
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

182

Manuscript received August 5, 2021
Manuscript revised August 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.8.24

Palliates the Attack by Hacker of Android Application through UID and
Antimalware Cloud Computing

Abu Sarwar Zamani1, Sultan Ahmad2*, Mohammed Yousuf Uddin3, Asrar Ahmad Ansari4 ,
Shagufta Akhtar5

a.zamani@psau.edu.sa, s.alisher@psau.edu.sa, m.yousuf@psau.edu.sa, aaansari@ksu.edu.sa, shagufu@gmail.com
1Department of Computer and Self Development, Preparatory Year Deanship, Prince Sattam bin Abdulaziz University, Al-Kharj,

Saudi Arabia
2Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University,

Al-Kharj, Saudi Arabia
3Department of Information Systems, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University,

Al-Kharj, Saudi Arabia
4Researcher/E-Learning Consultant Medical Education Department, College of Medicine, King Saud University, Riyadh, KSA

5Dept. of Computer Science, Institute of Science & Information Technology, Chapra, Bihar, India
*Corresponding Author: Sultan Ahmad

Summary
The market for smart phones has been booming in the past few
years. There are now over 400,000 applications on the Android
market. Over 10 billion Android applications have been
downloaded from the Android market. Due to the Android
popularity, there are now a large number of malicious vendors
targeting the platform. Many honest end users are being
successfully hacked on a regular basis. In this work, a cloud based
reputation security model has been proposed as a solution which
greatly mitigates the malicious attacks targeting the Android
market. Our security solution takes advantage of the fact that each
application in the android platform is assigned a unique user id
(UID). Our solution stores the reputation of Android applications
in an anti-malware providers’ cloud (AM Cloud). The
experimental results witness that the proposed model could well
identify the reputation index of a given application and hence its
potential of being risky or not.
Keywords: Smart phones; Android OS; Reputation based security;
Inter Process Communication

1. Introduction

Access control lists (ACLs) and permission-based security
models allow administrators and operating systems to
restrict actions on specific resources. In practice, designing
and configuring ACLs (particularly those with a large
number of configuration parameters) is a complicated task.
More specifically, reaching a balance between the detailed
expressiveness of permissions and the usability of the
system is not trivial, especially when a system will be used
by novices and experts alike. One of the main problems
with ACLs and permission models in general is that they are
typically not designed by the users who will ultimately use
the system, but rather by developers or administrators who
may not always for see all possible use cases. While some
argue that the problem with these permission-based systems
is that they are not designed with usability in mind [11], we
believe that in addition to the usability concerns, there is not

a clear understanding of how these systems are used in
practice, leading security experts to blindly attempt to make
them better without knowing where to start. While there are
many widely deployed systems which use permissions, we
focus on the empirical analysis of the permission model
included in Android OS [1]. Android is a newcomer to the
smart phone industry and in just a few years of existence
has managed to obtain significant media attention, market
share, and developer base. Android uses ACLs extensively
to mediate inter-process communication (IPC) and to
control access to special functionality on the device (e.g.,
GPS receiver, text messages, vibrator, etc.). Android
developers must request permission to use these special
features in a standard format which is parsed at install time.
The OS is then responsible for allowing or denying use of
specific resources at run time. The permission model used in
Android has many advantages and can be effective in
preventing malware while also informing users what
applications are capable of doing once installed.
The main objectives of our empirical analysis are: (1) to
investigate how the permission-based system in Android is
used in practice (e.g., whether the design expectations meet
the real-world usage characteristics and (2) to identify the
strengths and limitations of the current implementation. We
believe such analysis can reveal interesting usage patterns,
particularly when the permission-based system is being used
by a wide spectrum of users with varying degrees of
expertise.

2. Background

Access control systems have existed for a long time [17]. In
its basic form, a security system based on access control
lists allows a subject to perform an action (e.g., read, write,
run) on an object (e.g., a file) only if the subject has been

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

183

assigned the necessary permissions. Permissions are usually
defined ahead of time by an administrator or the object’s
owner. Basic file system permissions on POSIX-compliant
systems [12] are the traditional example of ACL-based
security since objects – in this case, files can be read,
written or executed either by the owner of the file, users in
the same group as the owner, and/or everyone else. More
sophisticated ACL-based systems allow the specification of
a complex policy to control more parameters of how an
object can be accessed. We use the term permission-based
security to refer to a subset of ACL-based systems in which
the action doesn’t change (i.e., there is only one possible
action to allow or deny on an object). This would be similar
to having multiple ACLs per object, where each ACL only
restricts access to one action. We note that reducing the
allowable actions to one does not necessarily make the
system easier to understand or configure. For example, in
the Android permission model, developers implement finer
level granularity by defining separate permissions for read
and write actions.

2.1 Permission-Based Security Examples

An example of a permission-based security model is
Google’s Android OS for mobile devices. Android requires
that developers declare in a manifest a list of permissions
which the user must accept prior to installing an application.
Android uses this permission model to restrict access to
advanced or dangerous functionality on the device [14]. The
user decides whether or not to allow an application to be
installed based on the list of permissions included by the
developer. Similar to Android OS, the Google Chrome web
browser uses a permission-based architecture in its
extension system [4]. Extension developers create a
manifest where specific functionality (e.g., reading
bookmarks, opening tabs, contacting specific domains)
required by the extension can be requested. The manifest is
read at extension install time to better inform the user of
what the extension is capable of doing, and reduce the
privileges that extensions are given [10]. In contrast, Firefox
extensions, which do not have this permission architecture,
run all extension code with the same OS-level privileges as
the browser itself. A third example of a currently deployed
permission-based architecture is the Blackberry platform
from Research in Motion (RIM). Blackberry applications
written in Java must be cryptographically signed in order to
gain access to advanced functionality (known as Blackberry
APIs with controlled access) such as reading phone logs,
making phone calls or modifying system settings [3].

2.2 Related Work

The design and implementation of a framework to detect
potentially malicious applications based on permissions
requested by Android applications. The framework reads
the declared permissions of an application at install time and
compares it against a set of rules deemed to represent
dangerous behaviour. For example, an application that
requests access to reading phone state, record audio from
the microphone, and access to the Internet could send
recorded phone conversations to a remote location. The
framework enables applications that don’t declare (known)
dangerous permission combinations to be installed
automatically, and defers the authorization to install
applications that do to the user.
Ontang et al. [18] present a fine-grained access control
policy infrastructure for protecting applications. Their
proposal extends the current Android permission model by
allowing permission statements to express more detail. For
example, rather than simply allowing an application to send
IPC messages to another based on permission labels,
context can be added to specify requirements for
configurations or software versions. The authors highlight
that there are real-world use cases for a more complex
policy language, particularly because untrusted third-party
applications frequently interact on Android. On the topic of
analysis of permission-based architectures.

3. Proposed Solution

As part of a solution to the above identified pitfalls in the
android security model, we propose a reputation based
security trust model to evaluate and validate the applications
prior to installation. We have also analysed the
consequences of a malicious application that has managed
to get installed with the full consent of the end user. The
Internet is full of genuine and malicious applications. An
Android mobile owner can download different applications
with varying reputation ratings. In this model, it is proposed
that after downloading and before installing, the mobile
device asks the AM Cloud for the reputation of the
downloaded application.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

184

 No Yes

 No Yes

 Index greater than threshold?

Figure-1: overview of the proposed protocol

Based on the downloaded applications’ behaviour and
reputation index the downloaded application can be
classified in any of the following three ways.

A. The application has built a good reputation and
there is likely no harm installing it on the client’s
device. Good reputation will be set after some
threshold of positive feedback from those clients
that have downloaded and automatically reported.

B. The application has not yet developed any good or
bad reputation in the AM Cloud. In general, if an
application has not developed a good reputation,
we should be extremely cautious with such an
unknown application. In this scenario, the anti-
malware provider may wish to recommend that the
user does not install the application or that the user
installs the application in a sandbox.

C. The application has a bad reputation. In this case,
the user is warned about the application’s bad
reputation.

4. Experiments

Concerning just the applications which have not yet
developed a strong reputation, we need to analyse those
applications. To analyse the behaviour of an Android
application, it is easier to start with analysing the set of
permissions that the application has set in the Android
application package file which includes all of the
application’s code, resources, assets, and manifest file. To
do this, we have experimented with a reputation based
security model for Android applications. A second

experiment was also done to analyse how a malicious
application could track a mobile owners’ location and report
it to a third party. The results were achieved using two
experiments.

4.1. Experiment-1

One solution which has been used by anti-malware vendors
is to perform analysis of the application, on the Android
platform. However the Android is low on resources, such as
performance, battery life and main memory. So it makes
more sense to perform the analysis in the AM Cloud. To
overcome these issues, another solution which has been
used by anti-malware providers is to upload the entire
application for analysis (for each user). For our solution, we
will minimize the uploading of applications to the AM
Cloud. I.e., we do not want two users, with the same exact
application, to both upload the same application. Our
approach to minimize the uploading of applications now
follows.

4.2. Experiment-2

In this second experiment, we have developed two
applications namely Location Tracker, The Location
Tracker application has ACCESS_FINE_LOCATION,
ACCESS_MOCK_ LOCATION,and
ACCESS_COARSE_LOCATION permissions in the user
permission manifest file of the application. The manifest file
declares which permissions the application must have in
order to access protected parts of the API and interact with
other applications [18]. It also declares the permissions that
others are required to have in order to interact with the
application's components [18]. The Location Tracker
application implements a location listener class that returns
the latitude and longitude of the present location by
consulting the Location Manager, which provides access to
the system location services. We can use the latitude and
longitude to locate the associated geographic place such as
the street address, hotel, and zip codes.

5. Further Discussion

Designing a permission-based system is a challenging task
because system designers must anticipate what usage will
be given to the permissions defined in their system. The
analysis in this paper has helped to identify developer usage
patterns in a real-world dataset of top Android applications.
Additionally, there is a constant struggle to make the system
highly configurable under different use-cases while
maintaining a low level of complexity. Understanding how
the permission model is used in practice can help in making
modifications to improve currently deployed permission
systems. Furthermore, our analysis shows correlations

Exit
Download
App

Calculate hash and
send to cloud

Warn user

Install

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

185

between several of the infrequently used permissions. We
note that having finer-grained permissions in a permission-
based system enables users to have detailed control over
what actions are allowed to take place. Whether it is
beneficial to provide finer granularity will depend on many
factors within a particular environment, as it increases
complexity and thus may have, for example, usability
impacts on designers and end-users. In the case of Android,
having ‘too many’ permissions impacts both developers and
end users. Developers must understand which permissions
are needed to perform certain actions; determining this is
often non-trivial, even for ‘experts’. While some
enthusiastic developers might take the time to learn what
each of the 110 or more permissions do and request them
appropriately when needed, other developers might choose
to simply over-request functionality to make sure their
application works.

5.1 Possible Enhancements to Android

The Android permission model does not currently make use
of the implied hierarchy in its namespace. For example,
a.p.SEND_SMS and a.p.WRITE_SMS are two independent
permission labels, instead of being grouped, for instance,
under a.p.SMS. Android includes an optional logical
permission grouping [9] that is used for displaying
permissions with more understandable names (e.g., one of
the groupings reads “Services that cost you money” in-
stead of a.p.CALL_PHONE). This grouping, however, does
not allow developers to hierarchically define permissions,
which could potentially extend current Android-defined
permissions to express more detailed functionality. In the
case of Android particularly, a permission hierarchy would
allow for an extensible naming convention and help
developers more accurately select (only the) needed features.
One example would be a free application that displays ads
from domains belonging to Admob. Currently a developer
would include the ad code snippet, and request the
a.p.INTERNET permission. This permission allows the
application to communicate over any network and retrieve
any data from any server in the world. A more fine grained
hierarchical permission scheme could enable the developer
to request the a.p.INTERNET. ADVERTISING
(.admob.com) permission which could limit network
connectivity to only download ads in static HTML from sub
domains of Admob. A hierarchical permission scheme
could help users understand why an application is
requesting specific permissions, but more importantly, could
help developer’s better use the principle of least privilege.
This modification is not backwards compatible with the
currently deployed Android OS, therefore it might be better
suited for an entirely new model instead.

5.2 Applicability to Other Permission-Based
Systems

The methodology presented in this work has allowed us to
understand how developers use the permission-based
security model in Android. We believe that our
methodology is applicable to explore usage trends in other
permission based-based systems. A base requirement for the
methodology to work is being able to display applications
and associated permissions for this representation to be
possible, the set of permissions requested by an application
must be accessible. In the case of Android, the set is
statically readable in a manifest, but other systems might
have different implementations. Google’s Chrome OS
extension system [4, 10] uses an Android-like manifest and
permissions to access advanced functionality, which makes
this system a prime candidate for applying our methodology.
An empirical study of a large set of third-party extensions
using our SOM-based methodology could help identify
what correlations, if any, are present in requesting
permissions to open tabs, read bookmarks, etc. This may
also be of use in addressing other security concerns raised in
recent work [10].

6. Conclusion

We have introduced a methodology to the security
community for the empirical analysis of permission-based
security models. In particular, we analysed the Android
permission model to investigate how it is used in practice
and to determine its strengths and weaknesses. The Self-
Organizing Map (SOM) algorithm is employed, which
allows for a 2-dimensional visualization of highly
dimensional data. SOM also supports component planes
analysis which can reveal interesting usage patterns. We
have analysed the use of Android permissions in a real-
world dataset of 1,100 applications, focusing on the top 50
application from 22 categories in the Android market. The
results show that a small subset of the permissions is used
very frequently where large subsets of permissions were
used by very few applications. We suggest that the
frequently used permissions, specifically a.p.INTERNET,
do not provide sufficient expressiveness and hence may
benefit from being divided into sub-categories, perhaps in a
hierarchical manner. Conversely, infrequent permissions
such as the self-defined and the complementary permissions
(e.g., install/ uninstall) could be collapsed into a general
category. Providing finer granularity for frequent
permissions and combining the infrequent permissions can
enhance the expressiveness of the permission model without
increasing the complexity (i.e., maintaining a constant over
all permission count) as a result of the additional
permissions. We hope that our SOM-based methodology,
including visualization, is of use to others exploring
independent permission-based models.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

186

Acknowledgment

The authors would like to thank the Deanship of Scientific
Research at Prince Sattam Bin Abdulaziz University,
Alkharj, Saudi Arabia for the assistance.

References

[1] A. Shabtai, Y. Fledel, U. Kanonov, Y. Elovici, S.
Dolev, and C. Glezer. Google Android: A
Comprehensive Security Assessment. In IEEE
Security & Privacy, Volume 8, Issue 2, pp. 35–44,
March–April 2010.

[2] T. Bläsing, L. Batyuk, A.-D. Schmidt, S.A.
Camtepe and S. Albayrak. An Android Application
Sandbox system for suspicious software detection.
In Proceedings of 5th International Conference on
Malicious and Unwanted Software (MALWARE
2010), Nancy, France, Oct. 19–20, 2010.

[3] M. Ongtang, S. McLaughlin, W. Enck, and P.
McDaniel. Semantically Rich Application-Centric
Security in Android. In Proceedings of the Annual
Computer Security Applications Conference
(ACSAC '09), Austin, TX, USA, December 6–10,
2009.

[4] W. Shin, S. Kiyomoto, K. Fukushima, and T.
Tanaka. Towards Formal Analysis of the
Permission-Based Security Model for Android. In
Proceedings of Fifth International Conference on
Wireless and Mobile Communications (ICWMC
'09), Cannes/La Boca, France, August 23–29, 2009.

[5] P. Teufl, C. Orthacker, S. Kraxberger, G. Lackner,
M. Gissing, A. Marsalek, J. Leibetseder and O.
Prevenhueber. Android Market Analysis with
Activation Patterns, In Proceedings of 3rd
International ICST Conference on Security and
Privacy in Mobile Information and Communication
Systems (MOBISEC 2011), Aalborg, Denmark,
May 17–19, 2011.

[6] C. Orthacker, P. Teufl, S. Kraxberger, G. Lackner,
M. Gissing, A. Marsalek, J. Leibetseder, and O.
Prevenhueber. Android Security Permissions - Can
we trust them? In Proceedings of 3rd International
ICST Conference on Security and Privacy in
Mobile Information and Communication Systems
(MOBISEC 2011), Aalborg, Denmark, May 17–19,
2011.

[7] J. Burns. Developing Secure Mobile Applications
for Android—An Introduction to Making Secure
Android Applications,
http://www.isecpartners.com/files/iSEC_Securing_
Android_Apps.pdf, Accessed on May 8, 2012.

[8] E. Chin, A. Porter Feltm, K. Greenwood, and D.
Wagner. Analysing the Inter-application

Communication in Android, University of
California, Berkeley, Berkeley, CA, USA.

[9] T. Vidas, D. Votipka, and N. Christin. All Your
Droid Are Belong To Us: A Survey of Current
Android Attacks, INI/CyLab, Carnegie Mellon
University.

[10] Android Market, http://www.android.com/market,
Accessed on May 13, 2012.

[11] Android permissions,
http://android.git.kernel.org/?p=platform/
frameworks/base.git;a=blob;f=core/res/AndroidMa
nifest.xml. Accessed on May 13, 2012.

[12] A. Shabtai, Y. Fledel, and Y. Elovici. Securing
Android-powered mobile devices using SE Linux.
In IEEE Security & Privacy, Volume 8, Issue 3, pp.
36–44, May–June 2010.

[13] I. Burguera, U. Zurutuza, and S. Nadjm-Tehrani
Crow droid. Behaviour-Based Malware Detection
System for Android. In Proceedings of the
Workshop on Security and Privacy in
Smartphone’s and Mobile Devices (SPSM’11),
Chicago, IL, USA, October 17, 2011.

[14] L. Yihe. An Information Security Model Based on
Reputation and Integrality of P2P Network. In
Proceedings of 2009 International Conference on
Networks Security, Wireless Communications and
Trusted Computing, Wuhan, Hubei, China, April
25–26, 2009.

[15] L. Qi. Network Security Analysis Based on
Reputation Evaluation. In Proceedings of 2011
International Conference on Information
Technology, Computer Engineering and
Management Sciences (ICM 2011), Nanjing, China,
September 24–25, 2011.

[16] http://developer.android.com/reference/android/co
ntent/Context.html

[17] http://developer.android.com/reference/android/co
ntent/Context.html

[18] Lucas Jordan, Pieter Greyling, “Practical Android
Projects” Apress, 2011.

[19] H. Bing. Analysis and Research of Systems
Security Based on Android, In Proceedings of
2012 Fifth International Conference on Intelligent
Computation Technology and Automation
(ICICTA), Zhangjiajie, Hunan, and January 12-14,
2012.

[20] B. Berger, M. Bunke, and K. Sohr, An Android
Security Case Study with Bauhaus, in the
proceedings of 2011 18th Working Conference on
Reverse Engineering (WCRE), Limerick, October
17-20.

