
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

196

Manuscript received August 5, 2021
Manuscript revised August 20, 2021

https://doi.org/10.22937/IJCSNS.2021.21.8.26

A Pattern Matching Extended Compression Algorithm for DNA
Sequences

Murugan. A1 and Punitha. K2,

Dr. Ambedkar Government College, Chennai, India, Agurchand Manmull Jain College, Chennai, India

Abstract
DNA sequencing provides fundamental data in

genomics, bioinformatics, biology and many other research
areas. With the emergent evolution in DNA sequencing
technology, a massive amount of genomic data is produced
every day, mainly DNA sequences, craving for more storage
and bandwidth. Unfortunately, managing, analyzing and
specifically storing these large amounts of data become a major
scientific challenge for bioinformatics. Those large volumes of
data also require a fast transmission, effective storage, superior
functionality and provision of quick access to any record. Data
storage costs have a considerable proportion of total cost in the
formation and analysis of DNA sequences. In particular, there
is a need of highly control of disk storage capacity of DNA
sequences but the standard compression techniques
unsuccessful to compress these sequences. Several specialized
techniques were introduced for this purpose. Therefore, to
overcome all these above challenges, lossless compression
techniques have become necessary. In this paper, it is
described a new DNA compression mechanism of pattern
matching extended Compression algorithm that read the input
sequence as segments and find the matching pattern and store it
in a permanent or temporary table based on number of bases.
The remaining unmatched sequence is been converted into the
binary form and then it is been grouped into binary bits i.e. of
seven bits and gain these bits are been converted into an ASCII
form. Finally, the proposed algorithm dynamically calculates
the compression ratio. Thus the results show that pattern
matching extended Compression algorithm outperforms
cutting-edge compressors and proves its efficiency in terms of
compression ratio regardless of the file size of the data.

Key words: DNA sequence, pattern matching, lossless
compression, compression ratio

1. Introduction

Sequencing techniques allow the DNA data to
be represented as a long string made up from four
nucleotide bases. This facilitates the computational
analysis of our biological make-up for use in areas such
as forensics applications, crime investigation or parental
connection establishment [1]. Recent advancement in
Next Generation Sequencing (NGS) techniques enables
sequencing the individual genome in a fast and
affordable manner. As a result, a large number of
genomic data are produced for various studies. For
example, the genomic data has been used for studying
variations of genetic diseases on individuals so that

personalised medicines and diagnostic tools can be
developed [2]. Specific mutations within the genomic
data have been used to study the risk of developing
certain diseases [3]. The collection of data has also been
used to study pattern about an organism's evolutionary
history and aid in phylogenetic tree reconstruction [4].

As mentioned in [5], the genome sequence for
an individual containing Adenine (A), Thymine (T),
Cytosine (C) and Guanine (G) is almost incompressible.
The amount of DNA being taken from organisms and
order is increasing exponentially [6]. This gives in two
questions- a place for storing and safe transmission. The
hard question of place for storing while useful to the
workplace is depending on the size of each base. The
DNA order size varies from Megabyte (MB) to Terabyte
(TB) annually [7]. The DNA contains some logical
organization [8], hence data structure for storing,
accessing and efficient processing tasks is challenging
[9]. The DNA database requires an efficient compression
algorithm for storing. Thus, special DNA sequence
characteristics have to be explored in its compression.
The basic idea in traditional DNA nucleotide sequence
compression is to find identical sub-sequences within the
target DNA sequence to be compressed so that they are
encoded only once [10].

On the other hand, NGS techniques have
introduced a new challenge in which a lot of DNA
sequences have to be stored in various databases [11].
Large public databases for storing DNA sequences
include the GenBank at the National Center for
Biotechnology Information (NCBI) [12]. Also there are
different file formats to store these DNA sequences.
These file formats are used in different contexts, but they
can be converted to one another easily. Although the
exact details to be stored in these file formats may not be
the same, they often contain two distinct parts. The first
part is metadata such as sequence identifier, annotation
and/or description. The second part is the actual
nucleotide sequence. Currently, only general-purpose
lossless compression methods such as gzip and bzip2
[13] are applied to reduce the storage.

Various approaches [14] have been adopted for
DNA sequence compression. Compression plays a vital
role in dealing with increasing size of sequencing data.
DNA sequences can be compressed using generic

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021 197

approaches, as compression has natural representation as
a string of characters for which a rich literature exists.
However, genomic data are inherently redundant because
same species share significant part of the genome among
individuals [15]. Compressing DNA sequence can take
advantage of certain biological characteristics, as repeat
content and relationship to existing sequences. Reviews
in [16] describe prior work on DNA sequence
compression and exploiting redundancy within DNA
sequences, respectively. This paper is summarized as
follows. Section 2 provides review of the related work;
Section 3 presents the description of this research work.
In Section 4, proposed comparison of different
techniques that are described in detail by different
authors in different papers, results are presented and
discussed. In section 5, Conclusion is provided.

2. Related work

Compression algorithms for DNA or genome
generally fall into four categories. The first category is
naive-bit encoding where one or more characters are
represented by a certain code word. For example, the
simplest encoding for DNA sequence can be obtained by
assigning 2 unique pair of bits to each of the unique
alphabet present in a DNA sequence like A=00, C=01,
G=10, and T=11 [17]. The second category is a
dictionary-based or substitutional compression. It is
mostly observed that a DNA sequence consists of a lot of
repeated sequences. As a result, the repeated sequences
can be replaced by references to a dictionary that is either
built offline or is maintained at runtime [18]. The most
common dictionary based algorithms include LZ77 and
LZ78. Further, there are statistical methods that achieve
extremely good compression rates by generating
probabilistic models based on genome datasets [19].The
fourth category is referential compression where any
repeated sequence in an input dataset is replaced with a
reference to one or more external DNA sequences [20].
A data structure plays a critical role in any algorithm
designed for achieving good compression ratios, fast
searching of patterns inside sequences, or both. Many
algorithms proposed in the area of bioinformatics make
use of self-index-based data structures to achieve above
mention goals. They can be used to avoid the need of
keeping large files of text along with the index.

The index itself contains sufficient information
that any part of the text can be recreated. Some of the
examples of self-indexes include Compressed Suffix
Array (CSA), Succinct Suffix Array (SSA), and FM-
index [21]. There are various string matching techniques
which mainly deal with problem of identifying
occurrences of a substring in a given string or locate the
occurrences of specific pattern in a sequence. In this

section, we explore these different types of string
matching techniques. Some techniques are based on
algorithms of exact matching in string, such as Brute-
force algorithm, Bayer-Moore algorithm, Knuth-Morris-
Pratt algorithms [22] and some are based on approximate
string matching algorithms, dynamic programming is
mostly used approach. In an index based K-Partition
Multiple Pattern Matching Algorithm (IBKPMPM) [23]
chooses the value of k and divides both the string and
pattern into number of substring of length k, each
substring is called as a partition. The proposed work
compare all the first characters of all the partitions, if all
the characters are matching while searching then go for
the second character match and the process continues till
the mismatch occurs or total pattern is matched with the
sequence. In index based forward backward multiple
pattern matching algorithm (IFBMPM) [24] patterns
matching technique the characters in the given patterns
are matched one by one in the forward and backward
until a mismatch occurs or a whole pattern matches. In
the Multiple Skip Multiple Pattern Matching Algorithm
(MSMPMA) [25] technique the algorithm search the
input text to find the all occurrences of the pattern based
upon the skip technique.

To get starting location of the matching Index is
used; it compares the text characters from the well-
defined point with the pattern characters, and based on
the match numbers decides the skip value (ranges 1 to m-
1). In IBSPC [26] indexes have been used for the DNA
sequence. Least occurring character index will be used to
search for the pattern in the string. In an Index Based
Algorithm, on the basis of frequently occur character
index table is created and then align pattern with string
and matched occurrence of patterns with multiple times
one by one from left to right in the file. This paper
proposed the most efficient approach for finding
similarity between multiple patterns, till the end of the
sequence. To further increase the performance of pattern
matching an ASCII based multiple pattern matching
algorithm using ASCII value comparison between
pattern and substring is proposed. It is a simple approach
for finding multiple occurrences of patterns from a given
file. This algorithm gives better results when compare it
with existing algorithms. This approach provides best
results with the DNA sequence dataset. Experimental
results of applying technique to DNA sequences show
effectiveness of the proposed technique.

3. Proposed work
A double helix holds the DNA together with

hydrogen bonding. Each strand of the helix is a
biomolecule made up of many nucleotides that are
bonded together. Adenine (A), Cytosine (C), Guanine
(G), and Thymine (T) are the four types of nucleotides.

JCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021 198

The helix's two strands are the exact opposites of one
another. Each nucleotide on one strand corresponds to its
complement on the other strand, where A corresponds to
T and G corresponds to C. DNA strands that are
complementary to themselves are referred to as self-
complementary or palindromes. The bases at every
location of the target are compared with the
corresponding bases at the reference to obtain an
operation code indicating differences between a target
sequence and its reference.

The sensitivity and efficiency of a pattern are used in
detecting approximate repeats and complementary
palindromes in the input DNA sequence in the first phase.
The proposed algorithm uses the standard parameters for
pattern. These parameters were set and optimized based
on the number of bits needed to encode a mismatching
base as well as to encode a match. The output pattern
contains information about each repeat such as its pattern
count, start and end position, a set of edit operations, and
whether it is an approximate repeat etc. The Figure 1
depicts the work flow of a proposed algorithm.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021 199

The proposed Pattern Matching Extended Compression
Algorithm (PMECA) takes into account the unique
properties of DNA sequences and employs a novel
encoding method. PMECA have been divided into
different phases, as seen in Figure 1. The phases are: 1)
From the whole DNA sequence pattern file it takes every
four, five, six, seven and so on segments which is not
considered in the existing Pattern Matching Algorithm
and discover matching patterns with the remaining input
sequences. 2) If 4 segment matched, then the patterns
have been removed from the input sequence and save it
in the permanent table, if number of bases in the segment
is greater than 4 then store the segment in the temporary
table with pattern, position, and type of Match as
EXACT or REVERSE. 3) Finding the maximum
frequency for the type of Match and it is been stored in
permanent table. 4) Finding matching with the remaining
input sequence for each and every 5, 6, 7… segment
patterns till the segments file length is less than half of
the input sequence's length. The proposed algorithm
makes a binary representation of the remaining
unmatched sequence for the Encoding process. 5)
Additionally, Convert binary bits to ASCII and display
as an output by grouping binary bits into 7 bits. 6)
Finally, the compression ratio is used to test the
efficiency of the efficient Pattern Matching Extended
Compression technique, which is defined as the rate
between the size of the dictionary file and the size of the
output sequence divided by the size of the original
sequence multiplied by hundred.

The goal of data compression is to reduce the
number of bits which are useful in storing or transporting
of data. The Pattern Matching Extended Compression
technique for compressing DNA sequences that is more
efficient than prior techniques. To accommodate the
massive genetic data, the new approach is designed to
require less storage with less compression -
decompression time. The current level of specialization
in compression algorithms is aimed at exploiting the
specific properties of each type of data to be compressed,
allowing for performance optimization, which is a
specialized compressor for genomic data have been
developed.

3.1 Compression Algorithm

 The proposed compression algorithm is the
extension of the Improved_Compress algorithm[28]
which gives better compression when compared to
Improved_Compress algorithm by covered more number
of segments.

Algorithm 1: Ext_Improved_Compress

(input_sequence)

Begin

Read the first 4 bases as segment from
input_sequence
Call Improved_Compress(input_sequence)
Set i = 1;
For(x=5;x<=(input_sequence.length)/2;x++)
{

Read x as number of bases in the segment from
input_sequence
Call Improved_Compress(remaining sequence)

 }

End

3.2 Implementation

Step 1: Read the input sequence.

Step 2: Take the 4 segment and find the matching with
remaining input sequence
AAGTGACGTATTTCCCTTTAGGGACGTTGGAGC
ATTGACCTAGGTTAGCATTACGTTCTAAAGTGTG
CAATGCCCCAAAATGGGCAAGTCGTTGCCCTTT

Step 2.1: Remove the matching pattern and store it in the
permanent table

Step 3: Take 5 segment from the remaining sequence and
find the matching, if match occurs then store it in the
temporary table.

GATTTTTTGGGCCGTTGGAGCATTGACCTAGGTT
AGCATTACGTTCTAGATGCCCCAAAATGGGCAA
GTCGTTGTTTGGA

Step 3.1: Remove the pattern from the sequence and
Store the TTGGA segment in the permanent table.

GATTTTTCGGCATTGACCTGATTTTTCGGCATTG
ACCTAGCATTACGTTCTAGATGCCCCAAAA

Step 4: Next take 6 segment and find the matching and
repeat the process as in step 3 till the length of the
segment is lesser than the half of the length of the input
sequence.

Step 5: Encode the remaining unmatched sequence into
the binary form and then group the binary bits into 7 bits
and convert that into the ASCII form.

JCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021 200

3.3 Compression Ratio

The compression ratio is calculated by using the
following formula:

 (1)

3.4 Decompression Algorithm

The decompression algorithm is responsible for
getting back the original content from the compressed
content. The compressed output sequence can be
decompressed to the original input sequence based on the
patterns stored in the permanent table’s details.
Decompression algorithm is the reverse of the
compression process. The file matching algorithm is
used to find the matching between the original input
sequence of compression algorithm and the output
sequence of decompression algorithm to determine that
the proposed algorithm is a lossless compression
algorithm.

4. Results and Discussions

To test the efficiency of the proposed Pattern
Matching Extended Compression algorithm, it is been
tested to a large data set of DNA sequences from NCBI
repository and compared the findings to those reported
for other existing DNA Compression algorithm. Human
dystrophin (HUMHDYSTROP), human growth hormone
(HUMGHCSA), human beta globin region on
chromosome 11 (HUMHBB), human DNA sequence
(HUMHDABCD), human hypoxanthine phosphoribosyl
transferase gene (HUMHPRTB), and the vaccinia virus
Copenhagen full genome are the reference sequences
(VACCG). The suggested Pattern Matching Extended
Compression technique was used to test the above data
for varied sequence lengths.

4.1 Comparative Analysis

Table 1 and figure 2 shows a comparison of the
proposed algorithm compression ratio with various
existing compression techniques [27] [28]. The proposed
algorithm gives average compression ratio of 91%.

Table 1: Comparison of proposed Algorithm with Existing Algorithms

Sequence
Lengt

h

Optimal
Seed
based

algorith
m

Improv
ed

Compre
ss

algorith
m

Ext_Imp
roved

Compres
sion

algorith
m

HUMHDYST

ROP
38,770 82% 90% 93%

HUMGHCSA 66,496 90% 89% 90%

HUMHBB 73,308 82% 89% 90%

HUMHDABC

D
58,563 84% 88% 91%

HUMHPRTB 56,832 84% 89% 90%

Fig. 2 Compression ratio of various compression algorithms

The Proposed algorithm computational cost is
proportional to the time it takes to compute the solution
for genomic compression. This computational
complexity modelling of sequences is based on their
similarity and coding to lower bit size. Table 2 and
Figure 3 compares the proposed Pattern Matching
Extended Compression algorithm to the existing
approach [27] [28] in terms of time execution (in
seconds). The proposed algorithm has a faster response
time than the existing approach.

Table 2: Execution Time Comparison of proposed and existing

algorithms

Sequence Length

Optimal
seed

based
algorithm

Improved
Compress
algorithm

Ext_Improved_
Compression

algorithm

HUMHDYSTROP 38,770 1.5 1.3 1.1

HUMGHCSA 66,496 2.5 2.4 2.1

HUMHBB 73,308 2.8 2.6 2.4

HUMHDABCD 58,563 2.2 2.1 1.9

HUMHPRTB 56,832 2 1.8 1.6

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021 201

Fig. 3 Execution Time of various Compression Algorithms

The storage and processing are not unknown in the field
of bioinformatics due to the large volume of DNA
sequence data. In this paper, proposed a Pattern
Matching Extended Compression algorithm which
compresses the original size of the file with a lesser
compression ratio without any data losses which is been
described in Table 3.

5. Conclusions

Problems related to storage and processing are
not unknown in the field of bioinformatics due to the
large volume of DNA sequence data. Since in this paper,
Pattern Matching Extended Compression algorithm are
been explored to provide a solution other than the
existing compression of DNA sequences. The proposed
approach allows finding the segments and finds the
matching patterns and the number of times the pattern is
repeated in the sequence. The remaining unmatched
series is translated to binary, then divided into binary bits
(eight bits) and converted to ASCII. Finally, the
proposed algorithm calculates the compression ratio
dynamically. The proposed solution brings highly
promising results. Thus, regardless of higher data size,
the findings show that the Ext_Improved Compression
algorithm outperforms with a good compressed ratio,
storage capacity. In future, the experiments will carried
out on DNA sequences to provide a proof of concept
application of the proposed Ext_Improved Compression
algorithm in real life applications.

References

[1] Bradley, P., Den Bakker, H.C., Rocha, E.P., McVean,
G. and Iqbal, Z.: “Ultrafast search of all deposited
bacterial and viral genomic data”. Nature
biotechnology, vol. 37(2), pp.152-159(2019)

[2] Chikhi, Rayan, Jan Holub, and Paul Medvedev:
"Data structures to represent sets of k-long DNA
sequences". arXiv preprint arXiv:1903.12312(2019)

[3] Břinda, Karel, Michael Baym, and Gregory
Kucherov: "Simplitigs as an efficient and scalable
representation of de Bruijn graphs". Genome
biology 22, vol. 1, pp.1-24(2021)

[4] Kryukov, K., Ueda, M.T., Nakagawa, S. and
Imanishi, T.: “Nucleotide Archival Format (NAF)
enables efficient lossless reference-free compression
of DNA sequences”. Bioinformatics, vol. 35(19),
pp.3826-3828(2019)

[5] Al-Okaily, A., Almarri, B., Al Yami, S. and Huang,
C.H.: “Toward a better compression for DNA
sequences using Huffman encoding”. Journal of
Computational Biology, vol. 24(4), pp.280-
288(2017)

[6] Solomon, B. and Kingsford, C.: “Fast search of
thousands of short-read sequencing
experiments”. Nature biotechnology, vol. 34(3),
pp.300-302(2016)

[7] Khairy, Reem, Mona Safar, and Watheq El-Kharashi.
M.: "Bloom filter acceleration: A high level synthesis
approach". In the proceedings of 30th IEEE Canadian
Conference on Electrical and Computer Engineering
(CCECE), pp. 1-6. Canada(2017)

[8] Deorowicz, S.: “FQSqueezer: k-mer-based
compression of sequencing data”. Scientific
reports, vol. 10(1), pp.1-9 (2020)

[9] Bingmann, Timo, Phelim Bradley, Florian Gauger,
and Zamin Iqbal: "Cobs: a compact bit-sliced
signature index. In: Proceedings of International
Symposium on String Processing and Information
Retrieval, pp. 285-303. Springer, Cham(2019)

[10] Bradley, P., Den Bakker, H.C., Rocha, E.P., McVean,
G. and Iqbal, Z.: “Ultrafast search of all deposited
bacterial and viral genomic data”. Nature
biotechnology, vol. 37(2), pp.152-159(2019)

[11] Holley, G., Wittler, R. and Stoye, J.: “Bloom Filter
Trie: an alignment-free and reference-free data
structure for pan-genome storage”. Algorithms for
Molecular Biology, vol. 11(1), pp.1-9(2016)

[12] Marchiori, D. and Comin, M.: “SKraken: Fast and
Sensitive Classification of Short Metagenomic Reads
based on Filtering Uninformative k-mers”.
Bioinformatics, pp. 59-67(2017)

[13] Chikhi, R., Holub, J. and Medvedev, P.: “Data
structures to represent sets of k-long DNA
sequences”, arXiv preprint arXiv: 1903.12312(2019)

[14] Kryukov, K., Ueda, M.T., Nakagawa, S. and
Imanishi, T.: “Nucleotide Archival Format (NAF)
enables efficient lossless reference-free compression
of DNA sequences”. Bioinformatics, vol. 35(19), pp.
3826-3828(2019)

[15] Pratas, D., Pinho, A.J. and Ferreira, P.J.: “Efficient
compression of genomic sequences”. In Proceedings
of Data compression conference (DCC), pp. 231-240,
IEEE, USA(2016)

[16] Chandak, S., Tatwawadi, K., Ochoa, I., Hernaez, M.
and Weissman, T.: “SPRING: a next-generation
compressor for FASTQ data”. Bioinformatics, vol.
35(15), pp. 2674-2676(2019)

[17] Liu, Y., Yu, Z., Dinger, M.E. and Li, J.: “Index
suffix–prefix overlaps by (w, k)-minimizer to generate

JCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021 202

long contigs for reads
compression”. Bioinformatics, vol. 35(12), pp.2066-
2074(2019)

[18] Hernaez, M., Ochoa, I. and Weissman, T.: “A cluster-
based approach to compression of quality scores”.
In 2016 Data Compression Conference (DCC), pp.
261-270, IEEE, USA(2016)

[19] Pratas, D., Hosseini, M., Silva, J.M. and Pinho, A.J.:
“A reference-free lossless compression algorithm for
DNA sequences using a competitive prediction of two
classes of weighted models”. Entropy, vol. 21(11),
p.1074(2019)

[20] Long, H., Sung, W., Kucukyildirim, S., Williams, E.,
Miller, S.F., Guo, W., Patterson, C., Gregory, C.,
Strauss, C., Stone, C. and Berne, C.: “Evolutionary
determinants of genome-wide nucleotide
composition”. Nature ecology & evolution, vol. 2(2),
pp.237-240(2018)

[21] Hernaez, M., Pavlichin, D., Weissman, T. and Ochoa,
I.: “Genomic data compression”. Annual Review of
Biomedical Data Science, vol. 2, pp.19-37(2019)

[22] Hosseini, M., Pratas, D. and Pinho, A.J.: “A survey
on data compression methods for biological
sequences”. Information, vol. 7(4), p.56(2016)

[23] Bonfield, J.K., McCarthy, S.A. and Durbin, R.:
“Crumble: reference free lossy compression of
sequence quality values”. Bioinformatics, vol. 35(2),
pp. 337-339(2019)

[24] Chandak, S., Tatwawadi, K. and Weissman, T.:
“Compression of genomic sequencing reads via hash-
based reordering: algorithm and
analysis”. Bioinformatics, vol. 34(4), pp. 558-
567(2018)

[25] Ginart, A.A., Hui, J., Zhu, K., Numanagić, I.,
Courtade, T.A., Sahinalp, S.C. and David, N.T.:
“Optimal compressed representation of high
throughput sequence data via light
assembly”. Nature communications, vol. 9(1), pp. 1-
9(2018)

[26] Ochoa, I., Hernaez, M., Goldfeder, R., Weissman, T.
and Ashley, E.: “Effect of lossy compression of
quality scores on variant calling”. Briefings in
bioinformatics, vol. 18(2), pp. 183-194(2017)

[27] Pamela Vinitha, E., Gopalakrishnan, G. and
Karunakaran, M.: “An optimal seed based
compression algorithm for DNA
sequences”. Advances in Bioinformatics, vol. 2016,
Article ID 3528406(2016)

[28] Punitha K. and Murugan A.: “Pattern Matching
Compression Algorithm for DNA Sequences”,
In: Proceedings of the International Conference on
Sustainable Expert System, vol.176, pp. 387-402,
Nepal(2021).

Profile of Authors:

Dr. A. Murugan is an Associate
Professor and Head of Computer Science
at Dr. Ambedkar Government Arts
College, Chennai. He received his M.Sc
Computer Science from Manonmaniam
Sundaranar University and Ph.D from
the University of Madras. His areas of

interests are Algorithm analysis, Molecular computation and
Data mining. He has over 25 years of experience in teaching.
He has published 98 papers in International journals and 17
papers in National publications.

Ms. K. Punitha is an Assistant Professor
at Agurchand Manmull Jain College,
Chennai. She received her M.Sc
Computer Science from University of
Madras, M.Phil from the Periyar
University, B.Ed from the University of
Madras. Her areas of interests are

Computation Algorithms, Computer Networks and Molecular
Computation. She has over 16 years of experience in teaching.
She has published 6 papers in International and National
Journals.

