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Summary 
Recently, the quick development rate of apps in the Android 
platform has led to an accelerated increment in creating malware 
applications by cyber attackers. Numerous Android malware 
detection tools have utilized conventional signature-based 
approaches to detect malware apps. However, these conventional 
strategies can't identify the latest apps on whether applications are 
malware or not. Many new malware apps are periodically 
discovered but not all malware Apps can be accurately detected. 
Hence, there is a need to propose intelligent approaches that are 
able to detect the newly developed Android malware applications. 
In this study, Radial Basis Function (RBF) networks are trained 
using known Android applications and then used to detect the 
latest and new Android malware applications. Initially, the optimal 
permission features of Android apps are selected using 
Information Gain Ratio (IGR). Appropriately, the features selected 
by IGR are utilized to train the RBF networks in order to detect 
effectively the new Android malware apps. The empirical results 
showed that RBF achieved the best detection accuracy (97.20%) 
among other common machine learning techniques. Furthermore, 
RBF accomplished the best detection results in most of the other 
measures.  
Keywords: Android applications, Android malware detection, 
Radial basis function network, Feature selection 

1. Introduction 

In the last few years, the Android platform has become 
one of the most known mobile platforms for smart mobile 
devices as it is uncharged and open source. The quick 
development percentage of apps in the Android platform 
has led to a tremendous increment in creating and spreading 
Android malware apps by cyber attackers. Fig.1. illustrates 
the number of mobile malware installation packages 
detected by Kaspersky between the first quarter of 2019 and 
the first quarter of 2020 [1]. 

 
Fig.1. The number of mobile malware installation packages detected by 

Kaspersky between Q1 2019 and Q1 2020 [1]. 
 

Numerous Android malware detection tools have 
utilized the conventional signature-based approaches to 
detect malware apps periodically. However, these 
conventional strategies can't identify the latest android 
malware apps on whether the new applications are malware 
or not. Even at the official Google Play store, many new 
malware apps are periodically discovered but not all 
Android malware Apps are discovered, especially in early 
stages of publication in the Google Android Market [2,3]. 
Hence, there is a need to propose intelligent approaches that 
are able to recognize the latest Android malware apps. 

Recently, in order to address the major obstacles of the 
conventional Android malware detection approaches based 
on the signature, some popular intelligent techniques such 
as artificial neural network (ANN), support vector machine 
(SVM), Naive Bayes, and decision trees were employed in 
the existing works [4-7] to distinguish effectively the latest 
Android malware apps. 

This study proposes utilizing one of the fast neural 
networks called Radial Basis Function (RBF) networks to 
detect malware applications. The RBF networks have 
several attractive advantages such as simple structure, good 
generalization, strong tolerance to input noise, and online 
learning ability [8]. These good characteristics of RBF 
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networks make it more appropriate machine learning to be 
utilized in Android malware detection. In addition, 
Information Gain Ratio (IGR) was used to select the most 
important permission features of Android apps. The 
experimental results showed that RBF achieved outstanding 
results in most of the detection measures and accomplished 
better performance compared to other common machine 
learning techniques. 

The rest of the study is arranged as follows. Some 
selected works on intelligent Android malware detection 
based on permission features are given in Section 2. Section 
3 explains the suggested methodology of intelligent 
Android malware detection method based on Radial Basis 
Function networks and Information Gain Ratio. Section 4 
discusses the performance results of Radial Basis Function 
network with Information Gain Ratio. Lastly, the 
conclusion and future work of the proposed work is given 
in Section 5. 

2. Related Work 

The study of existing works is a very important step to 
avoid the possibility of duplicating similar problems in our 
study. In this study, we concentrate on some existing 
intelligent detection methods that used static malware 
analysis, especially based on permission features, in 
android malware detection. In the Android malware 
detection methods based on static analysis, the Android 
malware applications are detected without executing the 
Android applications. Therefore, they are simpler and 
quicker, and require less utilization of resources compared 
to the dynamic analysis-based methods.   

 

Table 1: Summary of some recent intelligent Android malware detection methods based on permission features. 

Approach Features Machine learning Feature selection 
Mining API calls and permissions 
for Android malware detection [9] 

Permissions and API 
calls  

Naive Bayes and ANN Correlation-based feature 
selection and information 

gain 
Static detection of Android 
malware by using permissions 
and API calls [10] 

Permissions and API 
calls 

Naive Bayes, SVM, MLP, 
random forest, and J48  

Information 
gain 

Exploring Permission-induced 
Risk in Android Applications for 
Malicious Application Detection 
[11] 

Individual permission 
and group of 
collaborative 
permissions.  

SVM, decision trees, 
and random forest. 

Forward selection (SFS) and 
principal component 

analysis (PCA) 

A probabilistic discriminative 
model for Android malware 
detection with decompiled source 
code [12] 

API calls and 
permissions 

Regularized logistic 
regression 

Information gain and Chi-
square  

 

K-ANFIS [13] Permission features kEFCM-based Adaptive 
Neuro-Fuzzy Inference 

System 

Information gain ratio 

DroidDetector [14] Static analysis-based 
features and dynamic 

analysis -based 
features 

Deep belief networks Frequency analysis -based 
feature evaluation 

EHNFC [15] Permission features Hybrid neuro-fuzzy 
classifier with evolving 

clustering  

Information gain ratio 

Identification of malicious 
Android app using manifest and 
opcode features [16] 

Static features from 
the manifest and 
executable files 

SVM, random forest, 
and rotation forests 

 

Entropy based Category 
Coverage Difference and 

Weighted Mutual 
Information 

Droid-HESVMGA and Droid-
HESVMPSO [17] 

Permission features evolving support vector 
machine 

Information gain ratio 

 

 

In [9], the best features of permissions and API calls were 
selected using correlation-based feature selection and 
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information gain. Accordingly, the training dataset with the 
best features was used to train Naive Bayes and ANN in 
order to detect the Android malware apps. 

In [10], Naive Bayes, SVM, MLP, random forest, and 
J48 were trained based on the best permissions and API 
calls features selected by information gain technique. The 
trained classifiers were then used to distinguish the Android 
malware apps from benign apps.  

In [11], authors used forward selection (SFS) and 
principal component analysis (PCA) to select the best 
features of individual permission and group of collaborative 
permissions. Then, SVM, decision trees, and random forest 
were trained and subsequently used to detect the Android 
malware apps. 

In [12], information gain and Chi-square techniques 
were utilized to select the best features of API calls and 
permissions. Regularized logistic regression was then 
trained and employed to detect the Android malware apps. 

In K-ANFIS [13],  kEFCM-based Adaptive Neuro-Fuzzy 
Inference System was suggested to detect the Android 
malware apps after training based on the best permissions 
features selected by information gain ratio.  

In DroidDetector [14], frequency analysis-based 
feature evaluation was used to select the best static and 
dynamic features. Subsequently, deep belief networks were 
trained and then used to detect the Android malware apps. 

In EHNFC [15], the most important permission 
features were identified by information gain ratio. 
Accordingly, hybrid neuro-fuzzy classifier with evolving 
clustering was trained and then used to detect the Android 
malware apps.  

In [16], authors used Entropy based Category 
Coverage Difference and Weighted Mutual Information to 
find the best static features from the manifest and 
executable files. Then, they trained SVM, random forest, 
and rotation forests using training data with the best features 
in order to detect the malicious Android apps.  

In [17], evolving support vector machine based on 
evolutionary algorithms called Droid-HESVMGA and 
Droid-HESVMPSO were trained with the best permissions 
features selected by information gain ratio. The trained 
Droid-HESVMGA and Droid-HESVMPSO were used to 
detect the Android malware apps.  

Table 1 shows a summary of some recent intelligent 
Android malware detection based on permission features. 
As can be seen from Table 1, the existing works used some 
popular intelligent techniques such as MLP, SVM, decision 
trees, and Naive Bayes. Unlike the existing works, our study 
utilized one of the fast neural networks called RBF 
networks to detect malware applications. Besides, 

Information Gain Ratio was used to select the most 
important permission features of Android apps. 

3. Materials and Methods 

This section explains a suggested methodology of 
intelligent Android malware detection method based on 
Radial Basis Function (RBF) and Information Gain Ratio 
(IGR). Fig. 2 shows the methodology of the proposed 
intelligent Android malware detection approach based on 
the RBF network and IGR.  

 

 
Fig. 2. The suggested methodology of intelligent Android malware 

detection approach based on RBF network and IGR 
 

As can be seen from Fig. 2., the methodology includes six 
phases: data collection, feature extraction, dataset 
preparation, IGR-based feature selection, training of RBF 
networks, and testing of RBF networks. The first five 
phases are explained in the following subsections, while the 
evaluation and testing of RBF networks will be explained 
in Section 4. 
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3.1 Data Collection of Android Malware and Benign 
Applications 

Many malware and benign applications were collected 
and analyzed by several researchers from several various 
sources such as Genome [18], Contagiodump [19], 
Certtools [20], Google Play Store [21], VirusShare [22], 
MitchellKrogza [23], TheZoo [24], VirusBay [25], and 
DasMalwerk [26]. 

Malgenome-215-dataset  [27] used by [28] was used in this 
paper. The Malgenome-215-dataset includes 1260 Android 
malware apps and 2539 Android benign apps. 

3.2 Feature Extraction 

The permission features are the most significant 
features in Android applications since they are critical in 
recognizing malware from benign applications. Android 
applications include AndroidManifest.xml as shown in Fig. 
3., which is an XML file that has all the permission features 
required to work properly in Android applications. As seen 
in Fig. 3., the permission features required to access system 
resources are declared in the AndroidManifest.xml. The 
developers of Android applications usually declare all 
permissions required to access system resources using 
<uses-permission> tags in the AndroidManifest.xml. Then, 
some tools are used to decompress the Android application 
packets, and then the permission features can be obtained 
from AndroidManifest.xml. 

 
Fig. 3. The permission features in AndroidManifest.xml that are required 

to use system resources [17] 
 

3.3 Dataset Preparation 

In machine learning, a dataset is usually organized as 
a table with rows and columns. The columns can also be 
referred to as features or ‘variables, while the rows refer to 
examples or instances. 

In the Android malware detection, the rows represent 
Android apps in the dataset while the permission features 
are the columns in the dataset. The permission features of 
Android applications are converted into numerical form to 
be effectively used in the training phase. If the feature is 
available in the application, it will be assigned to 1.  If it is 
not available, it will be assigned to 0. Table 2. shows an 
example of dataset preparation for 5 apps and 6 permission 
features in Android malware detection. 

Table 2: An example of dataset preparation in Android malware 
detection 

 
SEND 

SMS 

RECEIVE 

SMS 

GET 

ACCOUN

TS 

MAN
AGE 
ACC

OUNT

S 

USE 

CRED

ENTIA

LS 

 INSTALL 
PACKA

GES 

Class 
(Label) 

App1 1 0 1 1 0 1 
1 

(Malware) 

App2 0 1 0 0 0 0 0 
(Benign) 

App3 0 1 0 0 0 0 0 

App4 1 1 1 1 1 0 1 

App5 0 0 0 1 0 1 1 

3.4 Information Gain Ratio Based Feature Selection 

Feature selection is an extremely important step that 
can select only the most relevant and useful features to be 
used with machine learning training sets, which 
dramatically reduces costs and data volume [29, 30]. 

In this study, we used feature selection based on 
Information Gain Ratio (IGR) algorithm. IGR is one of the 
most common filter feature selections. IGR is a ratio of the 
amount of information gained about a random variable or 
signal from observing another random variable, which uses 
the information gained to rank the most useful feature. The 
filter feature selection methods rank the features 
independently, without training any machine learning 
algorithm. Therefore, they are more straightforward and 
faster compared to the wrapper methods. Hence, the filter 
feature selection methods are more suitable for mobile 
environment [17, 31].  

3.5 Training of RBF Networks 

RBF networks is a neural network with three fixed 
layers: the input layer, hidden layer, and output layer.  In 
our study, the input layer in RBF networks consists of 
several inputs or nodes that represent the permission 
features of Android apps selected by IGR as explained in 
Section 3.4. In addition to the input layer, a number of nodes 
in the hidden layer is determined by experiments. In the 
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output layer, we have just one node that represents the class 
of Android app, either malware application (1) or benign 
application (0). 

Fig. 4. shows the architecture of the RBF network with 
six inputs as an example. In Fig. 4. there are six input nodes, 
or equivalently, an input vector with six binary values.  If 
the feature is available in the app, it will be represented by 
1, otherwise, it will be represented by 0.  The hidden layer 
consists of four hidden nodes. Each hidden node has a 
centroid which is a vector with the same number of values 
as the input. RBF centroids are usually given the symbol μ. 
Each hidden node has a width (sometimes called a standard 
deviation) which is a single numeric value. RBF widths are 
usually given the symbol σ. 

 
Fig. 4. An example of the architecture of RBF network with six features 

or inputs 
 

The computed output of an RBF network depends on 
the input values, and the values of centroids, widths, and 
weights. Training of RBF network is the process of finding 
the best values of the centroids, widths, and weights.  

The simplest approach for setting the RBF parameters 
is to select centroids randomly from training data. The 
weights are determined by minimizing an objective 
function (mean-squared error), which is the difference 
between the network outputs and the target values. In this 
paper, the method of the pseudo inverse was used to find 
the best weights during the training phase of RBF networks. 

4. Results and Discussion 

In this study, RBF used to detect malware apps was 
implemented by using Python language. This section 
discusses the performance results of RBF with IGR feature 
selection method. Besides, the performance of RBF will be 
compared with other common machine learning such as 
Support Vector Machine (SVM), Decision Tree (DT), 
Multilayer Perceptron networks (MLP), and Naive Bayes 
(NB). 

4.1 Dataset Collection 

In this study, Malgenome-215-dataset [27] used by [28] 
was adopted in all experiments. Table 3 shows description 
of Malgenome-215-dataset. The Malgenome-215-dataset 
dataset consists of 3799 Android applications with 215 
features. The data includes 2539 benign and 1260 malware 
apps collected from the Android malware Malgenome 
project [18], which is one of the common sources for 
malware apps collection used by the malware research 
society. We extracted 109 permission features from 
Malgenome-215-dataset to train RBF networks. 

Table 3: Details of Malgenome-215 dataset used in the experiments.  

Number of Android apps 3799 

Number of Android malware apps 1260 

Number of Android benign apps 2539 

Number of all features  215 

Number of permission features 109 

4.2 Performance Measures 

In this study, we used hold-out validation for 
evaluating the performance of the RBF network in Android 
malware detection. In the hold-out validation, the data 
collected was randomly partitioned into two parts: training 
data (70%) and testing data (30%). 

The performance in terms of correct classification rate 
(CCR) was calculated for testing dataset to validate and 
verify the performance of Radial Basis Function (RBF) 
against Decision Tree (DT), Naive Bayes (NB), multilayer 
perceptron (MLP), and Support Vector Machine (SVM).  

In addition to CCR, some important measures were 
calculated to evaluate the performance of machine learning 
techniques. Table 4 shows the confusion matrix for Android 
malware detection. In Tables 4, TP, TN, FP, and FN 
represent true positive, true negative, false positive, and 
false negative, respectively. Based on the confusion matrix, 
True positive rate (TPR), false positive rate (FPR), true 
negative rate (TNR), false negative rate (FNR), and area 
under ROC curve (AUC) were also computed to validate 
the performance of the machine learning techniques.  

Table 4: The confusion matrix for Android malware detection. 

 
Classified as 

malware 
Classified as 

benign 

Malware app TP FN 

Benign app FP TN 
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The performance measures used to evaluate the proposed 
method are described in the following: 

 CCR: The rate of malware and benign apps 
correctly classified with respect to all the apps as 
shown in Eq. (1). 

               𝐶𝐶𝑅 ൌ
்௉ା்ே

்௉ାி௉ାிேା்ே
ൈ 100         (1) 

 TPR: The rate of malware apps classified as 
malware out of the total malware apps as shown in 
Eq. (2). 

𝑇𝑃𝑅 ൌ
்௉

்௉ାிே
ൈ 100                     (2) 

 TNR: The rate of benign apps classified as benign 
out of the total benign apps as shown in Eq. (3). 

  𝑇𝑁𝑅 ൌ
்ே

்ேାி௉
ൈ 100                   (3) 

 
 FPR: The rate of benign apps classified as malware 

out of the total benign apps as shown in Eq. (4). 

                𝐹𝑃𝑅 ൌ
ி௉

ி௉ା்ே
ൈ 100                    (4) 

 FNR: The rate of malware apps classified as 
benign out of the total malware apps as shown in 
Eq. (5). 

 𝐹𝑁𝑅 ൌ
ிே

ிேା்௉
ൈ 100                    (5) 

 AUC: This metric measures the trade-off between 
TPR and FPR as shown in Eq. (6). 

 𝐴𝑈𝐶 ൌ
ଵା்௉ோିி௉ோ

ଶ
ൈ 100               (6) 

4.3 Performance of RBF with Changing Parameters 

To ensure the best performance for the RBF network, 
we performed many experiments with changing the number 
of hidden nodes and the value of Sigma(σ) until we reached 
the best result for the RBF network. Table 5 shows the best 
performance measures of the RBF network with the 
corresponding number of hidden nodes and the value of 
Sigma. 

Table 5: The best performance of the RBF Network with the 

corresponding number of hidden nodes and Sigma(σ). 

Type of features used 
in the training 

Permission features 

# Hidden nodes 380 
Sigma(σ) 0.09 

CCR 97.20 % 
TPR 94.80 % 
TNR 98.40 % 
FPR 1.60 % 
FNR 5.20 % 
AUC 96.60 % 

4.4 Comparison of RBF against Other Common 
Machine Learning Techniques 

This section discusses the performance of RBF compared to 
machine learning before IGR-based feature selection.  Table 
6 displays the performance measures of RBF, DT, NB, 
SVM, and MLP used in Android malware detection for 
testing data before applying IGR-based feature selection. 

Table 6: A comparison of RBF performance against other machine 
learning before applying IGR-based feature selection. 

 CCR TPR TNR FPR FNR AUC 

DT  96.00 95.60 96.20 3.80 4.40 95.90 

NB  60.20 98.70 40.50 59.50 1.30 69.60 

SVM 96.80 92.70 98.90 1.10 7.30 95.80 

MLP  96.70 95.10 97.50 2.50 4.90 96.30 

RBF  97.20 94.80 98.40 1.60 5.20 96.60 

 
From Table 6, we can notice the following important 
remarks: 

 In terms of CCR measure, DT, SVM, MLP, and 
RBF achieved good accuracy. The best accuracy 
(97.20%) was achieved by RBF while the worst 
accuracy (60.20%) was produced by NB.  

 In terms of TPR measure, NB performed the best 
TPR (98.70%) while the worst TPR (92.70%) 
was produced by SVM. 

 In terms of TNR measure, the best TNR  nearly 
(99%) was accomplished by SVM and RBF while 
the worst TNR (40,50%) was produced by NB. 

 In terms of FPR measure, the best FPR nearly 
(1%) was accomplished by SVM and RBF while 
the worst FPR was produced by NB (59.50%). 

 In terms of FNR measure, the best FNR was 
accomplished by NB (1,30%) while the worst 
FNR was produced by SVM (7,30%). 

 In terms of AUC measure, the best AUC was 
accomplished by RBF (96,60%) while the worst 
AUC was produced by NB (69,60%). 

 
From Table 6, we can also observe that RBF accomplished 
the best results in most of the measures. That means RBF 
can detect correctly both malware and benign apps. On the 
other hand, NB classified most of the Android apps as 
malware apps since NB produced the highest TPR (98.70%). 
However, NB was not able to correctly identify the benign 
apps since NB produced the worse TNR (40.50%). 
Accordingly, NB performed the worst CCR (60.20%) and 
AUC (69.60%). 
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4.5 Comparison of RBF against Other Machine 
Learning After Applying IGR-Based Feature 
Selection 

The performance of RBF and other machine learning 
were compared after applying the top thirty features 
selected by IGR in this section. Table 7 shows the 
performance of RBF, DT, NB, SVM, and MLP in Android 
malware detection for testing data after applying the top 
thirty features selected by IGR. 

Table 7: A comparison of RBF performance against other machine 
learning with the top thirty features selected by IGR. 

 CCR TPR TNR FPR FNR AUC 

DT 91.70 79.50 97.90 2.10 20.50 88.70 

NB 58.60 99.70 37.50 62.50 0.30 68.60 

SVM 91.60 80.30 97.30 2.70 19.70 88.80 

MLP 91.80 80.10 97.70 2.30 19.90 88.90 

RBF 92.00 79.50 98.40 1.60 20.50 89.00 

 
From Table 7 we can observe the following points: 

 In terms of CCR, all RBF, DT, SVM, and MLP 
achieved good accuracy but not more than (92%). 
The best accuracy was achieved by RBF while the 
worst accuracy was produced by NB (58.60%).   

 In terms of TPR, NB performed the best TPR 
(99.70%) while the worst TPR was produced by 
RBF and DT (79.50%). 

 In terms of TNR, the best TNR was accomplished 
by RBF (98.40%) while the worst TNR was 
produced by NB (37.50%). 

 In terms of FPR, the best FPR was accomplished 
by RBF (1.60%) while the worst FPR was 
produced by NB (62.50%). 

 In terms of FNR, the best FNR was accomplished 
by NB (0.30%) while the worst FNR was produced 
by RBF and DT (20.50%). 

 In terms of AUC, the best AUC was accomplished 
by RBF (89%) while the worst AUC was produced 
by NB (68.60%), as shown in Table 7. 

From Table 7, we can observe NB classified most of the 
Android apps as malware apps since NB produced the 
highest TPR (99.70%). However, NB was not able to 
correctly identify the benign apps since NB produced the 
worse TNR (37.50%). Accordingly, NB performed the 
worst CCR (58.60%) and AUC (68.60%). On the other hand, 
RBF accomplished the best results in most of the measures. 

This indicates that RBF can detect correctly both malware 
and benign apps.  

5. Conclusions and Future Work 

In Android malware detection, most of the 
conventional methods are unable to make decisions 
accurately and perfectly on whether the new Android apps 
are malware or benign. This study aims to develop 
intelligent Android malware detection using Radial Basis 
Function Network and information gain ratio in order to 
overcome the limitations of the conventional Android 
malware detection approaches. The results demonstrated 
RBF accomplished better results in most of the measures 
compared with other common machine learning techniques. 
The suggested intelligent RBF-based Android malware 
detection method can be used to contribute to detect the 
newly developed Android malware applications in order to 
protect Android users and devices from Android malware 
applications. 

Although all objectives established for this study have 
been accomplished, there are a few limitations. Due to time 
constraints, in our study, we only used hold-out validation 
for evaluating the RBF network. K-fold cross-validation 
can be also used for more validation. Besides, centroid 
values of RBF are generated randomly in our study. K-
Means clustering algorithm can be used to find the best 
values of the centroid in order to produce better 
performance. 
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