
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

284

Manuscript received July 5, 2021
Manuscript revised July 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.7.33

Theoretical Validation of Inheritance Metric in
QMOOD against Weyuker’s Properties

Mariam Alharthi & Wajdi Aljedaibi

Computer Science Department, Faculty of Computing and Information Technology
FCIT, King Abdul-Aziz University KAU

Jeddah, Saudi Arabia SA
E-mail: waljedaibi@KAU.EDU.SA

Abstract
Quality Models are important element of the software industry to
develop and implement the best quality product in the market. This
type of model provides aid in describing quality measures, which
directly enhance the user satisfaction and software quality. In
software development, the inheritance technique is an important
mechanism used in object-oriented programming that allows the
developers to define new classes having all the properties of super
class. This technique supports the hierarchy design for classes and
makes an “is-a” association among the super and subclasses. This
paper describes a standard procedure for validating the inheritance
metric in Quality Model for Object-Oriented Design (QMOOD)
by using a set of nine properties established by Weyuker. These
properties commonly using for investigating the effectiveness of
the metric. The integration of two measuring methods (i.e.
QMOOD and Weyuker) will provide new way for evaluating the
software quality based on the inheritance context. The output of
this research shows the extent of satisfaction of the inheritance
metric in QMOOD against Weyuker nine properties. Further
results proved that Weyker’s property number nine could not
fulfilled by any inheritance metrics. This research introduces a
way for measuring software that developed using object-oriented
approach. The theoretical validation of the inheritance metric
presented in this paper is a small step taken towards producing
quality software and in providing assistance to the software
industry.

Keywords; software measurement, Theoretical validation,
QMOOD, Weyuker’s properties, Inheritance metrics.

1. Introduction

The software measurement is a significant discipline in
software engineering for controlling and understanding the
development of products. Therefore, the validation of
software measures is crucial to the software measurement
success to measure and quantify the attributes accurately [1,
2]. Over the past years, many ways for software
measurement validation have emerged. Schneidewind [3]
shows that software metric is valid empirically if it is related
with different measures of interest. [4] identifies a set of
properties by focusing on complexity metrics and evaluate
the metric according to these properties through
determining whether the metric verifying each property.

Fenton [5] and Melton [6] recommended that a valid
measuring variable should follow measurement theory of
representation condition, where the understanding of
attributes not changed while mapping to the numerical
system. Fenton and Kitchenham [7] proposed two distinct
approaches to validation: the first determines the measure
usefulness for predictive purposes, where the second
determining to what extent a measure distinguishes a
declared attribute.

With regard to software measures, there are several
available measures for various aspects of the software
and various levels of granularity. The software
engineers or maintainers apply these analysis
techniques to get an overview of particular characteristics
of the software product. In this paper, a systematic
investigation of QMOOD that was not investigated
formally before in the literature is proposed by using
Weyuker's nine properties. As discussed by [8] there are
two types of validation (i) empirical validation, and (ii)
analytical validation. Analytical validation is the same as
theoretical validation, which implements the measuring
procedure by employing predefined properties. This
research is focused on theoretical validation. Weyuker’s
set of nine properties is specifically designed for
measuring the software complexity using the theoretical
validation process [4]. In addition, this investigation
provides a new way by integrating the traditional
Weyuker’s software complexity measures with object-
oriented design metrics suit that is QMOOD. As the idea
proposed in this paper is to validate inheritance metrics,
whereas the QMOOD metrics suite is used for evaluating
the object-oriented designs for different properties such
as; inheritance, polymorphism, complexity, and others.

The paper explains some basic concepts related to
validation methodologies in software engineering field,
Weyuker’s properties and QMOOD metrics in Section
II. In Section III, an overview of some inheritance

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

285

metrics that are validated against Weyuker’s properties
is presented. Sections IV and V present the research
problem and evaluation of the Measures of Functional
Abstraction (MFA) metric against the nine properties
of Weyuker. In section VI, the results were
summarized in comparison to the evaluation results of
the other inheritance metrics. Finally, the last two
sections summarize the overall work and future work
respectively.

II. BACKGROUND

Software quality metrics are used to measure the
performance and successful implementation of a
software [9]. There are number of techniques used for
validating the software performance and quality [10, 11].
The subsequent section provides the detail on different
methodologies and mechanism used for evaluating
software engineering.

A. Validation Methodologies in Software Engineering

In software evaluation, two types of measuring
metrics are very common, which are theoretical and
empirical validation, see Fig. 1. In theoretical validation,
it verifies that a measuring factor does not break any
important properties for the estimating factor. The
theoretical methods validating a measure with respect to
certainly characterized criteria. While in empirical
validation, prove that the values measured for attributes
are compatible with the predicted values of attributes in
the models. The empirical methods are considered as
confirmed evidence of whether a measure is valid or not.
In order to prove a metric validity, two kinds of
validation are required. Moreover, theoretical validation

analyzes the properties of attributes for a metric to be
measured and provides information related to the
fundamental statistical and mathematical operations that
performed with the measure. The theoretical validation
can perform using two different approaches as shown in
Fig. 1[12].

In representational theory, Pfleeger, S.L.,
Kitchenham, B., and Fenton, N., explained the measure
properties [13]. It depends on transformation or mapping
between numerical and empirical worlds, where the
characteristics of attributes in the real situation must be
preserved by measures in a numerical world [12]. The
property-based approach or axiomatic approach is
proposed by [4] and [14]. It is called axiomatic approach
because it uses a group of axioms for software attribute
for theoretical validation, other names for this approach
also are: algebraic and analytical validation, three
popular types are shown in Fig. 1 [12]. Weyuker, E.J., [4]
consists of nine properties that is commonly using for
evaluating the appropriateness of object-oriented
measures and properties solely important to demonstrate
the measure validation. Kitchenham, B., et al. [13] gives
a wider approach of theoretical validation. [14] depicts
properties of measures for complexity, size, coupling,
length and cohesion, where the representation condition
is a prerequisite to measuring validation [14].

Turning to empirical validation, there are three
types, which are experiments, case studies, and surveys
as shown in Fig. 1. Based on the goal of measure,
there are different techniques for empirical validation,
such as prediction or evaluation, the amount of collected
data, and the type [12].

Figure 1 Validation methodologies of software metrics [12]

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

286

B. Weyuker’s Properties
The most popular and used properties of software

complexity measures, which has been used several time
for validating object-oriented metrics, for instance: C-K
metrics [15], variable categorization metrics [16], and
DepDegree [17]. The assessment can be accomplished by
determining set of properties that measures, whether a
metric violated any property or not.

The nine properties of Weyuker are shown in Table

1. In property 1, suppose there are two classes P and Q,

 and shows the complexity for classes P and
Q respectively. This property shows that not each class
can have similar value for metric. Property 2 suggests
that a finite number of programs produce the similar
value for a metric. Each of these programs has a
finite number of classes; consequently, this feature will
be satisfied when measuring at the class level for any
metric. Property 3 shows that distinct programs P and
Q can have the similar complexity or metric value. In
property 4, suppose there are two programs P and Q,
the two programs have the same functionality but
during to the differences in the design details of each one,

the metric value or complexity differs. Property 5 shows
that the complexity or metric value of any two classes P
and Q should be less than or equal to the metric value
of a combination of the two classes together P;Q or P+Q.
Property 6 shows that when there are three classes P,
Q, and R, where the metric value or complexity for P

and Q is the same , but the metric values for
P;R and Q;R are different.

It confirms that the contact between P and R classes can

be distinct from the contact between Q and R classes. The
same can be proved when the combinations are R;P and R;Q.
Property 7 proved the order of statements in any program
can matter the complexity or the metric value for that
program. Suppose there is a program P, from permuting P
statements the program Q is found. This property proves
that in this case, metric values for P and Q are not same.
Furthermore, property 8 denotes that the program P
changed its name to Q, the metric remains and should not
change. The last property which is the property 9 proves
that the difficulty of a combination of two programs P and
Q is larger than the sum of the two complexity values for
each program. This shows that the interaction increases the
complexity

Table 1 Weyuker’s nine properties [4]

Property No. Property Measure Formula

Property 1 Non-Coarseness
∃𝑃, ∃𝑄 & |𝑃| ≠ |𝑄|

Property 2 Granularity -

Property 3 Non-Uniqueness
(Notion of equivalence) |𝑃| = |𝑄|

Property 4 Design Details are Important
𝑃 ≡ 𝑄 & |𝑃| ≠ |𝑄|

Property 5 Monotonicity
|𝑃| ≤ |𝑃; 𝑄| & |𝑄| ≤ |𝑃; 𝑄|

Property 6 Non-Equivalence of Interaction
|𝑃| = |𝑄| & |𝑃; 𝑅| ≠ |𝑄; 𝑅|
|𝑃| = |𝑄| & |𝑅; 𝑃| ≠ |𝑅; 𝑄|

Property 7 Permutation
|𝑃| ≠ |𝑄|

Property 8 Renaming property
|𝑃| = |𝑄|

Property 9 Interaction Increases Complexity
|𝑃| + |𝑄| < |𝑃; 𝑄|

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

287

From the listed 9 properties, property 2 and property

8 are satisfied for all object-oriented metrics. And
property 7 is not required for the object-oriented
programs; it is for the traditional programs [12].

C. QMOOD metrics
The Quality Model for Object Oriented Design

(QMOOD) metrics was developed by Bansiya and Davis
in 2002 [18]. It is used to assess or quantify multiple

quality factors for example, understandability,
extendibility, reusability, flexibility, functionality, and
effectiveness [19]. These attributes can be quantified by
using a formula for each attribute as shown in Table 2
[19].

The QMOOD hierarchy model involves four levels
and three mappings or links, as shown in Fig. 2. The
design properties that are involved in QMOOD set are
listed in Table 3 [19].

Table 2 Formulas of quality attributes [19]
The

Quality
A i

Computation Formula

Understandability -0.33*Abstraction+0.33*Encapsulation-
0.33*Coupling+0.33*Cohesion-
0.33*Polymorphism 0.33*Complexity-
0 33*D i SiExtendibility 0.5*Abstraction-
0.5*Coupling+0.5*Inheritance+0.5*polymorphism

Reusability -0.25* Coupling +0.25*coupling+0.5*Messaging+0.5*Design
Size

Flexibility 0.25*Encapsulation-
0.25*Coupling+0.5*Composition+0.5*Polymorphism

Functionality 0.12*Cohesion+0.22+Polymorphism+0.22*Messaging
+0.22*Design Size+0.22*Hierarchies

Effectiveness 0.2*Abstraction+0.2* Encapsulation
+0.2*Composition+0.2*inheritance+0.2*Polymorphism

Figure 2 The model of QMOOD metrics [19]

Link Link

Link

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

288

III. RELATED WORKS

DIT and NOC are the inheritance metrics proposed

by [15]. DIT measures the Depth of Inheritance Tree
for a class. And NOC counts the Number of Children
(subclasses) for a super class in the inheritance
hierarchy. Also, TPC, TPAC, and TAC are the
inheritance metrics proposed by Brito and Carapuca
[20]. Total Progeny Count (TPC) counts the direct and
indirect subclasses for a particular class. Total Parent
Count (TPAC) counts the number of the parent or super-
classes for a specified subclass. Total Ascendancy
Count (TAC) counts the number of direct and indirect

super-classes for a particular subclass. Li’s [21] have
proposed alternative inheritance metrics for DIT and
NOC which are Number of Ancestor Class (NAC)
and Number of Descendant Class (NDC). NAC
measures the number of ancestor (super) classes for a
specified subclass. NDC calculates the number of
descendant classes (subclasses) for a specific class.
The Depth of Inheritance Tree of a Class (DITC) is
proposed by Rajnish and Bhattacherjee [22] [23] [24].
DITC calculates all the kinds of attributes and
methods for a class, which includes the protected,
private, public and inherited attributes and methods by
using a particular formula.

Table 3 QMOOD design properties and metrics [19]

Design
Property

Metrics Description of Metrics

Design size Design Size in Classes
(DSC)

Produces a number of classes in the design.

Hierarchies Number of Hierarchies
(NOH)

Produces a number of class hierarchies in the design.

Abstraction Average Number of
Ancestors (ANA)

Produces the average number of classes that a specified
class inherits information from them.

Encapsulation Data Access Metrics
(DAM)

Divides the number of private attributes in a class to the total
number of attributes, and return the result (ratio).

Coupling Direct Class Coupling
(DCC)

Calculates the number of classes that a specified class
depends on them.

Cohesion Cohesion among
Methods of Class

(CAM)

Calculates the methods relatedness of a class with respect to
the number of parameters.

Composition Measure of Aggregation
(MOA)

Computes the part-whole relationship extent that arises
from using attributes.

Inheritance Measures of Functional
Abstraction (MFA)

Divides the number of inherited methods by a class to the
number of accessible methods through the member methods
of a class, and return the result (ratio).

Polymorphism Number of Polymorphic
Methods (NOP)

Computes how many methods can exhibit
polymorphic behavior.

Messaging Class Interface Size
(CIS)

Computes how many public methods are in a class.

Complexity Number of Methods
(NOM)

Returns the number of methods in a class.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

289

IV. RESEARCH PROBLEM

This paper aims to validate theoretically the

Measures of Functional Abstraction (MFA) metric in
QMOOD that is not validated in the literature before,
which represent the inheritance design property. This
validation process will be carried against the nine
Weyuker’s properties. The main purpose of this validation
is to observe the object-oriented QMOOD metrics with
traditional Weyuker’s software quality measures. Most
importantly, Weyuker’s properties designated for
theoretical validation, as this paper is evaluating the
inheritance metric using theoretical validation.

V. EVALUATION

The Measures of Functional Abstraction (MFA) can be
defined as follows in equation (1):

And

Where

= t = The number of declared methods in a class

= =소 e number of methods that can be inherited in a class

= = all methods that can be invoked in a class

 = Total Count

With MFA, for each class C1, C2, …, Cn, a method
counts as 0 if cannot be inherited and 1 if can be
inherited. The total number of inherited methods is
divided by the total number of methods for the system;
the total number of methods involves the inherited and not
inherited methods as defined in equation (2). The result
represents the ratio or proportion of inheritance for the
system. Note that, the constructors and the
java.lang.Object (as a parent) are ignored in computation.

In another hand, the complexity that going to
calculated here is the degree or ratio of inheritance,

which can be denoted by this symbol (suppose the
program name is P).

Now, each property will be proved separately as
following:

Property 1: there are two programs P and Q exist in

a specified domain where . Fig. 3 (a, b)
shows the two programs with different measurement
values. Thus, this property is satisfied.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

290

Figure 3(a) Different designs of Transaction System

(b) Program Q with measure value 3/3 or 1 for Transaction class.
Figure 3(b) Different designs of Transaction system.

Property 2: if c is a non-negative number, then there is
a finite set of programs with a measurement value c. This
property is satisfied for all object-oriented metrics as
mentioned above (in the background section).

Property 3: there are two distinct programs P and Q

where . Fig. 4 shows the two programs with
the equal measurement value 1/1 or simply 1 for the
mentioned classes in the figures. Therefore, this
property is satisfied also.

(a) Program P with measure value 2/3 for Transaction class.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

291

(a) Program P with measure value 1/1 or 1 for Person class. (b) Program Q with measure value 1/1 or 1 for Animal class.

Figure 4 Different distinct programs with different designs.

Property 4: if there are two programs P and Q are
exist, where the two programs have an equivalent

functionality (), then . Fig. 5 shows
different implementations of the same program
(transaction program), where the degree of inheritance
for a transaction class differs according to the
implementation. Therefore, this property is satisfied for
MFA.

In addition, the metrics that based on measuring

an interface rather than the implementation will not
satisfy this property because if there are two programs
with the same functionality (means the same interface
in this case), the measured value will be the same, but the
implementations can differ. And because these metrics
are only sensitive to interfaces not to implementations,
they will have the same parameters in each interface;
hence, the two programs have the same measurement
value. These types of metrics can be called Interface
Sensitive and Implementation Insensitive metrics.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

292

(a) Program P with measure value 2/4 or 1/2 for Transaction class.

(b) Program Q with measure value 3/3 or 1 for Transaction class.

Figure 5 Different implementations of Transaction program.

Property 5: if there are two programs P and Q, then

 and . The (; operator)
denotes concatenating operation and it can place also
by (+ operator). The meaning of concatenating
operation is merging the two programs together. Fig. 6
shows two programs with their measure value for a

parent or super class of each program. Merging or
concatenation of two programs (P;Q or P+Q) yields to
compute the degree or ratio of inheritance for the
inherited string at all of the merged program. For P, the
ratio is 1/1, also the ratio for Q is 1/1, hence the ratio
for P;Q is 1/1 which is equal, and that means this
property is satisfied for MFA.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

293

(a) Program P with measure value 1/1 or 1 for Person class. (b) Program Q with measure value 1/1 or 1 for Employee class.

Figure 6 Example of different two programs

Property 6: if there are three programs P, Q, and R,

where , then property 6 consists from two

parts: (a) , and (b) .
Fig. 7 shows an example of a particular hierarchal
scenario of inheritance. Suppose P and Q have the same
inheritance ratio. Because R is a child of P, that means

there is a relation between these classes. Therefore, the
interaction between P and R is differing than the
interaction between Q and R, which yields different
measurement values for each concatenation case and it
concludes that MFA is satisfying property 6.

(a) A simple program with its
units.

(b) After merging P;R in one

component.

(c) After merging Q;R in one

component.

Figure 7 A specified scenario of inheritance.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

294

Property 7: when there are two programs P and Q,
where the statements of program P are permuted to

form the body of program Q, then the . This
property has been developed for traditional programs;
hence, it is not required to the object-oriented programs
as mentioned above (in the background section).

Property 8: if there are two programs P and Q where
the program P is a renaming only from the program Q,

then . In inheritance metric, the semantic
preserves that renaming of variables, methods or
program will not affect the degree of inheritance for the
program. That concludes this property is satisfied for
MFA.

Moreover, this property can affect the

understandability metrics because the names of classes,
methods, and variables are important, and renaming
them to any poorly chosen names will cause
information confusion. As well as, this property can
affect the metric that measures the length of names and
uniqueness of the name. Therefore, the metrics that
can be affected by this property can be called Name
Sensitive metrics.

Property 9: there are two programs P and Q exist,

where . This property needs to
ensure that the interaction between the two programs
in order to form a concatenated program will increase
the complexity of the new program. Means, the
complexity of the new program will be greater than the
sum of its parts. Otherwise, if this property is not
satisfied by the metrics, property 9’ can be satisfied,

which states that . In
inheritance, the program has a set of inherited methods
for its subclasses. When this program is split into two
programs that mean each one of the new super-classes
in both programs will have a copy of the inherited
methods for the old super class. Therefore, the methods
of the old super class will be found at both new super-
classes. Due to this duplication, the sum of complexities
of the two programs is greater than the old program
(concatenated program). Hence, MFA does not satisfy
property 9 but it is satisfying property 9’. For
example, Fig. 6 shows two programs P and Q with
a measurement value 1/1 for each. The sum of these
measurement values is 1/1 + 1/1 which is 2/1. As said

before (in property 5 proof), the measured value for
P;Q is 1/1. Hence, 2/1 is greater than 1/1. That
concludes MFA satisfy

.

Property 7: when there are two programs P and Q,
where the statements of program P are permuted to

form the body of program Q, then the . This
property has been developed for traditional programs;
hence, it is not required to the object-oriented programs
as mentioned above (in the background section).

Property 8: if there are two programs P and Q where
the program P is a renaming only from the program Q,

then . In inheritance metric, the semantic
preserves that renaming of variables, methods or
program will not affect the degree of inheritance for the
program. That concludes this property is satisfied for
MFA.

Moreover, this property can affect the

understandability metrics because the names of classes,
methods, and variables are important, and renaming
them to any poorly chosen names will cause
information confusion. As well as, this property can
affect the metric that measures the length of names and
uniqueness of the name. Therefore, the metrics that
can be affected by this property can be called Name
Sensitive metrics.

Property 9: there are two programs P and Q exist,

where . This property needs to
ensure that the interaction between the two programs
in order to form a concatenated program will increase
the complexity of the new program. Means, the
complexity of the new program will be greater than the
sum of its parts. Otherwise, if this property is not
satisfied by the metrics, property 9’ can be satisfied,

which states that . In
inheritance, the program has a set of inherited methods
for its subclasses. When this program is split into two
programs that mean each one of the new super-classes
in both programs will have a copy of the inherited
methods for the old super class. Therefore, the methods
of the old super class will be found at both new super-
classes. Due to this duplication, the sum of complexities

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

295

of the two programs is greater than the old program
(concatenated program). Hence, MFA does not satisfy
property 9 but it is satisfying property 9’. For
example, Fig. 6 shows two programs P and Q with
a measurement value 1/1 for each. The sum of these
measurement values is 1/1 + 1/1 which is 2/1. As said
before (in property 5 proof), the measured value for
P;Q is 1/1. Hence, 2/1 is greater than 1/1. That
concludes MFA satisfy

.

VI. DISCUSSION

As shown that Measures of Functional

Abstraction (MFA) metric fulfills the first eight
Weyuker’s properties, the only property that has not
been satisfied is the ninth property. Table 4 shows the
evaluation results of some inheritance metrics that are
mentioned above (in related works section) against
Weyuker’s properties. The symbol denotes that a
property is satisfied, where denotes that a property
is not satisfied. The formal evaluation of MFA is also
summarized in the table for using it as a program
complexity indicator.

Table 4 The properties fulfilled by the inheritance metrics
Weyuker
property

no.

DIT NOC TPC TPAC TAC NAC NDC DITC MFA

1
2
3
4
5
6
7
8
9

VII. CONCLUSION & FUTURE WORK

An analytical evaluation of MFA metric has been

conducted in this paper against Weyuker’s properties.
As observed in table 4, property 9 does not fulfilled by
none of the inheritance metrics. This is due to the fact
that complexity of a class cannot be reduced by
splitting that class into other classes, the complexity
may increase or remains the same. However, Zhang
and Xie [25] proposed an inheritance metric that
satisfied property 9; but in fact, there is no practical
example for this metric. Also, Rajnish and
Bhattcaherjee [26] gave an inheritance method that
satisfied property 9. Besides that, Mal and Rajnish [27]
proposed two new inheritance metrics as well, which
are Inheritance Complexity of Class (ICC) and
Inheritance Complexity of Tree (ICT). ICC metric
measures at the class level, hence it did not satisfy

property 9. Whereas ICT metric measures at tree level,
and this is why this metric is satisfied property 9.
Accordingly, the applicability of Weyuker's property 9
to inheritance metrics is still under discussion in the
previous work. The future scope includes the validation
of the remaining metrics in QMOOD against Weyuker’s
properties in order to produce a systematic validation of
the entire QMOOD metrics theoretically.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.7, July 2021

296

References

[1] H. Zuse, “Software complexity: Measures and Methods”. Vol.

4. Walter de Gruyter GmbH & Co KG, 2019.

[2] N. Padmalata, K. Vithal Nori, and R. Reddy. "Software
Quality Models: A Systematic Mapping Study." IEEE/ACM
International Conference on Software and System
Processes (ICSSP), pp. 125-134. IEEE, 2019.

[3] N. Schneidewind, “Methodology for validating software
metrics,” IEEE Transactions on Software Engineering, vol.
18, no. 5, pp. 410-422, May 1992.

[4] E. Weyuker, “Evaluating software complexity measures,”
IEEE Transactions on Software Engineering, vol. 14, no.
9, pp. 1,357-1,365, Sept. 1988.

[5] N. Fenton, “Software measurement: A necessary scientific
basis,” IEEE Transactions on Software Engineering, vol.
20, no. 3, pp. 199-206, Mar. 1994.

[6] A. Melton, D. Gustafson, J. Bieman, and A. Baker, “A
mathematical perspective for software measures research,”
J. of Software Eng., vol. 5, no. 5, pp. 246-254, 1990.

[7] N. Fenton and B. Kitchenham, “Validating software
measures,” J. of Software Technology, Verification und
Reliability, vol. 1, no. 2, pp. 27- 42, 1991.

[8] M. Sharma, G. S. Nasib Gill, and S. Sunil. "Survey of Object-
Oriented Metrics: Focusing on Validation and Formal
Specification." ACM SIGSOFT Software Engineering
Notes 37, no. 6: 1-5, 2012.

[9] P. Ramesh, R. C. Reddy, “Object Oriented Dynamic Metrics
in Software Development: A Literature Review”,
International Journal of Applied Engineering Research Vol.
14, No. 22: 4162-4172, 2019.

[10] K. Anil, “Analysis of Object-Oriented System Quality
Model Using Soft Computing Techniques”, International
Journal of Advance Research, Ideas and Innovations in
Technology, Vol. 5, No. 2, 2019.

[11] C. Gemma, F. Palomba, F. Fontana, A. De Lucia, A.
Zaidman, and F. Ferrucci. "Improving change prediction
models with code smell-related information." Empirical
Software Engineering, 1-47, 2019.

[12] K. Srinivasan and T. Devi, "Software Metrics Validation
Methodologies in Software Engineering", International
Journal of Software Engineering & Applications, vol. 5, no.
6, pp. 87-102, 2014.

[13] Kitchenham, B., Pfleeger, S.L., and Fenton, N., “Towards
a Framework for Software Measurement Validation,”
IEEE Transactions on Software Engineering, Vol. 21,
No.12, December, pp. 929-943, 1995.

[14] Briand, L.C., Morasca, S., Basili, V.R., “Property-Based
Software Engineering Measurement,” IEEE Transactions on
Software Engineering, Vol. 22, No.1, January, pp. 68-85,
1996.

[15] Chidamber, S.R., and Kemerer, C.F., “A Metrics Suite for
Object-Oriented Design,” IEEE Transactions on Software
Engineering, Vol. 20, No. 6, June, pp. 476-493, 1994.

[16] Radhika Raju, P., and Ananda Rao, A., “A Metrics Suite for
Variable Categorization to Support Program Invariants,”
International Journal of Software Engineering &
Applications, Vol.5, No.5, September, pp. 65-83, 2014.

[17] D. Beyer and P. Häring, "A formal evaluation of DepDegree
based on weyuker's properties", Proceedings of the 22nd
International Conference on Program Comprehension -
ICPC 2014, pp. 258-261, 2014.

[18] Bansiya J. and C. G. Davis, "A Hierarchical Model for
Object-Oriented Design Quality Assessment, IEEE
Transactions on Software Engineering, pp. 4-17, 2002.

[19] P. Goyal and G. Joshi, "QMOOD metric sets to assess
quality of Java program", International Conference on
Issues and Challenges in Intelligent Computing
Techniques (ICICT), 2014.

[20] A. F. Brito and R. Carapuca, “Candidate Metrics for
Object-Oriented Software within a Taxonomy Framework,
Journal of System Software, vol. 26, 87-96, 1994.

[21] W. Li,”Another metric suite for object-oriented
programming”, The Journal of Systems and Software;
44(2): pp.155-162, 1998.

[22] K. Rajnish and V. Bhattacherjee, “A New Metric for Class
Inheritance Hierarchy: An Illustration”, proceedings of
National Conference on Emerging Principles and
Practices of Computer Science & Information Technology,
GNDEC, Ludhiana, pp 321-325, 2006.

[23] K. Rajnish and V. Bhattacherjee, “Class Inheritance
Metrics and development Time: A Study”, International
Journal Titled as PCTE Journal of Computer Science,
Vol.2, Issue 2: pp. 22-28, December 2006.

[24] K. Rajnish and V. Bhattacherjee, “Class Inheritance
Metrics-An Analytical and Empirical Approach”,
INFOCOMP-Journal of Computer Science, Federal
University of Lavras, Brazil, Vol. 7 No.3, pp. 25-34, 2008.

[25] L. Zhang and D. Xie, “Comments on „On the
applicability of Weyuker Property Nine to Object-
Oriented Structural Inheritance Complexity Metrics, IEEE
Transaction Software Engineering, Vol.28, no.5, 526-527,
2002.

[26] K. Rajnish and V. Bhattacherjee, “Applicability of
Weyuker Property 9 to Object- Oriented Inheritance Tree
Metric-A Discussion”, proceedings of IEEE 10th
International Conference on Information Technology
(ICIT-2007), published by IEEE Computer Society Press,
pp. 234-236, December-2007.

[27] S. Mal and K. Rajnish, “Applicability of Weyuker’s
Property 9 to Inheritance Metric”, International Journal
of Computer Application, Foundation of Computer Science,
USA, vol. 66, no. 12, 2013.

