
IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

281

Manuscript received August 5, 2021
Manuscript revised August 20, 2021
https://doi.org/10.22937/IJCSNS.2021.21.8.37

An Efficient DNA Sequence Compression using Small Sequence
Pattern Matching

Murugan. A1 and Punitha. K2,

Dr. Ambedkar Government College, Chennai, India, Agurchand Manmull Jain College, Chennai, India

Abstract
Bioinformatics is formed with a blend of biology and informatics
technologies and it employs the statistical methods and approaches
for attending the concerning issues in the domains of nutrition,
medical research and towards reviewing the living environment.
The ceaseless growth of DNA sequencing technologies has
resulted in the production of voluminous genomic data especially
the DNA sequences thus calling out for increased storage and
bandwidth. As of now, the bioinformatics confronts the major
hurdle of management, interpretation and accurately preserving of
this hefty information. Compression tends to be a beacon of hope
towards resolving the aforementioned issues. Keeping the storage
efficiently, a methodology has been recommended which for
attending the same. In addition, there is introduction of a
competent algorithm that aids in exact matching of small pattern.
The DNA representation sequence is then implemented
subsequently for determining 2 bases to 6 bases matching with the
remaining input sequence. This process involves transforming of
DNA sequence into an ASCII symbols in the first level and
compress by using LZ77 compression method in the second level
and after that form the grid variables with size 3 to hold the 100
characters. In the third level of compression, the compressed
output is in the grid variables. Hence, the proposed algorithm
S_Pattern DNA gives an average better compression ratio of 93%
when compared to the existing compression algorithms for the
datasets from the UCI repository.
Key words:
DNA sequences, ASCII symbol, Binary Codes, compression,
pattern matching, Data compression.

1. Introduction

Various kinds of computation can be performed by
manipulating the DNA and related molecules [1]. Data
storage and access has become a significant concern with
the ceaseless increase in the data volume. This has been
clearly witnessed in storing the large DNA sequences which
demands ample disk space. Resultant, data compression
turns out to be the most mandatory and competent approach
for handling such a scenario. With compression, there is
reduction in both the disk storage as well as time acquired
in subsequent data processing. There has been
recommendation of several techniques for handling the
concerns associated with the large volume of DNA
sequence data sets. Towards this, the compression-based
algorithms have emerged significant as they offer efficient
data storage and remove redundancy to understand the
biologically important molecules [2]. Pattern matching
usually refers to identifying specific pattern of characters

within a huge file and is considered as the core process of
DNA sequencing.

Apparently, the pattern matching algorithms
performs an iterative scan over the sequence or a text. The
existing research work examines the applicability of a novel
Pattern matching algorithm in context with the ASCII
Symbols. There has been significant application of Pattern
matching algorithms in the realm of computational biology
pertaining to feature extraction, searching, disease analysis
and structural analysis. The suggested algorithm
encourages minimum comparisons in string sequence
thereby minimizing the attempts involved in each character
comparison. Improvised results are gained by using the
proposed algorithm in comparison with the other algorithms.
Following is the organization of the paper: section 2 put
forth the related work. Section 3 presents the proposed work
along with the algorithm. Results acquired from the
experiment in Section 4. Section 5 lay down the concluding
remarks.

2. Related Work

DNA compression algorithms are classified into
three types. The first category comprises of naive-bit
encoding wherein the characters are depicted using a
particular code word. The second category comprises of a
dictionary-based or substitutional compression. Generally,
there exist various repeated sequences in a DNA sequence
which can be possibly replaced by references to a dictionary
that may be constructed offline or maintained at runtime as
mentioned in [3]. Among various dictionary-based
algorithms, the popular are LZ77 and LZ78 [4] [5]. In
addition, there exist some statistical methods through which
effective compression rates can be obtained by generating
probabilistic models with respect to the genome datasets
according to [6]. The third category comprises of referential
compression in which any repeated sequence acts as an in
an input dataset which can be replaced with a reference to
any external DNA sequences as stated in [7]. In any
algorithm, data structure is of utmost significance where the
aim is to acquire good compression ratios or quick pattern
search within sequences. Towards this, algorithms
pertaining to bioinformatics employ self-index-based data
structures which help in preventing storage of large text
files along with the index, as per [8]. Just by using the index
alone, any part of the text can be generated again. CSA
(compressed suffix array), SSA (Succinct Suffix Array),
and FM-index are certain self-indexes as stated in [9].

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

282

In addition, there exist numerous string-matching
techniques that helps in resolving the issues pertaining to
determining the existence of a pattern in a sequence or of a
substring within an existing string [10] [11]. The following
section gives an insight on diverse options of string-
matching techniques, with many of them based upon
algorithms like Brute-force algorithm, Bayer-Moore
algorithm, Knuth-Morris-Pratt algorithms that performs
exact matching in string as put forth in [12], [13]. While
many other techniques rely upon approximate string-
matching algorithms and dynamic programming. In
IBKPMPM (Indexed based K-Partition Multiple Pattern
Matching Algorithm) mentioned in [14], based upon the k
value, both the string and pattern is divided into number of
substrings with length k and each substring being referred
to as a ‘partition’. First character of all the partitions is
compared. If they match, then same is continued for the
second character and so on. The process continues until
there is a mismatch or till the entire pattern matches with
the sequence. In the technique of IBKPMPM (index based
forward backward multiple pattern matching) algorithm
specified in [15], matching of the characters is performed
one by one in both forward and backward direction. The
process continues till the entire pattern matches or there
occurs a mismatch. In the technique of MSMPMA
(Multiple Skip Multiple Pattern Matching Algorithm)
mentioned in [16], the input text is searched for determining
all occurrences of the pattern with respect to the skip
technique. Index helps in determining the start location of
the matching. Also, there is comparison of the Text
characters from the well-defined point with the pattern
characters. The match numbers help in determining the skip
value (ranges 1 to m-1). In IBSPC mentioned in [17],
indexes are employed for the DNA sequence. For pattern
searching within the string, character index that has least
occurrence is employed. Index Based Algorithm specified
in [18], the index table is generated based on character index
that occurs quiet often. Thereafter, the pattern is aligned
with string and the occurrence of patterns is matched
numerous times one by one from left to right [19][20].

The present research has put forth a novel
approach that is competence enough in determining
similarity among multiple patterns. Yet another pattern
matching algorithm has been ascertained to elevate the
functionality of pattern matching S_Pattern DNA algorithm
by the means of ASCII Symbols. That is the ASCII symbols
helps in determining the value comparison amidst pattern
and substring. Thus, using the proposed approach, multiple
pattern occurrences can be identified from a given file. The
performance and result obtained from the recommended
algorithm surpasses the rest other prevailing algorithms
[21]. Moreover, praiseworthy results are obtained when
DNA sequence dataset is employed by the above algorithm.
Performance of both the proposed and exiting algorithms
along with the results are being compared and presented

[22]. It’s quite apparent from the experimental results that
the proposed approach is effective enough when applied on
the DNA sequences.

3. Proposed Work
Initially, segment the DNA sequence into two,

three, four, five and six data segments such that each
segment is encoded like “#” for first match, “*” for second
match and so on. By the means of ASCII Symbols,
comparison of characters is done. Next there is description
of the procedure for searching patterns in the DNA
sequences (two, three, four, five and six segment). Also, a
match is determined with rest of the input sequence. If there
is a match, the pattern gets replaced with any symbol
possessing the ASCII Symbols. The process repeats from
segment size is 2 to 6 in the first level. In the second level,
ASCII symbol compressed file are again compressed by
using the LZ77 compression algorithm. In the third level,
the grid variables are formed with size 3 and it holds 100
characters each and followed by the implementation of
compression formula to generate compression ratio with a
compressed sequence. It’s concluded that usage of grid
variable maximize the compression. The recommended
approach yields significant performance and benefit by
employing the ASCII symbols and grid variables in
comparison to the prevailing algorithm that leads to better
compression. The resultant compression ratio is clearly less
than the original text. The Figure 1 depicts the overall
process of proposed algorithm S_Pattern DNA.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

283

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

284

3.1 Proposed Algorithm

The proposed algorithm is given below to obtain the
compressed sequence.

Algorithm S_Pattern DNA:
Input: DNA Sequence DNA[n]
Output: Compressed sequence

Begin
 Segment the sequence into 2, 3, 4, 5 and 6
 Set segment size MIN=2 and MAX=6 for segment
compression in DNA[n]
 while(MAX)
 L1: P1=SEGMENT[I]
 for J = 0 to N
 if (DNA_SEQ contains P1) then
 Replace all matches by RANDOM ASCII
CODE in DNA_SEQ
 REF_DECRYPT[J++]= P1
 else
 increment I by 1
 goto L1;
 end if
 end for
 end while

Compress the ASCII CODED DNA_SEQ using
LZ77 compression algorithm
 Assign the output to DNA_SEQ
 Set MAX_LEN_DNA_SEQ:= Length(DNA_SEQ)
 while(MAX_LEN_DNA_SEQ)
 for I=0 to MAX_LEN_COMPRESSED_FILE
 COMPRESS[I]= SubString(J,J+100)
 DNA_SEQ+= FSTR[I]
 J+=100
 increment I by 1
 end for
 end while
 Compressed sequence in DNA_SEQ
End

3.2 Implementation of the Algorithm

The steps of the algorithm for compressing an
input sequence which contains character of every two, three,
four, five and six segment sequence is initialized until end
of file. The analysis of algorithm is as follows.
Step 1: Read the input sequence
Step 2: Take two bases (AA) from the sequence and fine the
matching with remaining input sequence. If matching
occurs, then replace it with any symbol which having the
ASCII Symbols.

AAGTACGTATTTCCCTTTAGGGACGTTGGAACATTGAC
CTAGGTTAGCATTACTTTCTAAAGTACGTATGCCCCAA
AATGGGCAAGTCGTTGCCCTT

#GTACGTATTTCCCTTTAGGGACGTTGGAACATTGACCT
AGGTTAGCATTACTTTCT#AGTACGTATGCCCC##TGGG
C#GTCGTTGCCCTT

#GTACGTATTTCCCTTTAGGGACGTTGGAACATTGACCT
AGGTTAGCATTACTTTCT#AGTACGTATGCCCC##TGGG
C#GTCGTTGCCCTT

#*ACGTATTTCCCTTTAGGGAC*TGGAACATTGACCTAG
*TAGCATTACTTTCT#A*ACGTATGCCCC##TGGGC#*CGT
TGCCCTT

#*@GTATTTCCCTTTAGGG@*TGGA@ATTG@CTAG*TA
GCATT@TTTCT#A*@GTACGCCCC##TGGGC#*CGTTGCC
CTT

#*@$ATTTCCCTTTAGGG@*TGGA@ATTG@CTAG*TAG
CATT@TTTCT#A*@$ACGCCCC##TGGGC#*C$TGCCCTT

#*@$%TTCCCTTTAGGG@*TGGA@%TG@CTAG*TAGC%
T@TTTCT#A*@$ACGCCCC##TGGGC#*C$TGCCCTT

#*@$%^CCCT^AGGG@*TGGA@%TG@CTAG*TAGC%T@
^TCT#A*@$ACGCCCC##TGGGC#*C$TGCCC^

#*@$%^&CT^AGGG@*TGGA@%TG@CTAG*TAGC%T@^
TCT#A*@$ACG&##TGGGC#*C$TG&C^

#*@$%^&CT^AG(@*T(A@%TG@CTAG*TAGC%T@^TCT#
A*@$ACG&##T(GC#*C$TG&C^

Like this, the process repeats until the end of file with
remaining bases from three to six and gives better
compression.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

285

3.3. Compression Ratio Calculation

Each ASCII Symbols in a DNA sequence requires
at least a few bits to encode. The goal of DNA compression
is to reduce the number of bits required to represent each
base. The final parsed sequence are included in the
proposed method's output, and the compression ratio
specifies the bits per symbol (bps) and can be calculated
using the following formula [24] (see Eq. 1).

1- .

.
X100 (1)

It is observed that it achieves good compression

ratio as compared to existing approaches. However, the
Pattern matching algorithm based on ASCII Symbols
results whereas decreases
in pattern size with a good compression ratio. After
applying the equation, the compression ratio of DNA
sequences achieves with a reduction in storage space, and
matching compression is applicable.

4. Results and Discussion

The present section put forth a number of
experiments that allows comparison of proposed and
existing algorithms. Thereafter, evaluation is performed
with the number and size of patterns in context with the
performance. Experiments are carried over different pattern
sizes thereby listing the comparison output [24]. Also, the
experiments are performed on the text file that is basically
a collection of datasets of DNA sequences fetched from
Genbank through UCI repository. Datasets employed
comprises of six types of DNA sequences such as HUMAN
GENES (HUMDYSTROP, HUMHDABCD, HUMHBB,
HUMGHCSA, and HUMHPRTB) and being the Virus
(VACCG).

For exhibiting the performance, the proposed
algorithm is compared with other existing algorithms. There
is no need of any pre-processing operation prior to
comparison since the proposed algorithm doesn’t consume
any pre-processing time. And this makes the proposed
algorithm efficient enough.

For verifying the existence of pattern in the given
sequence, an efficient Pattern-matching algorithm has been
utilized that relies upon ASCII Symbols having minimum
compression ratio, time interval and complexity. The
recommended approach helps in examining diverse patterns
and plotting the graph through the results obtained and
thereafter analyse it. It’s very apparent from the
experimental that the proposed small Pattern matching
algorithm S_Pattern exhibits surpassed performance in
contrast to other prevailing approaches and the same is
being depicted in Table 1.

Table 1: Comparison of Compression ratio of Various Algorithms
(in percentage)

S.
No

DNA Sequences

Original
File Size
(Bytes)

Compression Ratio (%)

Optimal
seed

based
algorith

m

Improve
d

Compre
ssion

S_Patte
rn

DNA

1 HUMDYSTROP 38,770 82 90 99

2 HUMGHCA 66,496 90 89 95

3 HUMHBB 73,308 82 89 90

4 HUMHDABCD 58,563 84 88 92

5 HUMHPRTB 56,832 84 89 93

6 VACCG 1,91,735 84 89 90

Figure 2 depicts the proposed approach as well as

existing compression ratio approaches. When compared to
other existing [23][24] , the compression ratio of the
proposed S_Pattern DNA algorithm based on ASCII
Symbols approach achieves good compression. However,
proposed small Pattern matching algorithm based on ASCII
Symbols results pattern compression size is been reduced
compared to other techniques with the effect on results.

Fig. 2 Comparative Analysis of Compression ratios of various

Algorithms

Table 2 depicts the comparison of compression time of
proposed compression algorithm S_Pattern DNA with other
existing compression algorithms [23] [24]. The S_Pattern
DNA compression algorithm gives better compression ratio
in fewer seconds when compared with other existing
algorithms.

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

286

Table 2: Comparison of compression time of various compression
algorithms (in secs)

Sequence

Optimal
seed

based
algorithm

Improved
Compression

S_Pattern
DNA

HUMHDYSTROP 1.5 37 4

HUMGHCSA 2.5 65 5

HUMHBB 2.8 89 5

HUMHDABCD 2.2 63 4

HUMHPRTB 2 65 8

VACCG 4 80 21

Figure 3 represents the high speed of the proposed
algorithm S_Pattern DNA when compared to the other
existing compression algorithms.

Fig. 3 Comparison of Compression time

5. Conclusion

The pattern matching algorithm S_Pattern DNA
that employs ASCII Symbols for pattern matching in DNA
sequences. Input sequences having any length can be
handled with such an algorithm. Moreover, it helps in
reducing the compression ratio as well as the total number
of comparisons. The aforementioned algorithm delivers at
par performance in comparison to the existing approaches
as well as deal effectively with DNA sequence datasets.
Unlike other commonly used algorithms, the recommended
algorithm aids in minimizing the total number of
comparisons along with the compression ratio. Also,
repetitive patterns could be determined at a higher level of
abstraction (like voluminous datasets) using the proposed
approach. In future, the proposed algorithm can be extend
to more segment (from 6 to more) to gain the efficient
compression.

References
[1] Murugan A., Lavanya B. and Shyamala K., “A Novel

Programming Approach for DNA Computing”,
International Journal of Computational Intelligence
Research, vol. 7(2), pp. 199-209, 2011.

[2] Pothuraju Rajarajeswari and Allam Apparao, “DNABIT
Compress – Genome Compression Algorithm,
Bioinformation, vol. 5(8), pp. 350-360, 2011.

[3] Khairy R., Safar M., and El-Kharashi M.W., “Bloom filter
acceleration: A high level synthesis approach”. In:
Proceedings of IEEE 30th Canadian Conference on
Electrical and Computer Engineering (CCECE), pp. 1-6,
Windsor, ON, Canada, 2017.

[4] Heng Li., “BGT: Efficient and flexible genotype query
across many samples”, Bioinformatics, vol. 32(4), pp. 590-
592, 2016.

[5] Zheng X., “SeqArray—a storage-efficient high-performance
data format for WGS variant calls”, Bioinformatics, vol.
33(15), pp. 2251-2257, 2017.

[6] Deorowicz and Sebastian, “FQSqueezer: k-mer-based
compression of sequencing data”, Scientific reports, vol.
10(1), pp. 1-9, 2020.

[7] Liu Y., Yu Z. and Li J., “Index suffix-prefix overlaps by (w;
k)-minimizer to generate long contigs for reads
compression”, Bioinformatics, vol. 35(12), pp. 2066–2074,
2018.

[8] Lau A.K., Dorrer S. and Leimeister C.A., “Read-SpaM:
Assembly-free and alignment-free comparison of bacterial
genomes with low sequencing coverage”, BMC
Bioinformatics, vol. 20(20), pp. 1-15, 2019.

[9] Milton Silva, Diogo Pratas and Armando J Pinho, “Efficient
DNA sequence compression with neural
networks, GigaScience, Vol. 9(11), pp. 1-15, 2020.

[10] Greenfield, “GeneCodeq: quality score compression and
improved genotyping using a Bayesian framework”,
Bioinformatics, vol. 32(20), pp. 3124-3132, 2016

[11] Bonfield J. K. and McCarthy, “Crumble: reference free
lossy compression of sequence quality values”,
Bioinformatics, vol. 35(2), pp. 337–339, 2019.

[12] Du S., Li J. and Bian N., “A compression method for DNA”,
PLOS ONE Journal, vol. 15(11), Article ID: e0238220, 2020.

[13] Gopinath A. and Ravisankar M, “Comparison of lossless
data compression techniques”, In: IEEE International
Conference on Inventive Computation Technologies
(ICICT), pp. 628–633, Coimbatore, India, 2020.

[14] Kavitha P., “A Survey on Lossless and Lossy Data
Compression Methods,” International Journal of Computer
Science Engineering Technology (IJCSET), vol. 7(3), pp.
110–114, 2016.

[15] Nirmala Devi S., Rajagopalan P. and Anuradha V., "Index
based multiple pattern matching algorithm using frequent
character count in patterns”, International Journal of
Advanced Research in Computer Science and Software
Engineering, vol. 3(5), 2013.

‐10

90

Comparison of compression time of
S_Pattern DNA algorithm with other

existing algorithms

Optimal seed based algorithm

Improved Compression

S_Pattern DNA

IJCSNS International Journal of Computer Science and Network Security, VOL.21 No.8, August 2021

287

[16] Karel Brinda, “Novel computational techniques for
mapping and classifying Next-Generation Sequencing data”,
PhD thesis, Université Paris-Est, November 2016.

[17] Bhukya, R., and Somayajulu, D. V. L. N., “Exact multiple
pattern matching algorithm using DNA sequence and pattern
pair. International Journal of Computer Applications,
vol. 17(8), pp. 32-38, 2011.

[18] Prashant Pandey and Rob Patro, “Squeakr: an exact and
approximate k-mer counting system”, Bioinformatics, vol.
34(4), pp. 568-575, 2017.

[19] Numanagić, I., Bonfield, J. K., Hach, F., Voges, J.,
Ostermann, J., Alberti, C., and Sahinalp, S. C., “Comparison
of high-throughput sequencing data compression
tools”, nature methods, vol. 13(12), pp. 1005-1008, 2016.

[20] Wu L., Yavas G., “Direct comparison of performance of
single nucleotide variant calling in human genome with
alignment-based and assembly-based approaches”,
Scientific reports, vol. 7(1), pp. 1-9, 2017.

[21] Danek, A., and Deorowicz, S., “GTC: a novel attempt to
maintenance of huge genome collections
compressed”, BioRxiv, Article ID. 131649, 2017.

[22] Chikhi R., Limasset A., and Medvedev P., “Compacting de
Bruijn graphs from sequencing data quickly and in low
memory”, Bioinformatics, vol. 32(12), pp. 201-208, 2016.

[23] Eric, Pamela Vinitha, Gopakumar Gopalakrishnan and
Muralikrishnan Karunakaran, “An optimal seed based
compression algorithm for DNA sequences”, Advances in
Bioinformatics, vol. 2016, Article ID 3528406, pp. 1-7,
2016.

[24] Punitha K. and Murugan A., “Pattern Matching
Compression Algorithm for DNA Sequences”,
In: Proceedings of the International Conference on
Sustainable Expert System, vol.176, pp. 387-402, Tribhuvan
University, Nepal, 2021.

