a width (sometimes called a standard
deviation) which is a single numeric value. RBF widths are
usually given the symbol σ.

Fig. 4. An example of the architecture of RBF network with six features

or inputs

The computed output of an RBF network depends on
the input values, and the values of centroids, widths, and
weights. Training of RBF network is the process of finding
the best values of the centroids, widths, and weights.

The simplest approach for setting the RBF parameters
is to select centroids randomly from training data. The
weights are determined by minimizing an objective
function (mean-squared error), which is the difference
between the network outputs and the target values. In this
paper, the method of the pseudo inverse was used to find
the best weights during the training phase of RBF networks.

4. Results and Discussion

In this study, RBF used to detect malware apps was
implemented by using Python language. This section
discusses the performance results of RBF with IGR feature
selection method. Besides, the performance of RBF will be
compared with other common machine learning such as
Support Vector Machine (SVM), Decision Tree (DT),
Multilayer Perceptron networks (MLP), and Naive Bayes
(NB).

4.1 Dataset Collection

In this study, Malgenome-215-dataset [27] used by [28]
was adopted in all experiments. Table 3 shows description
of Malgenome-215-dataset. The Malgenome-215-dataset
dataset consists of 3799 Android applications with 215
features. The data includes 2539 benign and 1260 malware
apps collected from the Android malware Malgenome
project [18], which is one of the common sources for
malware apps collection used by the malware research
society. We extracted 109 permission features from
Malgenome-215-dataset to train RBF networks.

Table 3: Details of Malgenome-215 dataset used in the experiments.

Number of Android apps 3799

Number of Android malware apps 1260

Number of Android benign apps 2539

Number of all features 215

Number of permission features 109

4.2 Performance Measures

In this study, we used hold-out validation for
evaluating the performance of the RBF network in Android
malware detection. In the hold-out validation, the data
collected was randomly partitioned into two parts: training
data (70%) and testing data (30%).

The performance in terms of correct classification rate
(CCR) was calculated for testing dataset to validate and
verify the performance of Radial Basis Function (RBF)
against Decision Tree (DT), Naive Bayes (NB), multilayer
perceptron (MLP), and Support Vector Machine (SVM).

In addition to CCR, some important measures were
calculated to evaluate the performance of machine learning
techniques. Table 4 shows the confusion matrix for Android
malware detection. In Tables 4, TP, TN, FP, and FN
represent true positive, true negative, false positive, and
false negative, respectively. Based on the confusion matrix,
True positive rate (TPR), false positive rate (FPR), true
negative rate (TNR), false negative rate (FNR), and area
under ROC curve (AUC) were also computed to validate
the performance of the machine learning techniques.

Table 4: The confusion matrix for Android malware detection.

Classified as

malware
Classified as

benign

Malware app TP FN

Benign app FP TN

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

291

The performance measures used to evaluate the proposed
method are described in the following:

 CCR: The rate of malware and benign apps
correctly classified with respect to all the apps as
shown in Eq. (1).

 𝐶𝐶𝑅 ൌ
்௉ା்ே

்௉ାி௉ାிேା்ே
ൈ 100 (1)

 TPR: The rate of malware apps classified as
malware out of the total malware apps as shown in
Eq. (2).

𝑇𝑃𝑅 ൌ
்௉

்௉ାிே
ൈ 100 (2)

 TNR: The rate of benign apps classified as benign
out of the total benign apps as shown in Eq. (3).

 𝑇𝑁𝑅 ൌ
்ே

்ேାி௉
ൈ 100 (3)

 FPR: The rate of benign apps classified as malware

out of the total benign apps as shown in Eq. (4).

 𝐹𝑃𝑅 ൌ
ி௉

ி௉ା்ே
ൈ 100 (4)

 FNR: The rate of malware apps classified as
benign out of the total malware apps as shown in
Eq. (5).

 𝐹𝑁𝑅 ൌ
ிே

ிேା்௉
ൈ 100 (5)

 AUC: This metric measures the trade-off between
TPR and FPR as shown in Eq. (6).

 𝐴𝑈𝐶 ൌ
ଵା்௉ோିி௉ோ

ଶ
ൈ 100 (6)

4.3 Performance of RBF with Changing Parameters

To ensure the best performance for the RBF network,
we performed many experiments with changing the number
of hidden nodes and the value of Sigma(σ) until we reached
the best result for the RBF network. Table 5 shows the best
performance measures of the RBF network with the
corresponding number of hidden nodes and the value of
Sigma.

Table 5: The best performance of the RBF Network with the

corresponding number of hidden nodes and Sigma(σ).

Type of features used
in the training

Permission features

Hidden nodes 380
Sigma(σ) 0.09

CCR 97.20 %
TPR 94.80 %
TNR 98.40 %
FPR 1.60 %
FNR 5.20 %
AUC 96.60 %

4.4 Comparison of RBF against Other Common
Machine Learning Techniques

This section discusses the performance of RBF compared to
machine learning before IGR-based feature selection. Table
6 displays the performance measures of RBF, DT, NB,
SVM, and MLP used in Android malware detection for
testing data before applying IGR-based feature selection.

Table 6: A comparison of RBF performance against other machine
learning before applying IGR-based feature selection.

 CCR TPR TNR FPR FNR AUC

DT 96.00 95.60 96.20 3.80 4.40 95.90

NB 60.20 98.70 40.50 59.50 1.30 69.60

SVM 96.80 92.70 98.90 1.10 7.30 95.80

MLP 96.70 95.10 97.50 2.50 4.90 96.30

RBF 97.20 94.80 98.40 1.60 5.20 96.60

From Table 6, we can notice the following important
remarks:

 In terms of CCR measure, DT, SVM, MLP, and
RBF achieved good accuracy. The best accuracy
(97.20%) was achieved by RBF while the worst
accuracy (60.20%) was produced by NB.

 In terms of TPR measure, NB performed the best
TPR (98.70%) while the worst TPR (92.70%)
was produced by SVM.

 In terms of TNR measure, the best TNR nearly
(99%) was accomplished by SVM and RBF while
the worst TNR (40,50%) was produced by NB.

 In terms of FPR measure, the best FPR nearly
(1%) was accomplished by SVM and RBF while
the worst FPR was produced by NB (59.50%).

 In terms of FNR measure, the best FNR was
accomplished by NB (1,30%) while the worst
FNR was produced by SVM (7,30%).

 In terms of AUC measure, the best AUC was
accomplished by RBF (96,60%) while the worst
AUC was produced by NB (69,60%).

From Table 6, we can also observe that RBF accomplished
the best results in most of the measures. That means RBF
can detect correctly both malware and benign apps. On the
other hand, NB classified most of the Android apps as
malware apps since NB produced the highest TPR (98.70%).
However, NB was not able to correctly identify the benign
apps since NB produced the worse TNR (40.50%).
Accordingly, NB performed the worst CCR (60.20%) and
AUC (69.60%).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

292

4.5 Comparison of RBF against Other Machine
Learning After Applying IGR-Based Feature
Selection

The performance of RBF and other machine learning
were compared after applying the top thirty features
selected by IGR in this section. Table 7 shows the
performance of RBF, DT, NB, SVM, and MLP in Android
malware detection for testing data after applying the top
thirty features selected by IGR.

Table 7: A comparison of RBF performance against other machine
learning with the top thirty features selected by IGR.

 CCR TPR TNR FPR FNR AUC

DT 91.70 79.50 97.90 2.10 20.50 88.70

NB 58.60 99.70 37.50 62.50 0.30 68.60

SVM 91.60 80.30 97.30 2.70 19.70 88.80

MLP 91.80 80.10 97.70 2.30 19.90 88.90

RBF 92.00 79.50 98.40 1.60 20.50 89.00

From Table 7 we can observe the following points:

 In terms of CCR, all RBF, DT, SVM, and MLP
achieved good accuracy but not more than (92%).
The best accuracy was achieved by RBF while the
worst accuracy was produced by NB (58.60%).

 In terms of TPR, NB performed the best TPR
(99.70%) while the worst TPR was produced by
RBF and DT (79.50%).

 In terms of TNR, the best TNR was accomplished
by RBF (98.40%) while the worst TNR was
produced by NB (37.50%).

 In terms of FPR, the best FPR was accomplished
by RBF (1.60%) while the worst FPR was
produced by NB (62.50%).

 In terms of FNR, the best FNR was accomplished
by NB (0.30%) while the worst FNR was produced
by RBF and DT (20.50%).

 In terms of AUC, the best AUC was accomplished
by RBF (89%) while the worst AUC was produced
by NB (68.60%), as shown in Table 7.

From Table 7, we can observe NB classified most of the
Android apps as malware apps since NB produced the
highest TPR (99.70%). However, NB was not able to
correctly identify the benign apps since NB produced the
worse TNR (37.50%). Accordingly, NB performed the
worst CCR (58.60%) and AUC (68.60%). On the other hand,
RBF accomplished the best results in most of the measures.

This indicates that RBF can detect correctly both malware
and benign apps.

5. Conclusions and Future Work

In Android malware detection, most of the
conventional methods are unable to make decisions
accurately and perfectly on whether the new Android apps
are malware or benign. This study aims to develop
intelligent Android malware detection using Radial Basis
Function Network and information gain ratio in order to
overcome the limitations of the conventional Android
malware detection approaches. The results demonstrated
RBF accomplished better results in most of the measures
compared with other common machine learning techniques.
The suggested intelligent RBF-based Android malware
detection method can be used to contribute to detect the
newly developed Android malware applications in order to
protect Android users and devices from Android malware
applications.

Although all objectives established for this study have
been accomplished, there are a few limitations. Due to time
constraints, in our study, we only used hold-out validation
for evaluating the RBF network. K-fold cross-validation
can be also used for more validation. Besides, centroid
values of RBF are generated randomly in our study. K-
Means clustering algorithm can be used to find the best
values of the centroid in order to produce better
performance.

References

[1] Kaspersky. IT threat evolution Q1 2020. Statistics.
Accessed: Nov. 19, 2020. [Online]. Available:
https://securelist.com/it-threat-evolution-q1-2020-
statistics/96959/

[2] Buchanan, W. J., Chiale, S., Macfarlane, R.: A
methodology for the security evaluation within third-
party Android Marketplaces. Digital Investigation,
23, 88-98(2017).

[3] Dini, G., Martinelli, F., Matteucci, I., Petrocchi, M.,
Saracino, A., Sgandurra, D.: Risk analysis of Android
applications: A user-centric solution. Future
Generation Computer Systems, 80, 505-518(2018).

[4] Abdullah, T., Ali, W., Abdulghafor, R.: Empirical
Study on Intelligent Android Malware Detection
based on Supervised Machine Learning.
International Journal of Advanced Computer Science
and Applications (IJACSA), 11(4), 215-224(2020).

[5] Wang, W., Li, Y., Wang, X., Liu, J., Zhang, X.:
Detecting Android malicious apps and categorizing
benign apps with ensemble of classifiers. Future

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.6, June 2021

293

generation computer systems, 78, 987-994(2018).
[6] Idrees, F., Rajarajan, M., Conti, M., Chen, T. M.,

Rahulamathavan, Y.: PIndroid: A novel Android
malware detection system using ensemble learning
methods. Computers & Security, 68, 36-46 (2017).

[7] Yerima, S. Y., Sezer, S., McWilliams, G.: Analysis
of Bayesian classification-based approaches for
Android malware detection. IET Information
Security, 8(1), 25-36(2014).

[8] Yu, H., Xie, T., Paszczynski, S., Wilamowski, B. M.:
Advantages of radial basis function networks for
dynamic system design. IEEE Transactions on
Industrial Electronics, 58(12), 5438-5450(2011).

[9] Sharma, A., Dash, S. K.: Mining API calls and
permissions for Android malware detection. In
Cryptology and Network Security. Cham,
Switzerland: Springer Int., pp. 191–205(2014).

[10] Chan, P. P., Song, W. K.: Static detection of Android
malware by using permissions and API calls. In Proc.
Int. Conf. Mach. Learn. Cybern., Lanzhou, pp. 82–
87(2014).

[11] Wang, W., Wang, X., Feng, D., Liu, J., Han, Z.,
Zhang, X.: Exploring permission-induced risk in
android applications for malicious application
detection. IEEE Transactions on Information
Forensics and Security, 9(11), 1869-1882(2014).

[12] Cen, L., Gates, C. S., Si, L., Li, N.: A probabilistic
discriminative model for android malware detection
with decompiled source code. IEEE Transactions on
Dependable and Secure Computing, 12(4), 400-
412(2014).

[13] Abdulla, S., Altaher, A.: Intelligent Approach for
Android Malware Detection. KSII Transactions on
Internet and Information Systems, 9(8): 2964 –
2983(2015).

[14] Yuan, Z., Lu, Y., Xue, Y.: Droiddetector: android
malware characterization and detection using deep
learning. Tsinghua Science and Technology, 21(1),
114-123 (2016).

[15] Altaher, A.: An improved Android malware detection
scheme based on an evolving hybrid neuro-fuzzy
classifier (EHNFC) and permission-based features.
Neural Computing and Applications, 28(12), 4147-
4157(2017).

[16] Varsha, M. V., Vinod, P., & Dhanya, K. A.:
Identification of malicious android app using
manifest and opcode features. Journal of Computer
Virology and Hacking Techniques, 13(2), 125-
138(2017).

[17] Ali, W.: Hybrid Intelligent Android Malware
Detection Using Evolving Support Vector Machine
ased on Genetic Algorithm and Particle Swarm
Optimization. International Journal of Computer

Science and Network Security (IJCSNS), 19(9), 15-
28 (2019).

[18] Genome. Android Malware Genome Project.
Accessed: February. 14, 2021. [Online]. Available:
http://www.malgenomeproject.org

[19] Contagio. Contagio Mobile: mobile malware mini
dump. Accessed: February. 14, 2021. [Online].
Available: http://contagiominidump.blogspot.co.uk

[20] GitHub. certtools. Accessed: Nov. 20, 2020.
[Online]. Available:
https://github.com/certtools/malware_name_mappin
g

[21] Google Play. Google Play Store. Accessed: Nov. 20,
2020. [Online]. Available:
https://play.google.com/store?hl=en

[22] VirusShare. VirusShare.com. Accessed: Nov. 20,
2020. [Online]. Available: https://virusshare.com

[23] GitHub. Mitchellkrogza. Accessed: Nov. 20, 2020.
[Online].
Available:https://github.com/mitchellkrogza/The-
Big-List-of-Hacked-Malware-Web-Sites

[24] TheZoo. The Zoo aka Malware DB. Accessed: Nov.
20, 2020. [Online]. Available:
http://ytisf.github.io/theZoo

[25] Virusbay. Virusbay.com. Accessed: Nov. 20, 2020.
[Online]. Available: https://beta.virusbay.io/

[26] Dasmalwerk. DAS MALWERK // malware samples.
Accessed: Nov. 20, 2020. [Online]. Available:
https://dasmalwerk.eu/

[27] Figshare. Android malware dataset for machine
learning 1. Accessed: Nov. 19, 2020. [Online].
Available:
https://figshare.com/articles/Android_malware_data
set_for_machine_learning_1/5854590/1

[28] Yerima, S. Y., & Sezer, S.: Droidfusion: A novel
multilevel classifier fusion approach for android
malware detection. IEEE transactions on cybernetics,
49(2), 453-466(2018).

[29] Ali, W.: Phishing Website Detection based on
Supervised Machine Learning with Wrapper
Features Selection. International Journal of
Advanced Computer Science and Applications
(IJACSA), 8(9), 72-78(2017).

[30] Ali, W., & Ahmed, A. A.: Hybrid intelligent
phishing website prediction using deep neural
networks with genetic algorithm-based feature
selection and weighting. IET Information Security,
13(6), 659-669(2019).

[31] Yerima, S. Y., Sezer, S., Muttik, I. High accuracy
android malware detection using ensemble
learning. IET Information Security, 9(6), 313-
320(2015).

