
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

191

Manuscript received July 5, 2021
Manuscript revised July 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.7.23

Beyond SDLC: Process Modeling and Documentation Using
Thinging Machines

Sabah Al-Fedaghi

Computer Engineering Department
Kuwait University, Kuwait

Summary
The software development life cycle (SDLC) is a procedure used
to develop a software system that meets both the customer’s needs
and real-world requirements. The first phase of the SDLC
involves creating a conceptual model that represents the involved
domain in reality. In requirements engineering, building such a
model is considered a bridge to the design and construction
phases. However, this type of model can also serve as a basic
model for identifying business processes and how these processes
are interconnected to achieve the final result. This paper focuses
on process modeling in organizations, per se, beyond its
application in the SDLC when an organization needs further
documentation to meet its growth needs and address regular
changes over time. The resultant process documentation is created
alongside the daily operations of the business process. The model
provides visualization and documentation of processes to assist in
defining work patterns, avoiding redundancy, or even designing
new processes. In this paper, a proposed diagrammatic
representation models each process using one diagram comprising
five actions and two types of relations to build three levels of
depiction. These levels consist of a static description, events, and
the behavior of the modeled process. The viability of a thinging
machine is demonstrated by re-modeling some examples from the
literature.
Key words:
documentation; process documentation; process model; process
specification; conceptual model

1. Introduction
The software development life cycle (SDLC) is a procedure
used to produce a software system that meets both the
customer’s needs and real-world requirements. The first
phase of the SDLC involves creating a conceptual model
that represents the involved domain in reality. In
requirements engineering, building such a model is
considered a bridge to the design and construction phases.
However, outside of the SDLC context, a similar type of
model can serve as a basic apparatus for identifying the
flows of activities (steps of a task) in an organization’s
processes (e.g., information technology [IT], business,
physical, or cyber procedures) and how these processes are
interconnected to achieve the final result. In this context,
processes refer to various workflows such as transforming
materials, delivering services, or handling data/information
revealing how the organization works from the inside [1].
According to the International Organization for
Standardization (ISO) 9001, one must organize and

maintain information regarding various processes relevant
to the organization’s systems. For example, the ISO
9001/2015 auditing procedure requires one to show
organized “system documents with the most updated
information and have it available and within reach for
management and employees who need to refer to it” [2].

This paper concentrates on process documentation in
organizations based on process modeling. We propose a
non-flowchart-based modeling methodology with which to
construct process documentation for processes in an existing
system. The diagrammatic model represents each process
using one diagram comprising five actions and two types of
relations to build three levels of representation: a static
description, events, and the behavior of the modeled
process. The viability of a thinging machine (TM) is
demonstrated by re-modeling some examples from the
literature.

1.1 What Process Documentation? Process Modeling?

According to economist W. E. Deming, “If you can’t
describe what you are doing as a process, you don’t know
what you’re doing.” An organization’s processes define
how products and services are developed, manufactured,
and delivered [3]. In this context, processes address an
organization’s internal aspects and structures, and they
cover managerial and technical aspects, particularly the
deployed IT infrastructure. A process may be specified in
text or diagram form, or it may be written in a formal
language. Typically, flowchart-based descriptions are used
to develop a model and the so-called workflow
specifications. In addition to flowcharts, many other
techniques and tools are used in conjunction with processes,
such as DFDs, UML, and Petri nets. Process modeling
provides the visualization and documentation of processes
to assist in defining work patterns, avoiding redundancy, or
even designing new processes. Process documentation is a
form of documentation schematics that describe how to
perform a business process. Its functions include the
following:
 Communication: A source of explicit knowledge besides

other forms of documentation, such as technical
documentation and requirement specifications [4].

 Blueprint: A guide for understanding enterprise processes
and process automation.

 Change and improvement: A tool for refining productivity
and aligning with new goals.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

192

Process documentation is produced alongside the daily
operations of a business process, rather than within the
requirements engineering phase of the SDLC. It is what is
called a conceptual model during the SDLC—a
diagrammatic representation “created in an agreed modeling
language” [3]. In physical systems, process documentation
is developed when a new process is set up.

1.2. Problem and Solution

An organization may lack process documentation for
various reasons, including a deficiency in requirements
development or the adaptation of a finished software system
product. Documenting and updating a business process are
difficult tasks. In many situations, documentation likely will
not be done unless it is mandatory (e.g., legally). Many
enterprises use documents as high-level memos. According
to Chaffee [5], “None of them [documents] could be given
to a new hire to use in training or to help them understand
how to do their job. They don’t actually help employees do
their jobs better.” Documenting processes may include
many processes, each with many pages, resulting in a large
volume of seldom used papers. One way to meet this
challenge is standardization (e.g., ITIL). Another approach,
as proposed in this paper, is to adopt a new type of
diagrammatic-based modeling that reduces the central parts
of documentation to a single diagram for each process.

1.3. Examples of the New Approach to Process
Modeling

Because our method focuses on modeling a process using a
single three-level diagram, it is beneficial to clarify the
types of diagrams proposed in this paper right from the start.
Hence, Figs. 1 and 2 provide samples of process models.

Fig. 1 models a process performed by a network engineer
working in an actual environment. The process includes a
client computer; multiple switches, routers, servers,
security elements, users, and protocols; and many other
subprocesses. The network administrator (circle 1 in the
figure) logs into his/her active directory and performs tasks
such as (a) adding a new user name and assigning
privileges, and (b) designating the client computer name by
logging into the user’s computer (2). Similar processes are
followed for deleting a user name and a computer name.
Accordingly, an account and its password are given to the
user who logs in (3). Complete details of this process
documentation can be found in [6].

The above example involves an IT process. Process
documentation may involve a physical process, such as the
process of filling cargo oil, which involves tanks that bring
crude oil from oil-field centers to vessels in ports, as shown
in Fig. 2. Of course, the modeling may include the IT
processes as part of the physical process. More details
about this project can be found in [7].

1 2 3

Fig. 1. The process of adding or removing a user from the network.

Fig. 2. The process of cargo oil filling.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

193

2. Documenting Processes in Organizations

Process documentation is described as a roadmap that
shows how work is done and includes a graphical depiction
of the organization’s processes [8]. According to René et al.
[1], an example of process documentation is a building
permit procedure that involves several services of the public
administration at various levels. Administrations need a way
to understand one another’s ways of handling administrative
procedures through a common language (e.g., Business
Process Model and Notation [BPMN] 2.0).

Process documentation is difficult [8]. A 2017 survey
of 1,500 global IT leaders reported that “poor process
documentation is one of the five biggest IT failures of all
time” [9]. For example, when it comes to network and
information security threats, organizational processes—“the
way in which things are done”—create serious
cybersecurity vulnerabilities to threats due to internal
process failures, including poor process flow and poor
process documentation [10].

Flowchart-based methods are usually adopted to describe
processes (e.g., classical flowcharts, UML activity diagrams,
flow diagrams, and DFDs). These notations lack genericity,
which refers to a limited set of elementary actions. An
alternative tool exists. For example, Figs. 1 and 2 in the
introduction were developed using what is called the TM.

2.1. TM Modeling

To illustrate how the TM differs from other techniques, we
introduce Six Sigma process maps [11], which are shown in
Fig. 3. According to the Six Sigma Institute [11], “Process
maps help characterize the functional relationships between
various inputs and outputs… Process mapping is a graphics
technique for dissecting a process by capturing and
integrating the combined knowledge of all persons
associated with the process.” The Six Sigma Institute [11]
provides Fig. 3 as an example of such a graphics technique,
which involves the process of using a telephone. Fig. 4
shows the TM representation of this process, which is
described in more detail in this paper.

In Fig. 4, first, the person (circle 1) receives the
telephone, in the sense that he/she possesses a telephone (2),
and processes (uses) it (3) by dialing its numbers. This
causes a ringing sound (4), which is the result of sending
signals to the other side. The reaction is either receiving a
response (5) or silence (6). If a response is received, then
this initiates a reply (7), thus starting a conversation (8).
Note that Fig. 4 utilizes only two generic verbs: “process”
and “create.” In general, the TM utilizes five such actions
(create, process, release, transfer, and receive), which are
discussed later in this paper. The solid arrows in Fig. 4
denote flows, and the dashed arrows indicate triggering.

Fig. 5 shows the division of the TM model for using a
telephone into seven events. Fig. 6 shows the behavior of
the modeled process. In contrasting the TM representation

with the Six Sigma flowchart, the TM shows far richer
semantics and simple specification.
After this outline of the types of proposed diagrammatic
notations, we return to the issues related to process
documentation in general.

Event 2 Event 3

Event 1

Fig. 5. Events in the process description of using a telephone.

Person

Numbers

Process

Telephone

Conversation

 Ringing

Create Speaking

 Person chat

 Listening

 Talk response

Silence

Process:
Hang Up

Process: Use

Create

Process

Process

Event 4

Event 5

Event 6

Event 7

Fig. 3. Six Sigma process flowchart (adopted from [11]).

Event 1 Event 2 Event 3

Event 4

Event 5

Event 6

Event 6

Use
phone

Dial Ringing

Response

No response

Conversation

Hang
up

Fig. 6. Behavioral model of the process of using a telephone.

Fig. 4. The process description of using a telephone.

Person

Numbers

Process

Telephone

Conversation

Ringing

Create Speaking

 Person chat

 Listening

 Talk response

Silence

Process: Hang Up

Process: Use

Create

Process

Process

1
2

3

3

4

5

6

7

8

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

194

 2.2. Advantages of Process Documentation

 Process documentation provides a foundation on which to develop
information and communication technologies, maintain information
systems, and enable IT units and organizational units to work together
effectively and efficiently [12].

 An organization’s ability to reorganize resources dynamically and
adjust to changing environmental settings is essential for business
success [4]. It is essential to monitor change within an organization.
Consequently, process documentation is a tool for understanding the
different phases of the business-process life cycle.

 Process documentation offers employees insights into their job roles,
the entire business process, and their interdependencies with others.
This facilitates communication because it can only be done jointly
among several employees [12].

 A documented process may serve many purposes. It can provide a
baseline for analysis and the opportunity to improve organizational
cohesion, identify bottlenecks and inefficiencies, provide training to
employees, and provide a means for objective evaluation [8].

2.3. Relationship between Process Documentation and

Modeling

As mentioned previously, modeling can assist during the
requirements phase of software development and, in fact,
throughout the entire SDLC process. This paper focuses on
using process modeling in organizations, per se, beyond its
application during the SDLC, when an organization needs
further documentation to meet its growth needs and address
regular changes over time. Time and growth are usually
accompanied by complexity. Documentation, re-
documentation, and extra documentation are steps for
handling such an increase in complexity. Process modeling
describes the actors, activities, event sequences, and
manipulated objects. Different parts of an organization can
utilize a process model. For example, in the BPMN context,
a model can be constructed for each task separately,
whether it is a so-called human task, service task, or user
task. Chow et al. [13] propose three distinct values delivered
through the use of process modeling: further (a) efficiency
(by reducing operational costs, improving productivity, etc.),
(b) control (ensuring compliance, improving visibility, and
managing the process outcomes), and (c) agility (adapting
quickly to changing world conditions, e.g., having the speed
to create and change processes).

3. How to Document Processes: The Thinging
Machine

 “Thinging” is a term borrowed from the German
philosopher Heidegger [14], who suggested that thinging
expresses how a thing things—for example, how an
organization gathers or ties together its constituent parts.
The term “machine” comes from viewing any organization
simultaneously as a (holistic) thing and as an (operational)
machine. The TM reduces millions of actions in English to
just five actions: create, process, release, transfer, and
receive (see [15] for references). For example, a customer
submitting an order can be expressed as follows:

The customer creates an order and may put it on hold for a
while, so it is in the release state (e.g., creating an email but
not sending it); then, the customer transfers the order.
Transfer on the company side denotes the company’s input
(e.g., a port or incoming/outgoing tray) before the item or
message actually is received (e.g., an order may arrive but
may never be received due to it being misplaced).
Continuing with the stream of actions above, the company
processes the order; (a) triggers the creation of an invoice,
which is sent to the customer; and then (b) forwards the
order to the inventory. Such a process inside the company is
modeled as follows:

Note that the two models of the processes given in the
introduction—the models of adding to or removing from a
network and cargo oil filling—are constructed based on the
repeated usage of these five generic verbs. TM notations are
simple because they include just the (a) five verbs, (b) a
solid arrow denoting the flow, and (c) a dashed arrow
denoting triggering. Additionally, the TM can model the
dynamic features (the execution of the modeled process)
and time events (as demonstrated in the telephoning process
discussed previously) without using any additional notation,
as detailed later. In this paper, we propose using the TM as
a documentation tool for existing IT, cyber-physical, or
physical processes within organizations. We propose
developing one diagram (including static dynamic/events
and behavior models) for each process. The rest of this
paper applies the TM to larger case studies to exhibit
different features of TM modeling.

4. Case Study 1 of Process Documentation

According to Rábová [16], the UML is OMG’s most
frequently used specification and is how the world models
not only an application’s structure, behavior, and
architecture but also business processes, workflows, and
data structures. An activity diagram is a “good way to show
how different workflows are managed, how they start, go
and stop and show many different decision paths that can be
taken from start to finish” [16]. Rábová [16] provides a
sample case of the “order making” process, modeled as the
activity diagram shown in Fig. 7.

→Process→Release→Transfer→Transfer→Receive→ …

↓

Company (reception)

Create an invoice

Company (inventory)

Release

Transfer

↓

(To customer)

Create (an order)→Release→Transfer→Transfer→Receive

Customer side Company side

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

195

In the example, activities relating to particular entities
within the model are placed within swimlanes to indicate
their association. In activity diagrams, we can map, measure,
and interpret all aspects of workflows and business
documents.

The purpose of Fig. 7 is not to discuss the activity model but
to present a general view of the flowchart-based modeling
used. The details of this “order making” process can be
found in [16]. We will translate this process into TM
representation.

Fig. 8 shows the corresponding TM model, developed to the
best of our understanding, of the model involved in [16].

Fig. 8 contains five TM machines: the customer (circle 1),
management (2; of the system), the inventory (3), the
supplier (4; of raw materials), and production (5; of
products). We assume that the order structure, which is
analogous to the UML conceptual class, contains three
attributes of the order: the product number, date, and
customer information (6). Each attribute includes the action
create to indicate that the attribute must be filled with a
value. Filling these values results in the order being created
(7). The order flows (8) to the management system, where it
is processed (9).

 If the order is not OK (10; e.g., if it is incomplete), then
this triggers (11) the creation (12) of a cancel
notification, which flows to the customer (13).

 If the order is OK (14), then this causes the order to be
sent to the inventory (15 and 16).

In the inventory, the order is processed (17) to trigger the creation
of a reply (18) to management indicating whether the product is
available (19) or unavailable (20).

 If the product is available in the inventory, then this
triggers (21) the creation (22) of an invoice, which
flows to the customer (23).

Accordingly, the customer reacts by creating a payment (24;
the upper-left corner of the figure). The payment is sent to
the management system (25), where it is processed (26).

 If the payment is not OK (26), it is not clear in the
given activity diagram how this should be
handled; hence, we leave it because no further
action can be taken here.

Fig. 7. Partial view of the UML activity diagram of order making

(partially from [14]).

Fig. 8. Static TM model of the order-making process.

Process: OK?
No Yes Create

Product No.

Cancel
Notification

Purchase materials

Order Date Customer Address

Create

Create Create Create

 Inventory

Process:
Available?

No

Yes

Transfer

Receive

Receive Transfer

Create Transfer

Create

Invoice

Product No.

Payment

Customer
Infor.

Create Create

Payment
Proof

Create

Process: OK? No Yes Transfer

Delivery Request

Delivery
of

Product

Customer

Release
Supplier

Release

T
ra

ns
fe

r

R
ec

ei
ve

Pr
oc

es
s

T
ra

ns
fe

r

R
el

ea
se

C
re

at
e

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

T
ra

ns
fe

r

R
ec

ei
ve

Pr
oc

es
s

Release

Release Transfer Transfer

Transfer

Release

Transfer

Receive

Management

T
ra

ns
fe

r

T
ra

ns
fe

r

R
el

ea
se

C
re

at
e

Transfer

Receive

T
ra

ns
fe

r

R
el

ea
se

C
re

at
e

Production

R
el

ea
se

C
re

at
e

Process

Receive

Transfer

Receive

Process

Transfer

1

2
3

4

5

6

7

8

9

10
11

12

13

14

15 16 17

18

20

19

21

22 23

24

28

25

26 27

29

30

31

32

33 34 35

Materials 36

37

38 39

Transfer

Release

Transfer Release Create

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

196

 If the payment is OK, then a delivery request is

created (27) and sent to the inventory (28).
In the inventory, the instruction is processed (29; the
bottom- right corner) to trigger (30) the product’s release
(31) to the customer (32). Going back to the case in which
the product is not available in the inventory (20), this
triggers the creation (33; the red circle in the middle of the
figure) of a purchase-material order, which flows to the
supplier (34), where it is processed (35). Accordingly, the
supplier creates the materials (36), which flow to production
(37), where they are processed to create the product (38),
which flows to the inventory (39).

The behavior of the order-making process is defined by
identifying the event regions in the TM model to produce
the dynamic description. An event in the TM is defined in
terms of a time and region (sub-diagram of Fig. 8). For
example, Fig. 9 shows the event The customer sends a
payment to management.

For simplicity’s sake, we use only the region to denote the
event. Accordingly, Fig. 10 shows the following events,
where Event i is denoted by Ei.
E1: A customer creates an order and sends it to the
management system.
E2: Management processes the order.
E3: The order is not OK; hence, a cancel notification is sent
to the customer.
E4: The order is OK; hence, it is sent to the inventory.
E5: The inventory reports on the availability/non-availability
of the ordered product to management.
E6: Management processes the availability/non-availability
of the ordered product.
E7: The ordered product is available; hence, an invoice is
sent to the customer.
E8: The customer sends a payment.
E9: Management processes the payment.
E10: The payment is not OK (further actions not specified in
[14]).
E11: The payment is OK; hence, a delivery request is sent to
the inventory.
E12: The inventory sends the product to the customer.
E13: The ordered product is unavailable in the inventory.
E14: Materials are purchased from the supplier.
E15: The supplier sends the materials to production.
E16: Production makes the product and supplies it to the
inventory.
Fig. 11 shows the behavioral model in terms of the
chronology of events.

Fig. 10. Events TM model of the order-making process.

Process: OK? No Yes Create

Product No.

Cancel
Notification

Purchase Materials

OrderDate Customer Address
Create

CreateCreateCreate

 Inventory

Process:
Available?

No

Yes

Transfer

Receive

Receive Transfer

Create Transfer

Create

Invoice

Product No.

Payment

Customer
Infor.

CreateCreate

Payment
Proof

Create

Process: OK? No Yes

Transfer
Delivery Request

Delivery
of

Product

Customer

Release
Supplier

Release

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

T
ra

ns
fe

r

R
el

ea
se

C
re

at
e

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

T
ra

ns
fe

r

R
ec

ei
ve

P
ro

ce
ss

Release

Release Transfer Transfer

Transfer

Release

Transfer

Receive

Management

T
ra

ns
fe

r

T
ra

ns
fe

r

R
el

ea
se

C
re

at
e

Transfer

Receive

T
ra

ns
fe

r

R
el

ea
se

C
re

at
e

Production

R
el

ea
se

C
re

at
e

Process

Receive

Transfer

Receive

Process

Transfer

E1

Materials

Transfer

Release

Transfer Release Create

E2

E3

E14

E1

E11 E10

E8

E9

E7

E6

E5

E4

E13

E15

Transfer Release Create

Receive

Transfer 25

Payment

Region

Customer

Management

24 Transfer

Receive

Transfer

Release

Process

Time

Fig. 9. The event The customer sends a payment to management.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

197

5. Case Study 2
Schenker [8] models a product-order process
(https://www.site.uottawa.ca/~bochmann/ELG7187C/Cours
eNotes/BehaviorModeling/Petri-nets/index.html) similar to
the order-making process presented in the previous section,
using a UML activity diagram, a use case, and Petri nets, as
shown in Figs. 12, 13, and 14. This case study provides an
opportunity to contrast the TM diagrams with these
modeling forms. We observe the following:

 The activity diagrams, use cases, and Petri net models lack
the notion of the generic action of the TM model. Thus, in
general, millions of “activities” may be proportional to verbs
in English.

 Activity diagrams, use cases, and Petri net models fail to
distinguish sharply between a static description and event and
behavioral specification. Thus, actions and time-oriented
events are condensed into the same type of flat diagram. In
the TM, events are identified at a second level of the
diagrammatic representation to facilitate defining the
chronology of events.

The Petri net model is distinctive as a formal notation.
Hence, a TM mathematical foundation must be developed,
either independently or based on Petri nets. Some efforts
have already been made in this direction.

6. Documenting Physical Multiparty Processes
According to Meroni and Plebani [17], many business
processes now cross the boundaries of single organizations,
thus becoming multiparty processes. This also affects the
goods involved in the process and means that multiple
organizations may manipulate and alter the process when it
is executed. Meroni and Plebani [17] and others (e.g., [18])
explore the monitoring of multiparty business processes,
which involves monitoring smart physical objects (they are
aware of their own conditions). Meroni and Plebani [17]
present a case study concerning the process of the shipment
of dangerous goods. The actors are a manufacturer, a
customer, and a truck driver that are involved when
potentially explosive chemicals must be delivered from the
manufacturer to the customer. The delivery process is
organized according to the BPMN [19] model shown in Fig.
15. This case study provides an opportunity to apply the TM
to document a physical process, as shown in Fig. 16, in
which the following occur:

 The manufacturer (circle 1) has storage (2), which includes
smart tanks (3) containing sensors (4).

 To start the filling operation, a tank is taken from the storage
(5) to attach (6) with a hose (7). We assume that the hose is
the source of the dangerous goods that will fill the tank.

 Accordingly, a “fill unit” is formed from the tank and hose (8),
and the filling process begins.

 During the filling process, two possibilities are as follows:
- The sensor in the tank (10) issues a leakage alarm
(11), which the manufacturer’s observers receive
(12), triggering (13) the detachment of the tank from
the hose (14).

E1 E2

E3

E4 E5 E7 E88 E9

E10

E11 E12 E13

E14

E15

E6

Fig. 11. The TM behavioral model of the order-making process.

Receiving
an order

Cancel the
order

Send to inventory Available Invoice Payment
Payment
not OK

Payment
OK Deliver to

customer

Not available

Purchase
material

Make material and supply
inventory

Fig. 14. The product-order process in Petri nets (from [8]).

 …

Fig. 12. The product-order problem in an activity diagram (from [8]).

…

Fig. 13. The product-order problem in a use case (from [8]).

…

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

198

Storage

 Transfer

Receive

Process: Attach

 Create

Process: Fill

(Tank/Sensor) + Hose

Fill unit

 Sensor Create

Leak alert

Receive

Process: Detach

 Create Transfer
Filled Alert

Receive

Process: Detach

Filled Smart Tank

Transfer

Hose

Transfer

Create

Smart Tank

Sensor Create

Manufacturer

Transfer Receive ReleaseCreate TransferRelease

Leak Alert

Create

Release Transfer

?

Transfer
Truck

Receive

Transfer
Receive

Release

Transfer

Transfer

Shipper

Transfer
Release

Road

Receive

Transfer
Truck

Process

Release

Transfer

 Sensor Create

Overheating Alert

Process: Abort

Create

Driver

Transfer

Receive

Release Transfer

Notification

Release TransferCreate

Authorities

Transfer

Release

Transfer
Customer

Process Filled Smart Tank Transfer Receive Receive

1

2

3

4

5

20

15

19
18

16

17

21

13

22

23

24

25
26 29

28

30

31

32

14

6

Release

7

8

9

10
11

12

Tank

Fig. 16. The TM static model for monitoring smart physical objects.

Fig. 15. Partial view of the BPMN diagram for the process of shipping dangerous goods (from [17]).

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

199

- The sensor in the tank issues a completion alarm
(15), which the observers receive (16), triggering
(17) the detachment of the tank from the hose (18).

 The completion of the filling results in the appearance
(19) of a filled tank (20), which moves to the truck
parked in the manufacturer’s area (21).

 The truck carrying the tank begins its journey on the
road (22) and thus becomes the responsibility of the
driver (23).

 The sensor in the tank (24) may issue an overheating
alarm (25) in the tank. This alarm is received (26) by
the driver (27). In this case, the driver aborts the
mission (28) and contacts the authorities (29 and 30).

 If no alarm occurs on the road, the truck reaches the
customer (31), where the tank is delivered (32).

Fig. 17 shows the TM event model with the following
events, where Ei denotes event i.
E1: A smart tank is brought from the storage.
E2: The tank is sent to the place where it is attached to the
filling hose.
E3: The hose is brought to be attached to the tank.
E4: The tank and the hose are attached.
E5: A filling unit is created.
E6: The filling process is performed.
E7: A leak alert occurs, which the control unit observes.
E8: The tank is detached, and a procedure (not described in
the original problem) is performed.

Fig. 17. The TM events model of monitoring smart physical objects.

Storage

 Transfer

Receive

Process: Attach

 Create

Process: Fill

(Tank/Sensor) + Hose

Fill unit

 Sensor Create

Receive

 Create Transfer
Filled Alert

Receive

Process: Detach

Transfer

Hose

Transfer

Create

Smart Tank

Sensor Create

Manufacturer

Transfer Receive Release Create Transfer Release

Leak Alert

Create

Release Transfer

?

Transfer

Truck

Receive

Release

Transfer

Transfer

Shipper

Transfer
Release

Road

Receive

Transfer
Truck

Process

Release

Transfer

 Sensor Create

Overheating Alert

Process: Abort

Create

Driver

Transfer

Receive

Release Transfer

Notification

Release Transfer Create

Authorities

Transfer

Release

Transfer
Customer

Process Filled Smart Tank Transfer Receive Receive

E1
Release

Tank

E2
E3

E4

E5

E6

E7

E8

E9
E11

E12

E13

E14 E15 E17

E16

E18

E19 E20

Process: Detach

Filled smart tank

Transfer
Receive

E10

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

200

E9: A filled-tank alarm occurs, and the control unit observes
it.
E10: The filled tank is detached.
E11: The filled tank is loaded on the truck.
E12: The truck moves to the road.
E13: The truck is driven on the road, on its way to the
customer.
E14: A leak alert occurs.
E15: The driver hears the alert.
E16: The driver aborts the mission.
E17: The driver notifies the authorities.
E18: The truck reaches the customer.
E19: The tank is unloaded from the truck.

Fig. 18 shows the behavioral model in terms of the
chronology of events for the physical objects being moved.

7. Conclusion

The focus of this paper has been on documenting and
modeling business processes, whether IT, business,
physical, or cyber processes. Often, these models either are
not constructed or are produced but not systematically
maintained, thus creating so-called “pollution” in the
organization’s process-model repositories [20]. We have
proposed a non-flowchart-based modeling methodology
(TM) with which to construct process documentation for a
currently existing system.

7.1. Advantages of the TM Model

A diagrammatic TM model represents each process using
one diagram with five actions and two types of arrows to
build three levels of representation: a static description,
events, and the behavior of the modeled process (Fig. 19).
Such an explicit distinction between a description, events,
and behavior is unique to the TM, in comparison with other
flat, one-level tools, such as flowcharts, UML diagrams,
and DFDs. We claim that the TM would be a useful tool
for managing processes in the same way that network
engineers utilize network maps. The diagram’s size is
compensated for by the simplicity of the repeated usage of
its five actions and two types of arrows. The viability of the
TM is demonstrated by re-modeling some examples from
the literature.

7.2. Alleged Complexity of the TM Model

According to a referee, the TM diagrams are not very
helpful. If the objective is to provide a better notation for
modeling such that it provides a basis for rigorous analysis
and reasoning and documentation, then these diagrams are
not suitable. Each TM diagram is very busy.

All these diagrams include a group of rectangles and circles
and arrows, and they seem to be arbitrarily arranged on a
page. The purpose of modeling is to make complex
phenomena easier to understand and more intuitive. The
behavior models do not help understand much either. They
are a group of circles with arbitrary arrows attached to
them. What is an arrow? A transition? A data flow? A
control flow? An edge connecting a node to another node?

Many previous papers (e.g., [21-22] and their references)
have explained the basic notions of the TM model. They
include the following:

 Things (roughly correspond to UML objects). A
thing is a more general notion than an object. It is
based on the German philosopher Heidegger’s
[14] notion of a sharp distinction between objects
and things and his claim that the word “thing” is
richer and more meaningful.

 Generic actions: create, process, release, transfer
and receive. TM claims that diagrammatic
modeling can be accomplished by using only
these actions.

 Flows (denoted by arrows). The TM flows denote
the conceptual movement of things among generic
actions in their context.

These are all notations of the TM model. Events are
specified over sub-diagrams of the static diagram, so this
does not require additional notation. The term transition is
not used in TM. It comes from the state diagram
terminology, which does not distinguish between static and
events levels. The state diagram is a one-level
representation that does not involve time, a notion
necessary for events.

E1 E2

E3
E4 E5 E6

E7 E8

E9 E10 E11 E12 E13

E14 E15

E16

E17

E18 E19 E20

Fig. 18. The behavioral model.

Fig. 19. The three-level TM model

Static

Events

Behavior

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

201

Accordingly, the claim that the TM diagram is a group of
rectangles and circles (circles are used for mere explanation
of different spots on the diagram, but they are not in TM
notation) and arrows, and they seem to be arbitrarily
arranged on a page, is not justified. The five generic actions
are systematically repeated based on a TM that specifies
the permitted flow. They enrich and reduce the
specification to a generic level (no more basic actions).

Additionally, it is claimed that the TM is a complex tool to
be used for modeling, say, in comparison with the standard
modeling language UML. The apparent complexity is the
result of completeness of specification. Nevertheless, the
TM diagram can be reduced greatly by several
simplification processes.

Fig. 20 shows a first-level simplification of the static TM
model of the order-making process (Fig. 8). The
simplification is accomplished by assuming that the
direction of arrows in the TM diagram eliminates the need
for the generic actions release, transfer, and receive. This is
analogous to achieving simplicity of computer hardware by
eliminating the (a) input/output port (transfer), the input
buffer (receive), and the output buffer (release) in a
computer (e.g., hard-wired connection to the computer
storage and CPU). Fig. 21 presents further simplification
by eliminating the create action under the assumption, for
example, of triggering leading to the creation of a new flow.
Fig. 22 shows yet another simplification by eliminating the
“word” process and dashed arrows.

Fig. 21. Second-level simplification of the static TM model of the order-making process.

Process: OK?
No Yes

Product No.

Cancel
Notification

Purchase materials

Order Date Customer Address

Inventory

Process:
Available?

No

Yes
Invoice

 Product No.

Payment

Customer
Infor.

Payment
Proof

Process: OK? No Yes
Delivery Request

Delivery
of

Product

Customer

Supplier

Management

Production

Process

Process

Materials

Process

Process

Process

Process: OK?
No Yes

Product No.

Cancel
Notification

Purchase materials

OrderDate Customer Address

Create CreateCreateCreate

Inventory

Process:
Available?

No

Yes Create

Create

Invoice

 Product No.

Payment

Customer
Infor

CreateCreate

Payment
Proof

Create

Process: OK? No Yes
Delivery Request

Delivery
of

Product

Customer

Supplier

C
re

at
e

P
ro

ce
ss

Management

C
re

at
e

Production
C

re
at

e

Process

Process
Materials

Create

Create

Create Process

Process

Fig. 20 First-level simplification of the static TM model of the order-making process.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

202

We can go further in this simplification until we reach a
figure with mere boxes that denotes functionalities. Each of
the simplified figures can be supplemented with
explanation of its process. It is important to note that these
simplified diagrams are based on the complete description
of Figure 8 which specifies all basic processes that can be
coded into software.

Accordingly, a TM diagram is an engineering diagram that
will be realized as a tangible product (software). Figs. 23
and 24 show two samples of engineering schemata from
two different scientific fields. Both are obviously very
complex descriptions (far more than any TM diagram).
Does such a complexity imply inadequate models because
it is not easier to understand the electronic/aeronautic
phenomena? Why is most of the world built upon such
descriptions of systems? How do electronic/aeronautic
engineers specify these complex circuits? What are the
initial conceptual steps that lead to such specification?

Complexity is a relative term. However, when two
representations involve the same level of abstraction, we
can say that one of them is more complex than the other.
UML is known for its complexity because it involves 14
models, each with different notations. In spite of the wide
adoption of the object-oriented approach and UML as the
most common modeling paradigm, “The use of object-
concepts in conceptual modeling has not been widely
adapted. A main reason is that there are no generally
accepted semantics of these concepts as conceptual
modeling elements” [23]. In object-oriented modeling,
“The basic concepts are tightly interrelated and cannot be
easily taught and learned in isolation” [24]. This
complexity is intrinsic to object orientation and cannot be
removed [25].

In general, according to Sedrakyan et al. [26], “There is a
certain degree of difficulty in understanding a system
represented by means of UML diagrams.” A survey of

UML practitioners [27] shows that UML class diagrams are
not fully used for further software development, either for
code generation or documentation.

Fig. 23 Electronic system schemata
(https://www.smpspowersupply.com/atx-power-supply.html)

Fig. 24 Aircraft hydraulic system drawing (https://www.flight-
mechanic.com/hydraulic-system-components-part-one/)

Fig. 22 Third-level simplification of the static TM model of the order-making process.

OK? No Yes

Cancel
Notificatio

Purchase
materials

Order

 Inventory

Available?

No

Yes

Invoice

Payment

 OK? No Yes Delivery Request

Delivery
of

Product

Customer

Supplier

Management

Production
Materials

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

203

It has been reported that some commercial industries find
modeling to be cumbersome and slow down productivity
[27]. “For such projects, it makes sense to use UML as
[merely] a sketch and have your model contain some
architectural diagrams and a few class and sequence
diagrams to illustrate key points” [28].

According to Aguirre-Urreta et al. [29], papers comparing
diagrammatic conceptual models (e.g., entity relationship
and UML/object-oriented modeling techniques) in the
published literature, although vibrant, have often yielded
equivocal findings. In this context, Houy et al. [30] state
that model understandability remains ambiguous, and
research results on model understandability are hardly
comparable and partly imprecise. One way to contrast
conceptual models can be through experimentation.

For example, Valaski et al. [31] used eight professionals
and 80 students to evaluate the expressiveness of UML and
OntoUML. The point here is that it is very difficult to
present a detailed comparison between UML and TM
modeling, especially because the latter is still a mere
proposed approach. Achieving a reasonable level of
comparability at this stage of development involves
modeling the same problem in UML and TM and
contrasting the diagrammatic representations side by side
in a way that can be grasped by all stakeholders.

On the other hand, TM’s apparent complexity appears as
the result of repeatedly using the five generic actions create
process, release, transfer, and receive. It has, as mentioned
previously, few notations in comparison with UML, which
involves many notations of the 14 types of modeling. Thus,
the notion of complexity cannot be used to dismiss TM
modeling.

References
[1] Schumann, R., Serge, D., Taramarcaz, C., Florian, E.:

Effective business process documentation in federal
structures. In: Proceedings of Informatik 2014 (Workshop
BPM im Öffentlichen Sektor), Lecture Notes in Informatics,
P-232, pp. 1043–1058 (September 2014)

[2] Keen, R.: 7.5.3 control of documented information explained
[with procedure], ISO CHECKLIST. (February 2021).
https://www.iso-9001-checklist.co.uk/7.5.3-control-of-
documented-information-explained.htm

[3] Fleischmann, A. Oppl, S., Schmidt, W., Stary, C.:
Realization. In: Contextual Process Digitalization, Cham, pp.
223–252 (March 2020). https://doi.org/10.1007/978-3-030-
38300-8_7

[4] Martin, S. F., Wagner, H., Beimborn, D.: Process
documentation, operational alignment, and flexibility in IT
outsourcing relationships: A knowledge-based perspective.
In: ICIS 2008 Proceedings, paper 75.
http://aisel.aisnet.org/icis2008/75

[5] Chaffee, J. R.: Read this if you think process documentation
is futile. Medium (September 2020).

https://medium.com/chapters-interludes/read-this-if-you-
think-process-documentation-is-futile-9acfabc6155e

[6] Al-Fedaghi, S., Alahmad, H.: Process description, behavior,
and control. International Journal of Computer Science and
Information Security, vol. 15(7), pp. 124–133 (July 2017)

[7] Modhaffar, M.: Conceptual modeling of an organization:
Case study of vessel berthing and cargo oil filling. MS thesis,
Computer Engineering Department, Kuwait University
(August 2021)

[8] Schenker, F., Reitzig, R. W.: Strategies for process
documentation—Part 1. Software Engineering Institute,
Carnegie Mellon University, 2009 NDIA Conference
(November 2009)

[9] Kaufling, J.: Process documentation and automation.
DatAvail (May 2017).
https://www.datavail.com/blog/process-documentation-and-
automation/

[10] Graham, C.: Fear of the unknown with healthcare IoT
devices: An exploratory study. Information Security Journal:
A Global Perspective, vol. 30, Issue 2, pp. 100-110, Aug.,
2020 DOI: 10.1080/19393555.2020.1810369

[11] Six Sigma Institute: Six Sigma DMAIC process—Define
phase—Process mapping/Flow charting, site. (2021).
https://www.sixsigma-
institute.org/Six_Sigma_DMAIC_Process_Define_Phase_Pr
ocess_Mapping_Flow_Charting.php

[12] Beimborn, D., Hirschheim, R., Schlosser, F., Schwarz, A.,
Weitzel, T.: How to achieve IT business alignment?
Investigating the role of business process documentation in
US and German banks. In: AMCIS 2008 Proceedings, paper
291 (August 14-17, 2008).

[13] Chow, L., Medley, C., Richardson, C.: BPM and service-
oriented architecture teamed together: A pathway to success
for an Agile government. In: Fischer, L. (ed.) 007 BPM &
Workflow Handbook: Methods, Concepts, Case Studies and
Standards, in Business Process Management and Workflow,
Workflow Management Coalition, pp. 33–54 (2007)

[14] Heidegger, M.: The thing. In: Poetry, Language, Thought, A.
Hofstadter, Trans. Harper & Row, New York, pp. 161–184
(1975)

[15] Al-Fedaghi, S.: Classes in Object-Oriented Modeling
(UML): Further Understanding and Abstraction.
International Journal of Computer Science and Network
Security (IJCSNS), vol. 21(5), pp. 139–150 (2021).
https://doi.org/10.22937/IJCSNS.2021.21.5.21

[16] Rábová, I.: Using UML and Petri nets for visualization of
business document flow. Acta Univ. Agric. et Silvic. Mendel.
Brun., vol. LX(2), pp. 299–306 (2012)

[17] Meroni, G., Plebani, P.: Combining artifact-driven
monitoring with blockchain: Analysis and solutions. In:
Matulevičius, R., Dijkman, R. (eds.) Advanced Information
Systems Engineering Workshops. CAiSE 2018, Lecture
Notes in Business Information Processing, vol. 316, pp. 103–
114. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-92898-2_8

[18] He, L., Cheng, Y., Su, X.: Research on the sustainability of
the enterprise business ecosystem from the perspective of
boundary: The China case. Sustainability, vol. 12(16), p.
6435, DOI: 10.3390/su12166435

[19] Ivanchikj, A., Serbout, S., Pautass, C.: From text to visual
BPMN process models: Design and evaluation. In:
Proceedings of the 23rd ACM/IEEE International
Conference on Model Driven Engineering Languages and
Systems, pp. 229–239 (October 2020). DOI:
10.1145/3365438.3410990

[20] Saarsen, T., Dumas, M.: The process documentation cube: A
model for process documentation assessment. In: La Rosa,

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

204

M., Soffer, P. (eds.) Business Process Management
Workshops, BPM 2012, Lecture Notes in Business
Information Processing, vol. 132, Springer, Berlin (2013).
https://doi.org/10.1007/978-3-642-36285-9_51

[21] Al-Fedaghi, S.: UML Modeling to TM Modeling and Back.
IJCSNS, vol. 21(1), pp. 84–96 (2021).
https://doi.org/10.22937/IJCSNS.2021.21.1.13

[22] Al-Fedaghi, S.: Advancing Behavior Engineering: Toward
Integrated Events Modeling. International Journal of
Computer Science and Network Security (IJCSNS), vol.
20(12), pp. 95–107 (2020).
https://doi.org/10.22937/IJCSNS.2020.20.12.10

[23] Wand, Y., Woo, C., Wand, O.: Role and Request Based
Conceptual Modeling: A Methodology and a CASE Tool. In:
Li, Q., Spaccapietra, S., Yu, E., Olivé, A. (eds.) Conceptual
Modeling - ER 2008. LNCS, vol. 5231, pp. 540–541.
Springer, Berlin, Heidelberg (2008)

[24] Bennedsen, J., Caspersen, M. E., Kölling, M.: Reflections on
the Teaching of Programming. Springer, Berlin/Heidelberg
(2008)

[25] Pedroni, M., Meyer, B.: Object-Oriented Modeling of
Object-Oriented Concepts: A Case Study in Structuring an
Educational Domain. In: Proceedings of Teaching
Fundamental Concepts of Informatics, 4th International
Conference on Informatics in Secondary Schools - Evolution
and Perspectives, ISSEP 2010, Zurich, Switzerland, January
13-15, 2010. LNCS, vol. 5941, pp. 155–169. Springer (2010)

[26] Sedrakyan, G., Poelmans, S., Snoeckc, M.: Assessing the
Influence of Feedback-Inclusive Rapid Prototyping on
Understanding the Semantics of Parallel UML Statecharts
by Novice Modellers. Information and Software Technology,
vol. 82, pp. 159–172 (2017)

[27] Nikiforova, O., Sejans, J., Cernickins, A.: Role of UML
Class Diagram in Object-Oriented Software Development.
Applied Computer Systems, vol. 44, pp. 65–74 (2011)

[28] Miles, R., Hamilton, K.: Learning UML 2.0, 1st Edition.
O’Reilly Media, Sebastopol, California (2006)

[29] Aguirre-Urreta, M. I., Marakas, G. M.: The Empirical
Literature Comparing Entity Relationship and Object-
Oriented Modeling Techniques, While Vibrant, Has Often
Yielded Equivocal Findings. ACM SIGMIS Database, vol.
39(2), pp. 9-32 (2008).
https://doi.org/10.1145/1364636.1364640

[30] Houy, C., Fettke, P., Loos, P.: Understanding
Understandability of Conceptual Models—What Are We
Actually Talking About? In: Atzeni, P., Cheung, D., Ram, S.
(eds.) Conceptual Modeling. ER 2012. Lecture Notes in
Computer Science, vol. 7532, pp. 64- 77. Berlin, Springer
(2012). https://doi.org/10.1007/978-3-642- 34002-4_5

[31] Valaski, J., Reinehr, S., Malucelli, A.: Evaluating the
Expressiveness of a Conceptual Model Represented in
OntoUML and UML. In: Proc. of the 19th International
Conference on Enterprise Information Systems (ICEIS), vol.
2, pp. 263–270 (2017)

